当前位置:文档之家› 中考数学中的最值问题解法

中考数学中的最值问题解法

中考数学中的最值问题解法
中考数学中的最值问题解法

中考数学几何最值问题解法 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。

应用两点间线段最短的公理(含应用三角形的三边关系)求最值

典型例题:

例1. (2012山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】

A .21+

B .5

C .

1455 5 D .52 【答案】A 。

【考点】矩形的性质,直角三角形斜边上的中线性质,三角形三边关系,勾股定理。

【分析】如图,取AB 的中点E ,连接OE 、DE 、OD ,

∵OD≤OE+DE,

∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,

此时,∵AB=2,BC=1,∴OE=AE=

12AB=1。 DE=2222AD AE 112=+=+=,

∴OD 的最大值为:21+。故选A 。

例2.(2012湖北鄂州3分)在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 ▲ 。

【答案】4。

【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,在BA 上截取BE=BN ,连接EM 。

∵∠ABC 的平分线交AC 于点D ,∴∠EBM=∠NBM。

在△AME 与△AMN 中,∵BE=BN ,∠EBM=∠NBM,BM=BM ,

∴△BME≌△BMN(SAS )。∴ME=MN。∴CM+MN=CM+ME≥CE。

又∵CM+MN 有最小值,∴当CE 是点C 到直线AB 的距离时,CE 取最小值。 ∵BC=42,∠ABC=45°,∴CE 的最小值为42sin450

=4。 ∴CM+MN 的最小值是4。

例3.(2011四川凉山5分)如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 ▲ cm 。

【答案】15π。

【考点】圆柱的展开,勾股定理,平行四边形的性质。

【分析】如图,圆柱展开后可见,棉线最短是三条斜线,第一条斜线与底面圆

周长、13高组成直角三角形。由周长公式,底面圆周长为4cm π,13

高为3cm π,根据勾股定理,得斜线长为5cm π,根据平行四边形的性质,棉线最

短为15cm π。

例4. (2012四川眉山3分)在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是

▲ .

【答案】1<AD <4。

【考点】全等三角形的判定和性质,三角形三边关系。

【分析】延长AD 至E ,使DE=AD ,连接CE .根据SAS 证明△ABD≌△ECD,得CE=AB ,

再根据三角形的三边关系即可求解:

延长AD 至E ,使DE=AD ,连接CE 。

∵BD=CD,∠ADB=∠EDC,AD=DE ,∴△ABD≌△ECD(SAS )。

∴CE=AB。

在△ACE 中,CE -AC <AE <CE +AC ,即2<2AD <8。

∴1<AD <4。

练习题:

1. (2011湖北荆门3分)如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开 始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】

A.13cm

B.12cm

C.10cm

D.8cm

2.(2011四川广安3分)如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一

点,且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】 A 、6(4)π

+㎝ B 、5cm C 、35㎝ D 、7cm 3.(2011广西贵港2分)如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ ▲ .

二、应用垂线段最短的性质求最值:典型例题:例1. (2012山东莱芜4分)在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 ▲ .

【答案】245

。 【考点】动点问题,垂直线段的性质,勾股定理。

【分析】如图,根据垂直线段最短的性质,当BP′⊥AC 时,BP 取得最小值。

设AP′=x,则由AB =AC =5得CP′=5-x ,

又∵BC =6,∴在Rt△AB P′和Rt△CBP′中应用勾股定理,得

222222BP AB AP BP BC CP '=-''=-',。

∴2222AB AP BC CP -'=-',即()22225x 66x -=--,解得7x=5

。 ∴22757624BP 5==5255??'=- ???

,即BP 的最小值是245。 例2.(2012浙江台州4分)如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为【 】

A . 1

B .3

C . 2

D .3+1

【答案】B 。 【考点】菱形的性质,线段中垂线的性质,三角形三边关系,垂直线段的性质,矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值。

【分析】分两步分析:

(1)若点P ,Q 固定,此时点K 的位置:如图,作点P 关于BD 的对

称点P 1,连接P 1Q ,交BD 于点K 1。

由线段中垂线上的点到线段两端距离相等的性质,得

P 1K 1 = P K 1,P 1K=PK 。

由三角形两边之和大于第三边的性质,得P1K+QK>P1Q= P1K1+Q K1= P K1+Q K1。

∴此时的K1就是使PK+QK最小的位置。

(2)点P,Q变动,根据菱形的性质,点P关于BD的对称点P1在AB上,即不论点P在BC上任一点,点P1总在AB上。

因此,根据直线外一点到直线的所有连线中垂直线段最短的性质,得,当P1Q⊥AB时P1Q最短。

过点A作AQ 1⊥DC于点Q1。∵∠A=120°,∴∠DA Q1=30°。

又∵AD=AB=2,∴P1Q=AQ1=AD·cos300=

3

23?=。

综上所述,PK+QK的最小值为3。故选B。

例3.(2012江苏连云港12分)已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,

BC=3,

问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?

问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

问题3:若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

问题4:如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

【答案】解:问题1:对角线PQ与DC不可能相等。理由如下:

∵四边形PCQD是平行四边形,若对角线PQ、DC相等,则四边形PCQD是矩形,

∴∠DPC=90°。

∵AD=1,AB=2,BC=3,∴DC=22。

设PB=x,则AP=2-x,

在Rt△DPC中,PD2+PC2=DC2,即x2+32+(2-x)2+12=8,化简得x2-2x+3=0,

∵△=(-2)2-4×1×3=-8<0,∴方程无解。

∴不存在PB=x,使∠DPC=90°。∴对角线PQ与DC不可能相等。

问题2:存在。理由如下:

如图2,在平行四边形PCQD中,设对角线PQ与DC相交于点G,

则G是DC的中点。

过点Q作QH⊥BC,交BC的延长线于H。

∵AD∥BC,∴∠ADC=∠DCH,即∠ADP+∠PDG=∠DCQ+∠QCH。∵PD∥CQ,∴∠PDC=∠DCQ。∴∠ADP=∠QCH。

又∵PD=CQ,∴Rt△ADP≌Rt△HCQ(AAS)。∴AD=HC。

∵AD=1,BC=3,∴BH=4,

∴当PQ⊥AB时,PQ的长最小,即为4。

问题3:存在。理由如下:

如图3,设PQ与DC相交于点G,

∵PE∥CQ,PD=DE,∴DG PD1

=

GC CQ2

=。

∴G是DC上一定点。

作QH⊥BC,交BC的延长线于H,

同理可证∠ADP=∠QCH,∴Rt△ADP∽Rt△HCQ。∴AD PD1

=

CH CQ2

=。

∵AD=1,∴CH=2。∴BH=BG+CH=3+2=5。∴当PQ⊥AB时,PQ的长最小,即为5。

问题4:如图3,设PQ与AB相交于点G,

∵PE∥BQ,AE=nPA,∴PA AG1

=

BQ BG n+1

=。

∴G是DC上一定点。

作QH∥PE,交CB的延长线于H,过点C作CK⊥CD,交QH的延长线于K。

∵AD∥BC,AB⊥BC,

∴∠D=∠QHC,∠DAP+∠PAG=∠QBH+∠QBG=90°

∠PAG=∠QBG,

∴∠QBH=∠PAD。∴△ADP∽△BHQ,∴AD PA1

=

BH BQ n+1

=,

∵AD=1,∴BH=n+1。∴CH=BH+BC=3+n+1=n+4。过点D作DM⊥BC于M,则四边形ABND是矩形。

∴BM=AD=1,DM=AB=2。∴CM=BC-BM=3-1=2=DM。∴∠DCM=45°。∴∠KCH=45°。

∴CK=CH?cos45°=22 (n +4), ∴当PQ⊥CD 时,PQ 的长最小,最小值为22 (n +4)。 【考点】反证法,相似三角形的判定和性质,一元二次方程根的判别式,全等三角形的判定和性质,勾股定理,平行四边形、矩形的判定和性质,等腰直角三角形的判定和性质。

【分析】问题1:四边形PCQD 是平行四边形,若对角线PQ 、DC 相等,则四边形PCQD 是矩形,然后利用矩形的性质,设PB =x ,可得方程x 2+32+(2-x)2+1=8,由判别式△<0,可知此方程无实数根,即对角线PQ ,DC 的长不可能相等。

问题2:在平行四边形PCQD 中,设对角线PQ 与DC 相交于点G ,可得G 是DC 的中点,过点Q 作QH⊥BC,

交BC 的延长线于H ,易证得Rt△ADP≌Rt△HCQ,即可求得BH =4,则可得当PQ⊥AB 时,PQ 的长最小,即为4。

问题3:设PQ 与DC 相交于点G ,PE∥CQ,PD =DE ,可得

DG PD 1=GC CQ 2=,易证得Rt△ADP∽Rt△HCQ,继而求得BH 的长,即可求得答案。

问题4:作QH∥PE,交CB 的延长线于H ,过点C 作CK⊥CD,交QH 的延长线于K ,易证得AD PA 1=BH BQ n+1

=与△ADP∽△BHQ,又由∠DCB=45°,可得△CKH 是等腰直角三角形,继而可求得CK 的值,即可求得答案。 例4.(2012四川广元3分) 如图,点A 的坐标为(-1,0),点B 在直线y x =上运动,当线段AB 最短 时,点B 的坐标为【 】

A.(0,0)

B.(2

1-,21-) C.(22,22-) D.(22-,22-)

例5.(2012四川乐山3分)如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、

BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:

①△DFE是等腰直角三角形;

②四边形CEDF不可能为正方形;

③四边形CEDF的面积随点E位置的改变而发生变化;

④点C到线段EF的最大距离为.

其中正确结论的个数是【】

A.1个B.2个C.3个D.4个

【答案】B。

【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。

【分析】①连接CD(如图1)。

∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。

∵AE=CF,∴△ADE≌△CDF(SAS)。

∴ED=DF,∠CDF=∠EDA。

∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。

∴△DFE是等腰直角三角形。

故此结论正确。

②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于1

2 BC。

∴四边形CEDF是平行四边形。

又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF是菱形。又∵∠C=90°,∴四边形CEDF是正方形。

故此结论错误。

③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,

由②,知四边形CMDN是正方形,∴DM=DN。

由①,知△DFE是等腰直角三角形,∴DE=DF。

∴Rt△ADE≌Rt△CDF(HL)。

∴由割补法可知四边形CEDF的面积等于正方形CMDN面积。

∴四边形CEDF的面积不随点E位置的改变而发生变化。

故此结论错误。

④由①,△DEF 是等腰直角三角形,∴DE=2EF 。 当DF 与BC 垂直,即DF 最小时, EF 取最小值22。此时点C 到线段EF 的最大距离为2。

故此结论正确。

故正确的有2个:①④。故选B 。

例6.(2012四川成都4分)如图,长方形纸片ABCD 中,AB=8cm ,AD=6cm ,按下列步骤进行裁剪和拼图: 第一步:如图①,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC(余下部分不再使用); 第二步:如图②,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任意取一点M ,线段BC 上任意取一点N ,沿MN 将梯形纸片GBCH 剪成两部分;

第三步:如图③,将MN 左侧纸片绕G 点按顺时针方向旋转180°,使线段GB 与GE 重合,将MN 右侧纸片绕H 点按逆时针方向旋转180°,使线段HC 与HE 重合,拼成一个与三角形纸片EBC 面积相等的四边形纸片. (注:裁剪和拼图过程均无缝且不重叠)

则拼成的这个四边形纸片的周长的最小值为 ▲ cm ,最大值为 ▲ cm .

【答案】20;12+413。

【考点】图形的剪拼,矩形的性质,旋转的性质,三角形中位线定理。

【分析】画出第三步剪拼之后的四边形M 1N 1N 2M 2的示意图,如答图1所示。

图中,N 1N 2=EN 1+EN 2=NB+NC=BC ,

M 1M 2=M 1G+GM+MH+M 2H=2(GM+MH )=2GH=BC (三角形中位线定理)。

又∵M 1M 2∥N 1N 2,∴四边形M 1N 1N 2M 2是一个平行四边形,

其周长为2N 1N 2+2M 1N 1=2BC+2MN 。

∵BC=6为定值,∴四边形的周长取决于MN 的大小。

如答图2所示,是剪拼之前的完整示意图。

过G 、H 点作BC 边的平行线,分别交AB 、CD 于P 点、Q 点,则四边形PBCQ 是

一个矩形,这个矩形是矩形ABCD 的一半。

∵M 是线段PQ 上的任意一点,N 是线段BC 上的任意一点,

∴根据垂线段最短,得到MN 的最小值为PQ 与BC 平行线之间的距离,即MN 最

小值为4;

而MN 的最大值等于矩形对角线的长度,即2222PB BC 46213+=+=。

∵四边形M 1N 1N 2M 2的周长=2BC+2MN=12+2MN ,

∴四边形M1N1N2M2周长的最小值为12+2×4=20;最大值为12+2×213=12+413。

例7. (2012四川乐山3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:

①△DFE是等腰直角三角形;

②四边形CEDF不可能为正方形;

③四边形CEDF的面积随点E位置的改变而发生变化;

④点C到线段EF的最大距离为.

其中正确结论的个数是【】

A.1个B.2个C.3个D.4个

【答案】B。

【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。

【分析】①连接CD(如图1)。

∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。

∵AE=CF,∴△ADE≌△CDF(SAS)。

∴ED=DF,∠CDF=∠EDA。

∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。

∴△DFE是等腰直角三角形。

故此结论正确。

②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于1

2 BC。

∴四边形CEDF是平行四边形。

又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF是菱形。又∵∠C=90°,∴四边形CEDF是正方形。

故此结论错误。

③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,

由②,知四边形CMDN是正方形,∴DM=DN。

由①,知△DFE是等腰直角三角形,∴DE=DF。

∴Rt△ADE≌Rt△CDF(HL)。

∴由割补法可知四边形CEDF的面积等于正方形CMDN面积。

∴四边形CEDF的面积不随点E位置的改变而发生变化。

故此结论错误。

④由①,△DE F是等腰直角三角形,∴DE=2EF。

当DF与BC垂直,即DF最小时, EF取最小值22。此时点C到线段EF的最大距离为2。

故此结论正确。

故正确的有2个:①④。故选B。

例8. (2012浙江宁波3分)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=22,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为▲ .

【答案】3。

【考点】垂线段的性质,垂径定理,圆周角定理,解直角三角形,锐角三角函数定义,特殊角的三角函数值。

【分析】由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,此时线段

EF=2EH=20E?sin∠EOH=20E?sin60°,当半径OE最短时,EF最短。如图,连接OE,OF,过O点作OH⊥EF,垂足为H。

∵在Rt△ADB中,∠ABC=45°,AB=22,

∴AD=BD=2,即此时圆的直径为2。

由圆周角定理可知∠EOH=1

2

∠EOF=∠BAC=60°,

∴在Rt△EOH中,EH=OE?sin∠EOH=1×33 =。

由垂径定理可知EF=2EH=3。

例9. (2012四川自贡12分)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.

(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;

(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.

【答案】解:(1)证明:如图,连接AC

∵四边形ABCD为菱形,∠BAD=120°,

∠BAE+∠EAC=60°,∠FAC+∠EAC=60°,

∴∠BAE=∠FAC。

∵∠BAD=120°,∴∠ABF=60°。

∴△ABC 和△ACD 为等边三角形。

∴∠ACF=60°,AC=AB 。∴∠ABE=∠AFC。

∴在△ABE 和△ACF 中,∵∠BAE=∠FAC,AB=AC ,∠ABE=∠AFC,

∴△ABE≌△ACF(ASA )。∴BE=CF。

(2)四边形AECF 的面积不变,△CEF 的面积发生变化。理由如下:

由(1)得△ABE≌△ACF,则S △ABE =S △ACF 。

∴S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值。

作AH⊥BC 于H 点,则BH=2, 22AECF ABC 11S S BC AH BC AB BH 4322

?==??=?-=四形边。 由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.

故△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,

又S △CEF =S 四边形AECF ﹣S △AEF ,则此时△CEF 的面积就会最大.

∴S △CEF =S 四边形AECF ﹣S △AEF ()()221432323332

=-??-=。

∴△CEF 的面积的最大值是3。 【考点】菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,垂直线段的性质。

【分析】(1)先求证AB=AC ,进而求证△ABC、△ACD 为等边三角形,得∠ACF =60°,AC=AB ,从而求证△ABE≌△ACF,即可求得BE=CF 。

(2)由△ABE≌△ACF 可得S △ABE =S △ACF ,故根据S 四边形AEC F=S △AEC +S △ACF =S △AEC +S △AB E=S △ABC 即可得四边形

AECF 的面积是定值。当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,根据S △CEF =S 四边形AECF -S △AEF ,则△CEF 的面积就会最大。 例10.(2012浙江义乌10分)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.

(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;

(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;

(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.

【答案】解:(1)∵由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1,

∴∠CC 1B=∠C 1CB=45°。

∴∠CC 1A 1=∠CC 1B+∠A 1C 1B=45°+45°=90°。

(2)∵由旋转的性质可得:△ABC≌△A 1BC 1,

∴BA=BA 1,BC=BC 1,∠ABC=∠A 1BC 1。 ∴11BA BA BC BC =,∠ABC+∠ABC 1=∠A 1BC 1+∠ABC 1。∴∠ABA 1=∠CBC 1。 ∴△ABA 1∽△CBC 1。∴1

122

ABA CBC S AB 416S CB 525??????=== ? ?????。 ∵S △ABA1=4,∴S △CBC1=254

。 (3)过点B 作BD⊥AC,D 为垂足,

∵△ABC 为锐角三角形,∴点D 在线段AC 上。

在Rt△BCD 中,BD=BC×sin45°=522

。 ①如图1,当P 在AC 上运动至垂足点D ,△ABC 绕点B 旋

转,使点P 的对应点P 1在线段AB 上时,EP 1最小。

最小值为:EP 1=BP 1﹣BE=BD ﹣BE=522

﹣2。 ②如图2,当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使

点P 的对应点P 1在线段AB 的延长线上时,EP 1最大。

最大值为:EP 1=BC+BE=5+2=7。

【考点】旋转的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的

判定和性质。

【分析】(1)由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1,又由等腰三角形

的性质,即可求得∠CC 1A 1的度数。

(2)由旋转的性质可得:△ABC≌△A 1BC 1,易证得△ABA 1∽△CBC 1,利用相

似三角形的面积比等于相似比的平方,即可求得△CBC 1的面积。

(3)由①当P 在AC 上运动至垂足点D ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 上时,EP 1

最小;②当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 的延长线上时,EP 1最大,即可求得线段EP 1长度的最大值与最小值。

例11. (2012福建南平14分)如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,连接AD 、DE ,且∠1=∠B=∠C.

(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明) 答:结论一: ;结论二: ;结论三: . (2)若∠B=45°,BC=2,当点D 在BC 上运动时(点D 不与B 、C 重合),

①求CE 的最大值;

②若△ADE 是等腰三角形,求此时BD 的长.

(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)

【答案】解:(1)AB=AC ;∠AED=∠ADC;△ADE∽△ACD。

(2)①∵∠B=∠C,∠B=45°,∴△ACB 为等腰直角三角形。

∴22AC BC 2222

==?=。 ∵∠1=∠C,∠DAE=∠CAD,∴△ADE∽△ACD。

∴AD:AC=AE :AD ,∴22AD AE AC 2

==22AD = 。 当AD 最小时,AE 最小,此时AD⊥BC,AD=

12BC=1。 ∴AE 的最小值为 222122?=。∴CE 的最大值= 22222

-=。 ②当AD=AE 时,∴∠1=∠AED=45°,∴∠DAE=90°。

∴点D 与B 重合,不合题意舍去。

当EA=ED 时,如图1,∴∠EAD=∠1=45°。

∴AD 平分∠BAC,∴AD 垂直平分BC 。∴BD=1。

当DA=DE 时,如图2,

∵△ADE∽△ACD,∴DA:AC=DE :DC 。

∴DC=CA=2。∴BD=BC-DC=2-2。

综上所述,当△ADE 是等腰三角形时,BD 的长的长为1或2-

2。

【考点】相似三角形的判定和性质,勾股定理,等腰(直角)三角形的判定和性质。

【分析】(1)由∠B=∠C,根据等腰三角形的性质可得AB=AC ;由∠1=∠C,∠AED=∠EDC+∠C 得到∠AED=∠ADC;又由∠DAE=∠CAD,根据相似三角形的判定可得到△ADE∽△ACD。

(2)①由∠B=∠C,∠B=45°可得△ACB 为等腰直角三角形,则AC 222

==,由∠1=∠C,∠DAE=∠CAD,根据相似三角形的判定可得△ADE∽△ACD,则有AD :AC=AE :AD ,即

22

AD AE

AC =2=,当AD⊥BC,AD 最小,此时AE 最小,从而由CE=AC -AE 得到CE 的最大值。 ②分当AD=AE ,,EA=ED ,DA=DE 三种情况讨论即可。

练习题:

1. (2011浙江衢州3分)如图,OP 平分∠MON,PA⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为【 】

A 、1

B 、2

C 、3

D 、4

2.(2011四川南充8分)如图,等腰梯形ABCD 中,AD∥BC,AD=AB=CD=2,∠C=60°,M 是BC 的中点.

(1)求证:△MDC 是等边三角形;

(2)将△MDC 绕点M 旋转,当MD (即MD′)与AB 交于一点E ,MC (即MC′)同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF.试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.

3.(2011浙江台州4分)如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点, PQ 切⊙O 于点Q ,则PQ 的最小值为【 】

A .13

B .5

C .3

D .2

4.(2011河南省3分)如图,在四边形ABCD 中,∠A=90°,AD=4,连接BD ,BD⊥CD,∠ADB=∠C.若P 是BC 边上一动点,则DP 长的最小值为 ▲ .

5.(2011云南昆明12分)如图,在Rt△ABC 中,∠C=90°,AB=10cm ,AC :BC=4:3,点P 从点A 出发沿AB 方向向点B 运动,速度为1cm/s ,同时点Q 从点B 出发沿B→C→A 方向向点A 运动,速度为2cm/s ,当一个运动点到达终点时,另一个运动点也随之停止运动.

(1)求AC 、BC 的长;

(2)设点P 的运动时间为x (秒),△PBQ 的面积为y (cm 2

),当△PBQ 存在时,求y 与x 的函数关系式,并写出自变量x 的取值范围;

(3)当点Q 在CA 上运动,使PQ⊥AB 时,以点B 、P 、Q 为定点的三角形与△ABC 是否相似,请说明理由;

(4)当x=5秒时,在直线PQ 上是否存在一点M ,使△BCM 得周长最小,若存在,求出最小周长,若不存在,请说明理由.

三、应用轴对称的性质求最值:典型例题:例1. (2012山东青岛3分)如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点

C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最 短距离为 ▲ cm .

【答案】15。

【考点】圆柱的展开,矩形的性质,轴对称的性质,三角形三边关系,勾股定理。

【分析】如图,圆柱形玻璃杯展开(沿点A 竖直剖开)后侧面是一个长18宽

12的矩形,作点A 关于杯上沿MN 的对称点B ,连接BC 交MN 于点P ,连接BM ,

过点C 作AB 的垂线交剖开线MA 于点D 。

由轴对称的性质和三角形三边关系知AP +PC 为蚂蚁到达蜂蜜

的最短距离,且AP=BP 。

由已知和矩形的性质,得DC=9,BD=12。

在Rt△BCD 中,由勾股定理得2222BC DC BD 91215=+=+=。

∴AP+PC=BP +PC=BC=15,即蚂蚁到达蜂蜜的最短距离为15cm 。

例2. (2012甘肃兰州4分)如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为【 】

A .130° B.120° C.110° D.100°

【答案】B 。

【考点】轴对称(最短路线问题),三角形三边关系,三角形外角性质,等腰三角形的性质。

【分析】根据要使△AMN 的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A 关于BC 和ED 的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:

如图,作A 关于BC 和ED 的对称点A′,A″,连接A′A″,交BC 于M ,交CD 于N ,则A′A″即为△AMN

的周长最小值。作DA 延长线AH 。

∵∠BAD=120°,∴∠HAA′=60°。

∴∠AA′M+∠A″=∠HAA′=60°。

∵∠MA′A=∠MAA′,∠NAD=∠A″,

且∠MA′A+∠MAA′=∠AMN,

∠NAD+∠A″=∠ANM,

∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°。

故选B。

例3. (2012福建莆田4分)点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使得PA PB

-的值最大的点,Q是y轴上使得QA十QB的值最小的点,则OP OQ

?=▲.

【答案】5。

【考点】轴对称(最短路线问题),坐标与图形性质,三角形三边关系,待定系数法,直线上点的坐标与方程的关系。

【分析】连接AB并延长交x轴于点P,作A点关于y轴的对称点A′连接A′B交y轴于点Q,求出点Q与y轴的交点坐标即可得出结论:

连接AB并延长交x轴于点P,

由三角形的三边关系可知,点P即为x轴上使得|PA-PB|的值最大的点。

∵点B是正方形ADPC的中点,

∴P(3,0)即OP=3。

作A点关于y轴的对称点A′连接A′B交y轴于点Q,则A′B即为QA+QB的最小值。

∵A′(-1,2),B(2,1),

设过A′B的直线为:y=kx+b,

2k b

12k b

=-+

?

?

=+

?

,解得

1

k

3

5

b

3

?

=-

??

?

?=

??

。∴Q(0,

5

3

),即OQ=

5

3

∴OP?OQ=3×5

3

=5。

例4. (2012四川攀枝花4分)如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为▲ .

【答案】25。

【考点】轴对称(最短路线问题),正方形的性质,勾股定理。

【分析】连接DE,交BD于点P,连接BD。

∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值。

∵AB=4,E是BC的中点,∴CE=2。

在Rt△CDE 中,2222DE=CD +CE 4+225==。 例5. (2012广西贵港2分)如图,MN 为⊙O 的直径,A 、B 是O 上的两点,过A 作AC⊥MN 于点C ,

过B 作BD⊥MN 于点D ,P 为DC 上的任意一点,若MN =20,AC =8,BD =6,则PA +PB 的最小值是

▲ 。

【答案】142。

【考点】轴对称(最短路线问题),勾股定理,垂径定理。

【分析】∵MN=20,∴⊙O 的半径=10。

连接OA 、OB ,

在Rt△OBD 中,OB =10,BD =6,

∴OD=OB 2-BD 2=102-62

=8。

同理,在Rt△AOC 中,OA =10,AC =8,

∴OC=OA 2-AC 2=102-82=6。

∴CD=8+6=14。

作点B 关于MN 的对称点B′,连接AB′,则AB′即为PA +PB 的最小值,B′D=BD =6,过点B′

作AC 的垂线,交AC 的延长线于点E 。

在Rt△AB′E 中,∵AE=AC +CE =8+6=14,B′E=CD =14,

∴AB′=AE 2+B′E 2=142+142=142。

例6. (2012湖北十堰6分)阅读材料:

例:说明代数式 22x 1(x 3)4++-+的几何意义,并求它的最小值.

解: 222222x 1(x 3) 4 (x 0)1(x 3)2++-+=-++-+,如图,建立平面直角坐标系,点P (x ,0)是x 轴上一点,则22(x 0)1-+可以看成点P 与点A (0,1)的距离,22(x 3)2-+可以看成点P 与点B (3,

2)的距离,所以原代数式的值可以看成线段PA 与PB 长度之和,它的最小值就是PA +PB 的最小值.

设点A 关于x 轴的对称点为A′,则PA=PA′,因此,求PA +PB 的最小值,只需求PA′+PB 的最小值,而点A′、B 间的直线段距离最短,所以PA′+PB 的最小值为线段A′B 的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=32,即原式的最小值为32。

根据以上阅读材料,解答下列问题:

(1)代数式22(x 1)1(x 2)9-++-+的值可以看成平面直角坐标系中点P (x ,0)与点A (1,1)、点B 的距离之和.(填写点B 的坐标)

(2)代数式 22x 49x 12x 37++-+的最小值为 .

【答案】解:(1)(2,3)。

(2)10。

【考点】坐标与图形性质,轴对称(最短路线问题)。

【分析】(1)∵原式化为2222(x 1)1(x 2)3-++-+的形式,

∴代数式22(x 1)1(x 2)9-++-+的值可以看成平面直角坐标系中点P (x ,0)与点A

(1,1)、点B (2,3)的距离之和。

(2)∵原式化为2222(x 0)7(x 6)1-++-+的形式,

∴所求代数式的值可以看成平面直角坐标系中点P (x ,0)与点A (0,7)、点B (6,1)

的距离之和。

如图所示:设点A 关于x 轴的对称点为A′,则PA=PA′,

∴求PA +PB 的最小值,只需求PA′+PB 的最小值,而点A′、B

间的直线段距离最短。

∴PA′+PB 的最小值为线段A′B 的长度。

∵A(0,7),B (6,1),∴A′(0,-7),A′C=6,BC=8。

∴2222A B A C BC 68=10'='+=+。

例7. (2012四川凉山8分)在学习轴对称的时候,老师让同学们思考课本中的探究题。

如图(1),要在燃气管道l 上修建一个泵站,分别向A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?

你可以在l 上找几个点试一试,能发现什么规律?你可以在l 上找几个点试一试,能发现什么规律? 聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l 看成一条直线(图(2)),问题就转化为,要在直线l 上找一点P ,使AP 与BP 的和最小.他的做法是这样的:

①作点B 关于直线l 的对称点B′.

②连接AB′交直线l 于点P ,则点P 为所求.

请你参考小华的做法解决下列问题.如图在△ABC 中,点D 、E 分别是AB 、AC 边的中点,BC=6,BC 边上的高为4,请你在BC 边上确定一点P ,使△PDE 得周长最小.

(1)在图中作出点P (保留作图痕迹,不写作法).

(2)请直接写出△PDE 周长的最小值:

【答案】解:(1)作D 点关于BC 的对称点D′,连接D′E,与BC 交于点P ,P 点即为所求。

(2)8.

【考点】轴对称(最短路线问题),三角形三边关系,三角形中位线定理,勾股定理。

【分析】(1)根据提供材料DE 不变,只要求出DP+PE 的最小值即可,作D 点关于BC 的对称点D′,连接D′E,与BC 交于点P ,P 点即为所求。

(2)利用中位线性质以及勾股定理得出D′E 的值,即可得出答案:

∵点D 、E 分别是AB 、AC 边的中点,∴DE 为△ABC 中位线。

∵BC=6,BC 边上的高为4,∴DE=3,DD′=4。 ∴2222D E DE DD 345'=+'+=。

∴△PDE 周长的最小值为:DE+D′E=3+5=8。

练习题:

1. (2011黑龙江大庆3分)如图,已知点A(1,1)、B(3,2),且P 为x 轴上一动点,则△ABP 的周长的 最小值为 ▲ .

2. (2011辽宁营口3分)如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a ,1),当a = ▲ 时,AC +BC 的值最小.

3.(2011山东济宁8分)去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河的同一侧张村A 和李村B 送水。经实地勘查后,工程人员设计图纸时,以河道上的大桥O 为坐标原点,以河道所在的直线为x 轴建立直角坐标系(如图)。两村的坐标分别为A (2,3),B (12,

7)。

(1) 若从节约经费考虑,水泵站建在距离大桥O 多远的地方可使所用输水管道最短?

(2) 水泵站建在距离大桥O 多远的地方,可使它到张村、李村的距离相等?

4.(2011辽宁本溪3分)如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值【 】

A 、2

B 、4

C 、22、42

5.(2011辽宁阜新3分)如图,在矩形ABCD 中,AB =6,BC =8,点E 是BC 中点,点F 是边CD 上的 任意一点,当△AEF 的周长最小时,则DF 的长为【 】

A .1

B .2

C .3

D .4

6.(2011贵州六盘水3分)如图,在菱形ABCD 中,对角线AC=6,BD=8,点E 、F 分别是边AB 、BC 的 中点,点P 在AC 上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是 【 】

A .3

B .4

C .5

D .6

7.(2011甘肃天水4分)如图,在梯形ABCD 中,AB∥CD,∠BAD=90°,AB=6,对角线AC 平分∠BAD,点E 在AB 上,且AE=2(AE <AD ),点P 是AC 上的动点,则PE+PB 的最小值是 ▲ . 四、应用二次函数求最值:典型例题: 例1. (2012四川自贡4分)正方形ABCD 的边长为1cm ,M 、N 分别是BC .CD 上两个动点,且始终保持AM⊥MN,当BM= ▲ cm 时,四边形ABCN 的面积最大,最大面积为 ▲ cm 2.

【答案】12,58

。 【考点】正方形的性质,相似三角形的判定和性质,二次函数的最值。

【分析】设BM=xcm ,则MC=1﹣xcm ,

∵∠AMN=90°,∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=90°﹣∠NMC=∠MNC。

∴△ABM∽△MCN,∴

AB BM MC CN =,即1x 1x CN

=-,解得CN=x (1﹣x )。 ∴22ABCN 1111115S 1[1x 1x ]x x x 2222228

=??+-=-++=--+四形()()边。 ∵12-<0,∴当x=12cm 时,S 四边形ABCN 最大,最大值是58cm 2。 例2.(2012江苏扬州3分)如图,线段AB 的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE,那么DE 长的最小值是 ▲ .

【答案】1。

【考点】动点问题,等腰直角三角形的性质,平角定义,勾股定理,二次函数的最值。

【分析】设AC =x ,则BC =2-x ,

∵△ACD 和△BCE 都是等腰直角三角形,

∴∠DCA=45°,∠ECB=45°,DC =

2x ,CE =2(2x)- 。 ∴∠DCE=90°。

∴DE 2=DC 2+CE 2=(

2x )2+[2(2x)-]2=x 2-2x +2=(x -1)2+1。 ∴当x =1时,DE 2取得最小值,DE 也取得最小值,最小值为1。

中考数学知识点总结

中考数学知识点总结 一、常用数学公式 公式分类公式表达式 乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径 余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角 二、基本方法 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理

2021年中考数学总复习:专题52 中考数学最值问题(解析版)

2021年中考数学总复习:专题52 中考数学最值问题 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。 一、解决几何最值问题的要领 (1)两点之间线段最短; (2)直线外一点与直线上所有点的连线段中,垂线段最短; (3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。 二、解决代数最值问题的方法要领 1.二次函数的最值公式 二次函数y ax bx c =++2 (a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a =-2时,y 有最小值。y ac b a min =-442; ②若a <0当x b a =-2时,y 有最大值。y ac b a max =-442。 2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。 3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得?≥0,进而求出y 的取值范围,并由此得出y 的最值。 4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。 5. 利用非负数的性质.在实数范围内,显然有a b k k 22 ++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。 6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。 7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

中考数学中的最值问题解法

中考数学中的最值问题解法

角函数定义,特殊角的三角函数值。 【分析】如图,在BA上截取BE=BN,连接EM。 ∵∠ABC的平分线交AC于点D,∴∠EBM=∠NBM。 在△AME与△AMN中,∵BE=BN ,∠EBM=∠NBM,BM=BM, ∴△BME≌△BMN(SAS)。∴ME=MN。∴CM+MN=CM+ME≥CE。 又∵CM+MN有最小值,∴当CE是点C到直线AB的距离时,CE取最小值。 ∵BC=42,∠ABC=45°,∴CE的最小值为 0=4。 例3.(2011四川凉山5分)如图,圆柱底面半径为2cm,高为9cm ,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为▲ cm。

【答案】15π。 【考点】圆柱的展开,勾股定理,平行 四边形的性质。 【分析】如图,圆柱展开后可见,棉线 最短是三条斜线,第一条斜线与底面圆周长、13 高组成直角三角形。由周长公式,底面圆周长为4cm π,13 高为3cm π,根据勾股定理,得斜线长为5cm π,根据平行四边形的性质,棉线最短为15cm π。 例4. (2012四川眉山3分)在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 ▲ . 【答案】1<AD <4。 【考点】全等三角形的判定和性质,三角 形三边关系。 【分析】延长AD 至E ,使DE=AD ,连接CE .根 据SAS 证明△ABD≌△ECD,得CE=AB ,再根 据三角形的三边关系即可求解: 延长AD 至E ,使DE=AD ,连接CE 。 ∵BD=CD ,∠ADB=∠EDC ,AD=DE , ∴△ABD≌△ECD(SAS )。 ∴CE=AB。 在△ACE 中,CE -AC <AE <CE +AC ,即2<2AD

中考数学要点难点分析整理复习总结

初一上册 有理数、整式的加减、一元一次方程、图形的初步认识。 (1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。 考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。 (2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。 考察内容: ①整式的概念和简单的运算,主要是同类项的概念和化简求值 ②完全平方公式,平方差公式的几何意义 ③利用提公因式发和公式法分解因式。 (3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。 考察内容: ①方程及方程解的概念 ②根据题意列一元一次方程 ③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。 (4)几何:角和线段,为下册学三角形打基础 初一下册

相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。 (1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。 考察内容: ①平行线的性质(公理) ②平行线的判别方法 ③构造平行线,利用平行线的性质解决问题。 (2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。 考察主要内容: ①考察平面直角坐标系内点的坐标特征 ②函数自变量的取值范围和球函数的值 ③考察结合图像对简单实际问题中的函数关系进行分析。 (3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。 考察内容:①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。 (4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。 主要考察内容: ①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。 ②列不等式(组)解决经济问题,调配问题等,主要以解答题为主。 ③留意不等式(组)和函数图像的结合问题。

中考数学分类试题 函数及其图象

中考数学分类试题 函数及其图象 考点1:常量与变量、函数的意义、 相关知识: 1.常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量. 2.函数:在某一变化过程中的两个变量x 和y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值和它对应,那么y 就叫做x 的函数,其中x 做自变量,y 是因变量. 考点2:函数自变量取值范围 相关知识:函数自变量的取值范围必须也只要同时考虑以下几点: 1.整式函数自变量的取值范围是全体实数. 2.分式函数自变量的取值范围是使分母不为0的实数. 3.二次根式函数自变量的取值范围是使被开方数是非负数的实数。 4.若涉及实际问题的函数,除满足上述要求外还要使实际问题有意义. 1. (2011湖北十堰,2,3分)函数4y x 中自变量x 的取值范围是( ) A .x≥0 B.x≥4 C.x≤4 D.x>4 【答案】B 2. (2011四川广安,13,3分)函数5Y =-中自变量x 的取值范围是____ 【答案】x ≤2 3.(2011四川眉山,3,3分)函数y= 2 x 1 -中自变量x 的取值范围是( ) A .x ≠一2 B .x ≠2 C. x <2 D .x >2 【答案】B 4. (2011广西来宾,3,3分)使函数1 x y x = +有意义的取值范围是( ) A.1x ≠- B. 1x ≠ C. x ≠1且x ≠0 D.1x ≠- 且x ≠0 【答案】 A 5. (2011内蒙古呼和浩特市,11,3分)函数y =中,自变量x 的取值范围___________. 【答案】3x >- 6. (2011贵州毕节,8,3分)函数1 2 -+= x x y 中自变量x 的取值范围是( ) A .x ≥-2 B .x ≥-2且x ≠1 C.x ≠1 D.x ≥-2或x ≠1 【答案】B 7. (2011内蒙古包头,4,3分)函数3 2 +-=x x y 中自变量x 的取值范围是( ) A .x≥2且x≠-3 B .x≥2 C .x >2 D .x≥2且x≠0 【答案】B 8. (2011四川广元,9,3分)在函数 y = x 的取值范围在数轴上表示为( )

2019年中考数学最值问题专题卷(含答案)

2019年中考数学最值问题专题卷(含答案) 一、单选题 1.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B' 的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是() A. 4 B. 3 C. 2 D. 1 2.如图,点A(a,3),B(b,1)都在双曲线y= 上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为() A. B. C. D. 3.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为() A. B. 2 C. 2 D. 二、填空题 4.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为________ . 5.如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________. 6.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为________.

7.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是________ 三、综合题 8.如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点. (1)探求AO到OD的数量关系,并说明理由; (2)如图②,若P,N分别为BE,BC上的动点. (Ⅰ)当PN+PD的长度取得最小值时,求BP的长度; (Ⅱ)如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值= .

中考数学专题复习最值问题

两点之间线段最短关系密切.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法. 类型1 利用“垂线段最短”求最短路径问题 如图所示,AB 是一条河流,要铺设管道将河水引到C ,D 两个用水点,现有两种铺设管道的方案.方案一:分别过C ,D 作AB 的垂线,垂足分别为E ,F ,沿CE ,DF 铺设管道;方案二:连接CD 交AB 于点P ,沿PC 、PD 铺设管道.问:这两种铺设管道的方案中哪一种更节省材料,为什么? 【思路点拨】 方案一管道长为CE +DF ,方案二管道长为PC +PD ,利用垂线段最短即可比较出大小. 本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点. 1.如下左图,点A 的坐标为(-1,0),点B(a ,a),当线段AB 最短时,点B 的坐标为( ) A .(0,0) B .(22,-22) C .(-22,-22) D .(-12,-12 ) 2.在直角坐标系中,点P 落在直线x -2y +6=0上,O 为坐标原点,则|OP|的最小值为( ) A.352 B .3 5 C.655 D.10 3.如上中图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0),直线y =kx -3k +4与⊙O 交于B 、C 两点,则弦BC 的长的最小值为________. 4.如上右图,平原上有A ,B ,C ,D 四个村庄,为解决缺水问题,政府准备投资修建一个蓄水池. (1)不考虑其他因素,请你画图确定蓄水池H 点的位置,使它到四个村庄距离之和最小; (2)计划把河水引入蓄水池H 中,怎样开渠最短并说明根据. 类型2 利用“两点之间线段最短”求最短路径问题 (1)如图1,直线同侧有两点A ,B ,在直线MN 上求一点C ,使它到A 、B 之和最小;(保留作图痕迹不写作法) (2)知识拓展:如图2,点P 在∠AOB 内部,试在OA 、OB 上分别找出两点E 、F ,使△PEF 周长最短;(保留作图痕迹不写作法) (3)解决问题:①如图3,在五边形ABCDE 中,在BC ,DE 上分别找一点M ,N ,使得△AMN 周长最小;(保留作图痕迹不写作法)

中考数学易错题专题复习函数及其图象

函数及其图象 易错点1:求函数自变量取值范围时注意:①二次根式中被开方数为非负数;②分式中分母不等于零;零指数幂中底数不等于零. 易错题:使函数y= 1 (1)(2) x x -+ 有意义的自变量x的取值范围是 _____________. 错解:x>﹣2 正解:x>﹣2且x≠1 赏析:本题错误的原因是对分式中分母不为零的条件没有考虑全面,分式中分母不为零的条件应是x≠﹣2且x≠1.本题中的函数应满足被开方数为非负数且分母不为零这两个条件,同时要与不等式的解集综合求解. 易错点2:在函数解析式中混淆各个待定系数表示的意义,如一次函数y=kx+b(k≠0)中的k、b;二次函数y=ax2+bx+c(a≠0)中的a、b、c. 易错题:在一次函数y=(2-k)x+1中,y随x的增大而减小,则k的取值范围是_________. 错解:k>0 正解:k>2 赏析:错误的原因是以为﹣k是一次项的系数,由﹣k<0得到错解.本题中一次项系数应是2-k,由2-k<0得到正解. 易错点3:用待定系数法求函数解析式时由条件建立错误从而使求解不正确. 易错题:将直线y=﹣3x-4向左平移2个单位长度后,其解析式为___________________. 错解:y=﹣3x-6 正解:y=﹣3x-10 赏析:本题可设平移后函数解析式为y=kx+b,由平移中平行的关系可得k=﹣3,错误的原因是由向左平移2个单位长度得到错误条件直线过点(﹣2,0),代入解析式从而求得错解.正确的解法是:先由平行得k=﹣3,再由直线y=﹣3x-4过点(0,﹣4),将此点

向左平移2个单位长度得到点(﹣2,﹣4),再把点(﹣2,﹣4)及k=﹣3代入所设解析式从而求得正解. 易错点4:利用图象求不等式(组)的解集与方程(组)的解时,混淆函数图象的增减性与解(解集)的关系. 易错题:已知一次函数y1=kx+b与反比例函数y2=m x (m≠0)的图象相交于A、B 两点,其横坐标分别是﹣1和3,当y1>y2时,自变量x的取值范围是……………………() A.x<﹣1或0<x<3 B.﹣1<x<0或0<x<3 C.﹣1<x<0或x>3 D.0<x<3 错解:D 正解:A 赏析:错解的原因是对函数图象及其增减性的分析理解不够透彻,没有完全弄清楚图象增减性与不等式解集的关系,从而漏掉x的一部分取值范围.正确的解法是:由题目条件,画出两个函数的大致图象,如图: 2 以交点A、B及原点O为界,把两个函数图象各分成四个部分,从左到右每部分图象所对应的自变量取值范围依次是:①A点左侧:x<﹣1;②点A与原点O之间:﹣1<x<0; ③原点O与B点之间:0<x<3;④B点右侧:x>3.每部分中位于上方的图象所对应的函数值较大,因此,由y1>y2可得,自变量x的取值范围是x<﹣1或0<x<3. 易错点5:二次函数y=ax2+bx+c(a≠0)的位置与a,b,c的关系. 易错题:已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是……………………………………………………………………………………

中考数学公式总结

2019年中考数学公式总结 圆与弧的公式: 正n边形的每个内角都等于(n-2)180/n 弧长计算公式:L=n兀R/180 扇形面积公式:S扇形=n兀R^2/360=LR/2 内公切线长=d-(R-r)外公切线长=d-(R+r) ①两圆外离dR+r②两圆外切d=R+r③两圆相交R-rr)④两圆内切d=R-r(Rr)⑤两圆内含dr) 定理相交两圆的连心线垂直平分两圆的公共弦 定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4 弧长计算公式:L=n兀R/180 因式分解公式: 公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) 平方差公式:a平方-b平方=(a+b)(a-b) 完全平方和公式:(a+b)平方=a平方+2ab+b平方 完全平方差公式:(a-b)平方=a平方-2ab+b平方

两根式: ax^2+bx+c=a[x-(-b+(b^2-4ac))/2a][x-(-b-(b^2-4ac))/2 a]两根式 立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2) 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2) 完全立方公式:a^33a^2b+3ab^2b^3=(ab)^3. 扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r) 一元二次方程公式与判别式: 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

初中数学最值问题典型例题(含解答分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为时,求正方形的边长。 A B A'′P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

中考数学复习考点跟踪训练11函数及其图象(全解全析)

考点跟踪训练11 函数及其图象 一、选择题 1.(2011·广州)当实数x 的取值使得x -2有意义时,函数y =4x +1中y 的取值范围是( B ) A .y ≥-7 B .y ≥9 C .y >9 D .y ≤9 答案 解析 x -2≥0,x ≥2.由y =4x +1得x =y -14,y -1 4≥2,y -1≥8,y ≥9. 2.(2011·盐城)小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s (km)与所花时间t (min)之间的函数关系.下列说法错误的是( D ) A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min 答案 解析 公交车的速度应该是(8000-1000)÷(30-16)=7000÷14=500m/min ,而不是350m/min. 3.(2011·天津)一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计算;方式B 除收月基费20元外,再以每分0.05元的价格按上网所用时间计费.若上网所用时间为x 分.计费为y 元,如图是在同一直角坐标系中,分别描述两种计费方式的函数的图象,有下列结论: ①图象甲描述的是方式A : ②图象乙描述的是方式B ; ③当上网所用时间为500分时,选择方式B 省钱. 其中,正确结论的个数是( A )

A. 3 B.2 C.1 D. 0 答案 解析方式A:y A=0.1x;方式B:y B=0.05x+20;当x=400时,y A=y B.当x>400时,y B

2017-中考数学-压轴专题-最值问题系列(一)

专题最值问题—— 1(几何模型) 一、归于几何模型,这类模型又分为以下情况: 1. 归于“两点之间的连线中,线段最短”。 凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。 2.归于“三角形两边之差小于第三边”。 凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。 3.利用轴对称知识(结合平移)。 4. 应用“点到直线的距离,垂线段最短。”性质。 5. 定圆中的所有弦中,直径最长;以及直线与圆相切的临界位置等等。 二、基础知识模型 (一)“将军饮马”问题 1.如图1,将军骑马从A出发,先到河边a喝水,再回驻地B,问将军怎样走路程最短? 2.如图,一位将军骑马从驻地M出发,先牵马去草地OA吃草,再牵马去河边OB喝水,最后回到驻地M,问:这位将军怎样走路程最短? 图1 图2 3. 如图,A为马厩,B为帐篷,将军某一天要从马厩牵马,先到草地一处牧马,再到河边饮马,然后回到帐篷,请你帮助确定这一天的最短路线。

(二)“造桥选址”问题(选自人教版七年级下册) 1. 如图1,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河两岸1l、l2平行,桥MN 与河岸垂直) 练习: 1. 如图,在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点, 连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值). 1题图2题图 2.已知点A是半圆上的一个三等分点,点B是弧AN的中点,点P是半径ON上的动点, 若⊙O的半径长为1,则AP+BP的最小值为__________. 3.如图3,已知点A的坐标为(-4,8),点B的坐标为(2,2),请在x轴上找到一点P,使PA+PB最小,并求出此时P点的坐标和PA+PB的最小值。

中考数学题型及方法总结

初中数学中的固定题型及惯性思维 一、角平分线的考点 1.定义 2.性质(垂直于角的两边) 3.对称性(垂直于角 平分线,构造全等,得到中点) 二、中点的三个考点 1.斜边中线(直角与中点) 2.三线合一(等腰与中点) 3.中位线(两个中点) 附注:中点常见作辅助线方法:过其中一个端点作另一个端点所在直线的平行线交延长线与一点。如果其中一个端点所在直线有多条,要结合题目已知条件进行判断,一般以已知线段长度的为主。 三、等腰三角形的考点 1.等角对等边 2.等边对等角 3.三线合一 四、全等三角形 1.五个全等三角形的判定定理 2.对应边对应角相等 五、轴对称图形 1.角的对称性(性质) 2.线段的对称性(性质) 3.等腰三角形的对称性(三线合一) 附注:对称轴是直线,轴对称图形既可以是一个图形本身,比如等腰三角形是轴对称图形,也可以说两个图形关于某条直线呈轴对称图形。 六、勾股定理 1.勾股定理的公式 2.勾股定理的逆定理(可以用来证明直角或者一个三角形是直角三角形) 附注:利用图形证明勾股定理一般都是利用部分面积之和等于整体面积,另外记住几组常见的勾股数,3,4,5;6,8,10; 5,12,13; 7,24,25 七、平面直角坐标系 1.平面直角坐标系是用来确定点及图像的位置的 2.坐标轴及象限的划分

附注:如果题目说不经过第二象限,应该有两种情况,一是经过一三四象限,二是经过一三象限,做此类题目不要思维定势。 八、二次根式 1.二次根式的非负性 2.同类二次根式 3.最简二次根式 4.二次根式的比较大小 5.二次根式的加减乘除 附注:如果题目的计算结果包含根式,一定要习惯性地判断是否是最简二次根式,切记因为细节问题失分;另外代数式有意义也要注意开方数大于等于0,千万不要漏掉等号。 九、一元二次方程 1.定义(二次项系数不为0) 2.四种解法(优先考虑因式分解法,主要是十字相乘) 3.一元二次方程根的个数的判别式 4.一元二次方程根与系数的关系,即韦达定理 附注:只要一个题目是求解有关一元二次方程的根的代数式的值的题目,只有两种方法,代入法与韦达定理,如果满足韦达定理的形式就用韦达定理,除此之外,一律使用代入法。 十、二次函数 1.定义(最高次为2,二次项系数不为0) 2.二次函数的图像(开口、与X轴的交点、对称轴、顶点坐标、与Y轴的交点位置) 3.二次函数的增减性 4.二次函数的动点问题 附注:初中阶段所有函数的知识点都比较少,更多的是知识点的迁移变化与综合应用。 十一、分式方程 1.分式方程的定义(有可能考选择题) 2.分式方程的解的情况 3.已知分式方程的解的情况,求未知实数的取值范围 附注:1.增根是分式方程无解的特殊情况 2.如果告诉分式方程的解为负数,解出X之后,一方面x<0,另外千万不要忘记x不能等于增根,这个是比较容易出错的一个点。 十二、圆 1.相关定义,比如直径、圆心、弦、切线、弧、圆周角、圆心角等等 2.切线长定理 3.垂径定理 直径:直径所对圆周角是90度

中考数学专题复习:函数及其图像

函数及其图像 典题探究 例1: 一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是( ) A . B . C . D . 例2: 2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图能反映y 与x 的函数关系式的大致图象是( ) 例3: 函数3 y x = -自变量x 取值范围是( ) A .1x ≥且3x ≠ B .1x ≥ C .3x ≠ D . 1x >且3x ≠ 例4: 已知二次函数2 (1)y a x c =--的图像如图2所示,则一次函数y ax c =+的大致图像可能是( ) A B C D

课后练习 A 组 【确定简单的整式、分式和简单实际问题中的函数的自变量取值范围】 1.函数1 2 y x =-的自变量x 的取值范围是 2.在函数1 2-=x x y 中,自变量x 的取值范围是______________________ 3.在函数52-=x y 中,自变量x 的取值范围是 4.在函数2 1-= x y 中,自变量x 的取值范围是___________________ 5. 函数y = 中,自变量x 的取值范围是 . 6. 在函数x x y 2 -=中,自变量x 的取值范围是_______________________________ 7. 在函数y = 中,自变量x 的取值范围是 . 【求函数值】 8.如果一次函数y=-x+b 经过(0,-4),则b= 9.函数1 3y x = +中,当x=-1时,y= 10. 函数21 y x =+x=-4时,y= 11.已知函数y=kx+b 的函数图像与y 轴交点的纵坐标为-5,且当x=1时,y=2,则x=3时, y= B 组 【用适当的函数表示法刻画某些实际问题中变量之间的关系】 12.水以恒速(即单位时间内注入水的体积相同)向一个容器注水,最后把容器注满,在注 水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),这个容器的形状是图中( ) 13.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回.点P 在运动过程 A . B C D

中考数学动点问题最值基本题型汇总

中考数学动点问题最值基本题型汇总 一、最值类型 1.饮马型:即将军饮马型,通常为两条线段之和的最值问题,利用对称性质将其中一条线段进行转换,再利用两点之间线段最短(或三角形三边关系)得到结果。 2.小垂型:即小垂回家型,通常为一条线段的最值问题,即动点的轨迹为直线,利用垂线段最短的性质得到结果。 3.穿心型:即一箭穿心型,通常为一条线段的最值问题,即动点的轨迹为圆或弧,利用点与圆的位置关系得到结果。 4.转换型:即一加半型,通常为一条线段与另一条线段一半的和的最值问题,即将那半条线段利用三角形中位线或30°的对边等知识进行转换,再利用饮马或小垂或穿心。 5.三边型:即三角形三边关系关系型,通常利用两边之和大于第三边、两边之差小于第三边求其最大(小)值。 6.结合型:即以上类型的综合运用,大多为饮马+小垂、小垂+穿心、饮马+穿心饮马+转换等 ※二、分类例析 一、饮马型 例1:如图,在正方形ABCD中,点E在CD上,CE=3, DE=1, 点P在AC上,则PE+PD 的最小值是_____ . 解析:如图 例2:如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为____.

解析:如下图 二、小垂型 例3:如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为_________. 解析:如下图 三、穿心型 例4:如图,在边长为4的菱形ABCD中,∠ABC=120°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN翻折得到△A′MN,连接A’C,则A’C长度的最小值是____. 解析:如下图

中考数学中的最值问题解法(学生版)

中考数学几何最值问题解法 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图 形的周 长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 解决平面几何最值问题的常用的方法有: (1)应用两点间线段最短的公理 求最值;( 2)应用垂线段最短的性质求最值; ( 3)应用轴对称的性质求最 值; 5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。 应用两点间线段最短的公理(含应用三角形的三边关系)求最值 例 4. 在△ABC 中,AB =5,AC =3,AD 是 BC 边上的中线,则 AD 的取值范围是 练习题: 1. 如图,长方体的底面边长分别为 2cm 和 4cm ,高为 5cm . 若一只蚂蚁从 P 点开始经 过 4 个侧面爬行一圈到达 Q 点,则蚂蚁爬行的最短路径长为【 】 2. 如图,圆柱的底面周长为 6cm , AC 是底面圆的直径,高 BC=6cm ,点 P 是母线 BC 上一 2 点,且 PC= BC .一只蚂蚁从 A 点出发沿着圆柱体的表面爬行到点 P 的最短距离是 【 】 3 含应用三角形的三边关系) 4)应用二次函数求最值; 典型例题: 例 1. 如图,∠ MON=9°0 ,矩形 ABCD 的顶点 A 、 B 分别在边 OM , 运动时, A 随之在边 OM 上运动, 矩形 ABCD 的形状保持不变,其中 程中,点 D 到点 O 的最大距离为 B . 5 C . 145 5 5 D . 例 2. 在锐角三角形 ABC 中, BC=4 2 ,∠ ABC=45°, BD 平分∠ ABC , M 、 N 分别是 BC 上的动点,则 CM+MN 的最小值是 例 3. 如图, 圆柱底面半径为 2cm ,高为 9 cm ,点 上的点,且 A 、B 在同一母线上,用一棉线从 A 顺着圆柱侧面绕 3 圈到 B ,求棉线 最短为 cm 。 A.13cm B.12cm C.10cm D.8cm ON 上,当 B 在边 ON 上 AB=2,BC=1,运动 过 A 、 B 分别是圆柱两底面圆 周

中考数学知识点总结(完整版)

中考数学总复习资料 代数部分 第一章:实数 基础知识点: 一、实数的分类: ?????? ???????????????????????????????????????无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成 q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。 2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。 3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。 二、实数中的几个概念 1、相反数:只有符号不同的两个数叫做互为相反数。 (1)实数a 的相反数是 -a ; (2)a 和b 互为相反数?a+b=0 2、倒数: (1)实数a (a ≠0)的倒数是a 1;(2)a 和b 互为倒数?1=ab ;(3)注意0没有倒数 3、绝对值: (1)一个数a 的绝对值有以下三种情况:

?????-==0,0, 00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。 (3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。 4、n 次方根 (1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。 (2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 (3)立方根:3a 叫实数a 的立方根。 (4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。 三、实数与数轴 1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。 2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。 四、实数大小的比较 1、在数轴上表示两个数,右边的数总比左边的数大。 2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。 五、实数的运算 1、加法: (1)同号两数相加,取原来的符号,并把它们的绝对值相加; (2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。 2、减法: 减去一个数等于加上这个数的相反数。 3、乘法: (1)两数相乘,同号取正,异号取负,并把绝对值相乘。

中考数学专题复习 函数及其图像

中考数学专题复习函数及其图像 考点3.1 位置与坐标 序号考查内容考查方式学习目标 考点 位置与坐 标坐标与象限 1、坐标值的几何意义 2、特殊点的坐标特征 3、两点之间距离的求法 4、能根据图形建立适当坐标系并写出关键点的坐标 5、能根据点的坐标值确定其余各点的坐标 6、用极坐标表示点的位置 考点3.2 函数的表示 序号考查内容考查方式学习目标 考点一函数的取值范围分式或根式何时有意义 考点二 函数及其图像实际问题与函数图像1、能根据具体情况识别函数图象 2、能从函数图象中读出关键信息 考点3.3 一次函数 序号考查内容考查方式学习目标 考点一一次函数 图像和性 质 一次函数图 像和性质综 合应用 1、能熟练判断出图像中的k b取值范围 2、能根据k,b的取值范围熟练画出函数图象的草图 3、能判断出函数图的共存 4、能用待定系数法熟练求出函数解析式过程完整 考点二 一次函数 的应用结合一次函 数图像解决 实际问题 1、能正确解释交点坐标在实际问题中的意义 2、能正确分割三角形和多边形的 面积进而求出其面积 3、能正确理解和应用简单的分段函数图象及其代表的意义

考点3.4 反比例函数 序号考查内容考查方式学习目标 考点一 反比例函数解析式 的确定确定比例系数 1、能从不同的表达式中分离出比例系数 2、能根据比例系数画出函数草图 待定系数法求解析式 利用比例系数的几何意义确定反 比例函数解析式 k值的几何意义反映到函数中要结合具体 的象限来确定值k 考点二反比例函数的应用 一次函数与反比例函数的综合应 用 考点3.5 二次函数 序号考查内容考查方式学习目标 考点一二次函数图像和性质确定二次函数图像的对称轴和 顶点、与x轴的交点的坐标 1、能准确化为一般形式,并指出其系数 2、能熟练进行配方写出其顶点坐标式 3、能熟练从三种解析式几个方面值的确定 考点二二次函数的应用画二次函数图像及应用能熟练画出草图并进行分析应用 考点三二次函数与实际问题 (二次函数的应用 题) 确定解析式、求极值(解答题)能根据已知条件熟练写出解析式,并进行五个方 面的相关计算 考点3.6 用函数观点看方程(组)和不等式 序号考查内容考查方式学习目标 考点一函数与方程二次函数与一元二次方程理解二次函数与一元二次方程的联系,并能正确地 将二次函数问题转化为一元二次方程,能用一元二 次方程的根解释图象中的交点坐标 考点二 函数与不等 式一次函数与一元一次不等式1、能根据图象正确判断不等式的解集 2、理解交点坐标的意义 3、能根据交点坐标正确写出方程或方程组反比例函数与不等式 一次函数、反比例函数与不等式同上

中考数学专题训练:定值和最值问题解析版解析

定值问题解 1、如图,在平面直角坐标系x O y 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P 、Q ,点P 从点O 出发沿线段OC (不 包括端点O ,C )以每秒2个单位长度的速度,匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止,设运动时间为t 秒,当t=2秒时PQ=52. (1)求点D 的坐标,并直接写出t 的取值范围; (2)连接AQ 并延长交x 轴于点E,把AE 沿AD 翻折交CD 延长线于点F,连接EF ,则△A EF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值. (3)在(2)的条件下,t 为何值时,四边形APQF 是梯形? 【答案】解:(1)由题意可知,当t=2(秒)时,OP=4,CQ=2, 在Rt△PCQ 中,由勾股定理得:PC=( ) 2 222PQ CQ 25 2-=-=4, ∴OC=OP+P C=4+4=8。 又∵矩形AOCD ,A (0,4),∴D(8,4)。 t 的取值范围为:0<t <4。 (2)结论:△AEF 的面积S 不变化。 ∵AOCD 是矩形,∴AD∥OE,∴△AQD∽△EQC。 ∴ CE CQ AD DQ =,即CE t 84t =-,解得CE=8t 4t -。 由翻折变换的性质可知:DF=DQ=4-t ,则CF=CD+DF=8-t 。 S=S 梯形AOCF +S △FCE -S △AOE = 12(OA+CF )?OC+12CF?CE-1 2 OA?OE =12 [4+(8-t )]×8+12(8-t )?8t 4t --12×4×(8+8t 4t -)。 化简得:S=32为定值。 所以△AEF 的面积S 不变化,S=32。 (3)若四边形APQF 是梯形,因为AP 与CF 不平行,所以只有PQ∥AF。 由PQ∥AF 可得:△CPQ∽△DAF。

相关主题
文本预览
相关文档 最新文档