当前位置:文档之家› 结构体系与布置优化

结构体系与布置优化

结构体系与布置优化
结构体系与布置优化

结构体系与布置优化

结构优化设计是在满足规范要求、保证结构安全和建筑产品品质的前提下,通过合理的结构布置、科学的计算论证、适度的构造措施,充分发挥材料性能、合理节约造价的设计方法。结构优化设计在当前竞争日益激烈的建筑设计市场成为大势所趋。如何在满足建筑功能的前提下,保证结构安全并控制含钢量成为摆在结构设计工程师面前的现实课题。本文总结了以往的设计经验,参考了相关文献,给出了结构优化设计的步骤和一些具体措施,供设计人员参考。

1结构优化设计的步骤

笔者认为,结构优化设计的合理步骤应该是:①在方案阶段,通过与建筑专业的充分沟通,对建筑的平面布置、立面造型、柱网布置等提出合理的建议和要求,使结构的高度、复杂程度、不规则程度均控制在合理范围内,避免抗震审查,为降低含钢量争取主动权;②在初步设计阶段,通过对结构体系、结构布置、建筑材料、设计参数、基础型式等内容的多方案技术经济性比较,选出最优方案,整体控制含钢量;③在具体计算过程中,通过精确的荷载计算、细致的模型调整,使结构达到最优受力状态,进一步降低用钢量;④在施工图阶段通过精细的配筋设计抠出多余钢筋,彻底降低含钢量。

在进行多方案的技术经济性比较时,应综合考虑材料费、模板费、基坑开挖降水支护费用、措施费、施工难易、工期长短等因素,与甲方协商后择优选用。

2结构体系与布置优化

结构体系和布置对造价影响很大,应予重视。

1)应根据建筑布置、高度和使用功能要求选择经济合理的结构体系。比如,异形柱框架比普通框架用钢量大,在可能的情况下尽量采用前者;短肢剪力墙比普通剪力墙含钢量高,在可能的情况下尽量采用后者。

2)应选择比较规则的平面方案和立面方案。尽量避免平面凸凹不规则或楼板开大洞,控制平面长宽比,合理设缝,使结构刚度中心与质量中心尽量靠近。竖向应避免有过大的外挑或内收,同时注意限制薄弱层、跃层、转换层等不利因素,使侧向刚度和水平承载力沿高度尽量均匀平缓变化。

3)应选择合理、均匀的柱网尺寸,使板、梁、柱、墙的受力合理,从而降低构件的用钢量。柱网大则楼盖用钢量大,柱网小则柱子用钢量增大,应根据建筑实际情况和经验合理布置。例如,住宅中小开间结构中墙柱的作用不能得到充分发挥,过多的墙柱还会导致较大的地震作用,可考虑采用大开间结构体系,既节约造价,又便于建筑灵活布置。4)应选择经济合理的楼盖体系。楼盖质量大,层数多,占整体造价比重高,对楼盖的类型、构件的尺寸、数量、间距等应进行对比分析,选择最优的方案。一般住宅宜采用现浇梁板楼盖,预应力楼盖的预应力钢筋容易被二次装修破坏,井字梁楼盖影响室内美观,均不推荐。办公楼等大空间结构宜采用十字梁、井字梁、预应力梁板方案。双向板比单向板经济,应多做双向板。板的厚度,双向板宜控制在短跨的1/35,单向板宜控制在短跨的1/30,此时板易满足强度和变形要求,经济性好。

5)剪力墙结构的优化空间很大,应下大力气优化。剪力墙的布置宜规则、均匀、对称,以控制结构扭转变形。在满足规范和计算的前提下应尽量减少墙的数量,限制墙肢长度,控制连梁刚度,剪力墙能落地的就全部落地不做框支转换层,平面能布置成大开问的尽量布置成大开间,墙体的厚度满足构造要求和轴压比的要求即可。连梁刚度太大时可通过梁中开水平缝变成双梁、增大跨高比等措施降低连梁刚度。尽量少用短肢剪力墙,限制“一”字墙,少做转换。

6)降低含钢量的小技巧:①楼电梯间不宣布置在房屋端部或转角处。因其空间刚度较

小,设在端部对抗扭不利,设在转角处应力集中。②框架结构层刚度较弱时,加大柱尺寸或梁高都可显著增大层刚度,而提高混凝土强度效果不明显。③柱的截面尺寸,多层宜2层~3层调整一次,高层宜结合混凝土强度的调整每5层~8层调整一次。④多层框架结构位移超标时,可布置少量剪力

墙使其满足要求。此时仍按框架结构确定抗震等级,剪力墙抗震等级可为三级且不设底部加强区,同时框架部分还宜满足不计入剪力墙时框架的承载力要求。⑤剪力墙的窗下墙尽量用填充墙,可延长周期并节约造价。⑥剪力墙结构仅少量墙肢不落地、做框支转换且其负荷面积占楼层面积范围很小时(≤10%),可按仅个别构件转换考虑,不必把整个层都作为转换层。

⑦填充墙的上下在不影响美观和使用的情况下尽可能设梁。分隔墙下可不设梁,配筋上加强即可。⑧外挑阳台挑出长度大于1.2m时优先考虑梁板式受力体系。⑨梁的截面尽量按正常截面取,少做宽扁梁,配筋率也应控制在1.5%以内。⑩尽量避免梁宽≥350mm,否则箍筋按构造要求需采用4肢箍,造成箍筋用量增加。(11).楼梯构件,梯板跨度大于3m或活载较大时,优先考虑梁式楼梯。(12).爹建筑构件,包括装饰构件,优先采用钢筋混凝土结构。

3材料优化

材料自重对结构受力影响较大,应尽量选用轻型材料。如填充墙、隔墙采用轻质材料,可显著减轻自重,降低含钢量。

混凝土价格相对便宜,可适当提高混凝土强度等级以减少钢筋用量,但混凝土强度等级越高越容易开裂,所以也不能太高。一般建议梁板混凝土等级取C30,墙柱混凝土等级取C25—弭O(断面与标号间取最优值),转换层水平构件取C40,非承重构件取C20,基础取C30,--C35,垫层取C15。一般楼层越高受力越小,故混凝土强度等级宜从下到上逐渐减小。为便于施工,同一楼层各构件最好采用同一等级混凝土。

关于钢筋的优化,将在配筋设计部分论述。

4荷载优化

荷载输入值的计算是否准确,关系到整个工程的含钢量是否正常。荷载的计算应尽量精确,做到不漏算、不重算、不多算、不错算。荷载取值应严格按照最新版荷载规范取用,不要擅自放人。对于一些特殊功能的建筑,应会同甲方共同测算荷载的取值。

填充墙上门窗开洞面积较大时,应扣洞口部分的重量。地面、楼面、屋面、填充墙、隔墙、构架、线条等恒载取值应按建筑做法和大样详细计算。

对于GB 50009-2001第4.1.2条所列可折减的项目,应严格按所列系数折减,尤其是消防车活载。

通过检查PKPM总信息中单位面积质量数值可以判断出荷载输入是否正常。一般设计较合理的住宅结构,单位面积的荷载标准值为:框架结构1 lkN/m2~13 kN/m2,框剪结构13 kN/m2~16 kN/m2,剪力墙结构14kN/m2~18kN/m2。

5设计参数优化

设计参数直接影响着含钢量的变化,因此必须弄清楚每个参数的内涵,正确地选用。笔者总结经验、参考文献后给出以下建议:

1)普通柱按单偏压计算,双偏压校核,异型柱才按双偏压计算。按双偏压计算时柱钢筋用量显著增加。

2)偶然偏心和双向地震不同时考虑。考虑双向地震影响会使结构用钢量增加。一般较规则的结构,扭转效应较小,可只计算单向地震力(考虑偶然偏心影响),不考虑双向地震影响。但如果结构的质量和刚度分布明显不对称、扭转严重时,应计入双向水平地震作用下的扭转影响。如何判断结构是否扭转严重,作者赞同文献[3】的看法,即当楼层最大弹性水平位移(或层间位移)与该层两端弹性水平位移(或层间位移)平均值的比值A级高度大于

1.4、B级高度或复杂高层大于1.3时,可认为结构扭转比较明显,需要考虑双向地震作用。多层结构参考高层取值。

当结构扭转位移比超限时,可通过以下措施作调整:①调整平面布置,使质心与刚心尽量接近;②加强结构外边一圈构件刚度,提高抗扭能力;③加大墙、柱、梁截面,改变层间刚度与楼层刚度比;④改变墙、柱的方向,使x、y向刚度接近,尽量使位移比小于1.3,这样就不用考虑双向地震作用了。

3)计算位移角时可不考虑偶然偏心,有利于满足规范限值要求,见《高层建筑混凝土结构技术规程》ts]4.6.3条。

4)竖向构件考虑活荷载折减,可降低用钢量。反映在PlUM计算参数中就是:柱、墙和传到基础的活荷载在SATWE中折减(在PM中一般不折减)。

5)梁柱重叠部分考虑刚域影响,可降低梁的配筋,不考虑刚域影响时梁负筋应按柱边弯矩配筋。

6)梁设计弯矩放大系数及配筋放大系数取1.0。楼面本身荷载和梁荷均已经乘以大于1的分项系数,梁计算中即使不放大也已经存在安全储备,没有必要再对弯矩放大系数及配筋放大系数进行放大。在后期施工图设计时再针对薄弱的部分比如悬挑梁等进行适当的放大,提高其安全储备。

7)梁刚度放大系数,中梁宜取2.0,边梁宜取1.5。梁刚度放大系数主要反映现浇楼板作为梁的有效翼缘对楼面梁刚度的贡献。由于刚度大小直接影响内力分配,不考虑该系数将使梁配筋偏小,考虑不当会使构件配筋不准确,都不利于结构安全。

8)周期折减系数直接影响到竖向构件的配筋,如果盲目折减,势必造成结构刚度过大,吸收的地震力也增大,最后导致墙柱配筋增大。周期折减系数应根据填充墙实际分布情况慎重选择,纯剪力墙结构自振周期可以不折减(取1.O)。

9)PKPM中如次梁单独输入,则PKPM默认对次梁不调幅,此时应将其改为“调幅梁”,可节约部分钢筋。

10)剪力墙连梁跨高比大于5时,受力特征己变成受弯为主,应按框架梁输入并且不能定义为连梁。当梁一端与剪力墙平面外相接时不论跨高比为多少都不应定义为连梁。

11)减小结构扭转可降低用钢量,故应尽力调整计算模型使最大位移与层平均位移之比、最大层问位移与平均层间位移之比小于1.3,并使第一、第二振型为平动,第一扭转周期与第一平动周期之比小于0.85。

12)楼层层间最大位移与层高之比△u/h比规范限值略小即可,且两个主轴方向位移角计算结果越接近越好。如框架结构位移角限值为1/550,实际结构X、y向最大层间位移角为1/(560,---,580)时较经济。结构越刚,地震反应越大,含钢量越高,延性越差。另外,各个楼层之间的弹性位移角最好均匀变化,不要突变。13)对框架一抗震墙结构框架部分的底层柱底,可不乘以弯矩放大系数,见《建筑抗震设计规范》t616.2.3条条文说明。

14)对于上海地区工程,《上海市建筑抗震设计规程》6.1.19条规定:当地下室顶板作为上部结构的嵌固部位时,地下室结构的楼层侧向(剪切)刚度不宜小于上部楼层侧向(剪切)刚度的1.5倍。据此可放宽对地下室的刚度要求,节约部分钢筋。

15)检查PKPM的总信息、位移、周期、地震力与振型输出文件,查看各个指标是否控制在合理范围内:如轴压比、剪重比、刚度比、位移比、周期、刚重比、层间受剪承载力比、有效质量比、超筋信息等。如均在合理范围内,说明结构设计较合理,否则应继续优化。

16)设计较合理的结构,基本上符合以下规律:

(1)柱、墙的轴力设计值绝大部分为压力;

(2)柱、墙大部分构件为构造配筋;

(3)底层柱、墙轴压比大部分比规范限值小0.15以内;

(4)梁基本上无超筋;

(5)剪力墙符合截面抗剪要求;

(6)梁抗剪不满足要求的截面和抗扭超限截面没有或很少;

(7)大部分构件的配筋率在表1范围内。

6基础设计优化

基础造价占结构造价比重最大,基础的节省将对整个工程造价的降低起决定性的作用。基础设计的关键是合理选择基础形式。

一般的,低层住宅优先考虑浅埋天然基础,多层住宅优先考虑沉降控制复合基础(含复合桩基,允许设地下室),对于深埋独立地下室,可考虑采用补偿式基础。

设置地下室时,对地下室的埋深、抗浮水位、桩型、底板顶板结构形式、侧墙设计、基坑围护等内容应进行充分比较和科学验证,尽可能用科学合理的方法节省造价。

地下车库顶板常用结构型式有大跨梁板、十字梁、井字梁、柱帽无梁楼盖、预应力有/无梁楼盖、空心楼盖等几种;底板常用结构型式有“承台+底板”、“承台+地梁+底板”等几种。应根据建筑、荷载和场地条件进行多方案技术经济性比较后再选择最合理的方案。

采用桩基时,需进行桩型、桩径、桩长等多方案技术经济性比较。桩基比选时需考虑承台造价。不同单体,不同地质情况可选用不同桩型,地基土对桩的支承能力尽量接近桩身结构强度。方桩宜优先考虑空心方桩,抗拔桩优先考虑PHC管桩。

布桩时优先考虑轴线布桩并按群桩形心、荷载中心、基础形心“三心”尽量靠近原则作优化调整。单个承台及整个单体的布桩系数(上部总荷载与单桩承载力总和的比值)宜控制在0.75~0.90之间,试桩结果较理想时可取高值。

少用联合承台,基础厚度在满足抗冲切、抗剪切的要求下尽可能降低厚度。墙/柱下直接布桩时,如荷载能直接传递,承台厚度可适当减小。避免或减少_柱一桩。

与承台相连的基础梁计算长度不必取轴线间距离,否则配筋会增大,建议取1.05倍净跨度。合理选择地粱的断面并控制梁的截面尺寸和配筋。宜采用倒T型截面,不宜采用矩形截面。增加

基础高度可以减少底板配筋。独立基础优先采用锥形基础。

筏基底板宜适当出挑,一般出挑O.5m~2.0m左右,有梁时宜将梁一起出挑,当有柔性防水层时不宜出挑。地梁宜适当出挑,一般出挑边跨跨长的1/4。

无上部结构的地下建筑,如地下车库等,可按三级或非抗震设计。但9度抗震设计时,抗震等级不低于二级,见《高层建筑混凝土结构技术规程》[gJ第4.8.5条。

地下室超长时应设后浇带或膨胀加强带,刚度较大时后浇带或加强带距离应适当减小。

JCCAD设计取荷载时不必同时选取PM荷载和SATWE荷载,因为PM荷载可能未考虑折减。

挡土墙高度不宜超过1.5m,否则成本成倍增加,应协调建筑景观专业修改,如多次放坡。

7构件配筋设计优化

在施工图设计阶段,主要通过对构件的精细化配筋设计降低含钢量。包括两方面工作,一是合理选择钢筋级别,二是合理控制钢筋用量。

由于新三级钢筋比二级钢筋强度提高20%,价格约高6%,受力钢筋采用三级钢筋比采用二级钢筋约可节约钢材12%。但是对于抗裂配筋,由于裂缝宽度与钢筋应力有关,与钢筋级别关系不大,采用高强度钢筋并不能充分发挥作用,此时宜采用低强度钢筋。对于构造配筋,哪个级别更经济与最小配筋(箍)率的计算方式有关。如梁式构件的最小配筋率为0.2%和(4瓢黝%中的较大值,当混凝土强度≥C30时三级钢较经济,当混凝土强度小于

C30时二级钢筋较经济。

需要注意的是,二级钢筋和三级钢筋外观上相似,容易混淆。为防止工地用错钢筋,建议直径≥16ram的钢筋用三级,直径10mm~14mm的钢筋用二级,直径6mm~8mm 的用一级和三级。下面按构件类型给出具体的钢筋优化建议。

7.1一般要求

1)尽量采用人工配筋,钢筋归并系数要取得小一些。自动生成的配筋不尽合理,不能直接使用。钢筋归并时用较大配筋包罗较小配筋,归并系数过大会造成比较多的浪费。

2)结构竖向应按计算结果划分区段,使各区段内配筋相差不大,再分段出图。多层宜层层出图,高层宜每3层~4层为一段出图。

3)受力钢筋尽量选用三级,当受力很小或为抗

裂时宜选用一级(d≤8mm)和二级Q≥10ram),构造下限控制时根据最小配筋(箍)率计算方式选择最经济级别。吊钩只能采用一级。

4)凡抗裂钢筋均应采用细密钢筋,钢筋级别不宜超过二级,钢筋间距不宜大于

150mm。

5)分布筋、拉结筋、架立筋等起辅助作用的钢筋采用一级@≤8mm)或二级(d≥10mm)。

6)《建筑抗震设计规范))2008年局部修订版第3.9.3条要求,普通纵向受力钢筋优先采用HRB400级热轧钢筋,箍筋优先选用HRB335级和HRB400级热轧钢筋,不推荐使用强度低、黏结握裹性能差的HPB235级钢筋,如使用一级钢建议只用于次要构件。7.2板配筋要求

1)楼板钢筋一般采用三级。除非特殊需要,一般采用分离式配筋,板跨较小且上筋相同时允许拉通。板厚≥150mm时,可能抗裂或构造控制,宜用二级钢筋,楼板上筋中拉通筋满足计算和构造要求即可,其余用短筋在支座处附加。分布筋宜采用一级。

2)一般楼层端跨及跨度大于3 900mm的楼板,上筋需拉通时可采用支座1/4板跨按计算配筋、跨中用小直径钢筋(如6mm)与支座钢筋受拉搭接的方法连接,以节省钢筋。7.3梁柱配筋要求

1)梁、柱钢筋直径≥16rain时宜采用三级,直径<16mm时宜采用二级。剪力墙暗柱主筋按相同原则处理。梁的最小配筋率与钢筋强度反相关,柱采用三级钢的最小配筋率比二级钢小0.1%,故主筋宜用三级钢筋。

2)梁的上部纵筋一般不放大,下部纵筋略放大,一般放大5%~10%且不宜超过15%。

3)梁纵筋尽量采用较细钢筋(如以3E18代替2E22),可减少裂缝和钢筋锚固长度。

4)次梁和四级框架梁的架立筋(含角筋)不用贯通,中间可用西10mm~咖12iilln钢筋搭接,搭接长度150mm,搭接部位一般在£邝处,见((03G101.1混凝土结构施工图平面整体表示方法制图规则和构造详图55(2006版)。当梁跨度≤4m或支座负筋直径≤16mm 时,分段搭接未必节省,可不分段。5)非框支梁的普通框架梁,其下部钢筋不需要全部伸入支座,可在节点附近部分截断,见((03G101.1混凝土结构施工图平面整体表示方法制图规则和构造详图》(2006版)第60页。

6)梁板结构,计算梁的构造腰筋时,应扣除楼板厚度,腰筋宜用二级。

7)梁柱最小配箍率与钢筋强度成反比,钢筋强度越高越经济,故箍筋宜采用三级

(d=6mm,8mm,16ram,--.),和二级(d=10mm~14mm)。一级钢筋因强度低、与混凝土粘结握裹性能差、最小配箍率高等原因不推荐使用。箍筋间距应细分,不能只取

@100mm、150mm、200mm几种间距。新三级钢筋的延性、可焊性已经大幅提高,与混凝土的黏结握裹能力也比圆钢强,可大规模用作箍筋。

8)上集中荷载处附加横向钢筋,优先考虑箍筋,箍筋不足时,再用吊筋,吊筋不宜小于2咖12mm。

9)抗扭钢筋时,应将构造腰筋计入到抗扭纵筋中。

10)根据计算结果也可分加密区和非加密区配箍。

11)钢筋可按非抗震设计要求锚固搭接,即以L。代替LaE。

12)梁、圈梁、构造柱主筋应采用二级,箍筋应采用一级。

13)根据跨度及荷载大小分段配筋,不能不分跨度大小采用同一截面配筋。

14)主筋均可采用两种直径钢筋搭配配筋,使配筋面积尽量接近计算或构造要求。

7.4剪力墙配筋要求

1)剪力墙墙身水平筋宜用一级、三级(d≤8mm)和二级(d≥10mm),垂直筋宜用三级

(d≤8mm)和二级(d≥10mm)。

2)约束构造边缘构件中按抗震等级、剪力墙部位确定纵筋配筋率和配箍率时,主筋及箍筋间距不一定取50倍数,也可取其它数值,如不一定只取@100mm、@150mm,也可取@120mm、@140 mill、@160mill等数值。

3)构造边缘构件暗柱一般不考虑体积配箍率,但应满足《高层建筑混凝土结构技术规程》7.2.17条第4小条的规定,配箍特征值不宜小于Av=0.1。

4)当剪力墙水平分布钢筋在约束边缘构件内确有可靠锚固时,也可与其它封闭箍筋、拉筋一起作为约束箍筋计算。

5)十字型剪力墙,交叉部位可按构造要求配筋。

6)框架柱、剪力墙暗柱的分布筋可采用12 rain~14mill。

7.5基础配筋要求

1)柱下独立基础、墙下条形基础多为强度控制,宜用三级;地梁、基础梁、承台多为抗裂控制,宜用二级。

2)地下室底板、项板构造或抗裂控制时宜采用二级,强度控制时宜采用三级。顶板上筋及底板下筋的贯通筋满足计算和构造要求即可,其余用短筋在支座处附加。3)地下室外墙配筋一般抗裂控制,水平、竖向均宜采用细密二级钢筋,钢筋间距不宜大于150ram。一般通过在外侧底部约1/3高度范围内附加短筋方式解决底部配筋较大问题。

4)地下室外墙迎水面内设直径,/,4ram~咖6mm@150mm的钢筋网片时,保护层计算厚度可比50mm适当减小,但不得小于30mm。

5)地下室构件迎水面裂缝宽度控制在0.2mm之内,室内可按0.25mm控制。

6)基础地梁、筏板可按非抗震设计要求锚固搭接,即以£。代替£蚯。

7)当独立基础边长或条形基础的宽度≥2.5m时,底板受力钢筋长度可取0.9倍边长或宽度,并交错布置,见《建筑地基基础设计规范》8.2.2—5条。

8)条形基础及筏板基础中的基础梁,箍筋按强一htcahni。d,ea孳Sut'a结D¨睁II度要求配置即可,不需按抗震要求或延性要求构造加密;纵筋可按非抗震要求锚固、搭接【4】。

9)灌注桩配筋可根据计算需要取通长、1/2桩长、1/3桩长。

8结束语

可以看出,通过结构设计人员的细致工作是可以降低结构工程的钢筋用钢量的。这就要求结构设计师在平时工作中注意培养沟通说服的能力,注意结构设计的细节,并及时总结经验,为“降

低结构含钢量,,f故准备。同时必须指出,文中虽然提出了一些降低含钢量的措施,但并不提倡含钢量越少越好。只有深刻理解规范条文和结构受力原理、合理的进行结构布置、正确的选用荷载、慎重的选择计算参数、选择适度的构造措施,才能做出既安全又经济的结构。

建筑结构优化设计

建筑结构优化设计 发表时间:2016-03-28T16:11:12.903Z 来源:《基层建设》2015年23期供稿作者:陈火涛吕金钊罗森陈钰璐陈湧填[导读] 华南农业大学水利与土木工程学院广东广州 510642 当然除此之外还有一些构造上及概念上的优化措施,将在概念设计,高层剪力墙结构与高层混凝土结构的优化设计中重点论述。 陈火涛吕金钊罗森陈钰璐陈湧填 华南农业大学水利与土木工程学院广东广州 510642 摘要:对建筑结构优化设计理论进行了概述,并重点介绍了基于可靠度理论的工程结构优化设计,概念设计在结构优化设计中应用,高层混凝土结构的优化设计以及高层剪力墙结构的优化设计四个方面,为结构的优化设计提供参考依据。关键词:结构设计;优化;应用 结构优化设计的任务,就是以数学规划为基础,将力学的概念、理论和近似方法和数学规划方法结合,转化成数学问题,建立数学模型,选择计算方法,运用计算机在多种可行性设计中,选择出相对而言属于最优的设计方案,达到兼顾经济性,安全性,舒适性的目的。其步骤可分为设计变量,建立目标函数,确定约束条件,经过计算分析得出优化的计算结果。[1]当然除此之外还有一些构造上及概念上的优化措施,将在概念设计,高层剪力墙结构与高层混凝土结构的优化设计中重点论述。 1.基于可靠度理论的结构优化设计 结构的可靠度指结构在设计的基准期内能够承受施工过程中以及正常使用期间的各种外加荷载和变形,有较好的工作性能,耐久性满足正常使用要求,在偶遇灾害如地震,海啸,爆炸等发生时保持必要的整体稳定性。[2] 从工程结构的可靠度理论角度分析,传统的结构优化设计存在以下几点不足:①传统的结构优化并没有完全反映体现结构的可靠性,也没有定量描述可靠度理论,得出的最优结构并不能确保结构具有足够的可靠性。②由于结构构件的尺寸和材料的性能参数具有随机不确定性,而传统结构优化设计并没有考虑这些因素因此并不能反映参数不确定性这一特点。基于以上分析论述,结构的可靠度要求考虑进工程结构优化设计的数学模型中,文献[3]给出了基于可靠度约束的结构优化算例,在结构可靠度分析基础上进行结构优化设计,实现经济合理的设计方案。 2.概念设计在结构优化设计中应用 概念设计,即在建筑物施工前,设计人员考虑建造地周围的地理环境、文化环境与社会环境等,提出相应的建筑结构设计方案,优化建筑结构设计,以期达到进一步融合周围环境与社会环境的目的。概念设计有效弥补理论性设计与计算性设计的不足,使结构设计方案更科学合理;进行抗震设计时概念设计能在降低地震作用效应的同时提高建筑工程的质量和安全性;科学合理的概念设计拓展了建筑物的结构设计思路,增强工程质量、安全性及工程造价。[4] 2.1应用概念设计可在多个建筑结构施工方案中择优而用。 概念设计使得建筑结构施工方案具有合理性、实用性和经济性,这要求设计人员在优化建筑结构时,充分考虑建筑物建成后的目的、抵抗外界环境的能力需要、施工条件、施工材料等因素,从而制定并选取科学合理、全面系统的建筑结构施工方案。 2.2概念设计中应用抵抗自然灾害的能力设计。 概念设计应与时俱进、因地制宜,如考虑抗震能力设计、防火能力设计、抗击风荷载能力设计等,充分考虑现代建筑结构需要适应的社会环境与自然环境,在建筑结构满足工程施工要求的同时,优化结构,使工程中各个构件环环相扣,增强建筑工程的安全性。 3.高层剪力墙结构的优化设计 剪力墙结构体系由于整体性好,侧向刚度大,抗震性能优越,且由于没有梁柱的外露突出,结构层平整,利于房间布置,因而被广泛应用于高层住宅性建筑中。对该结构体系进行优化需考虑钢筋混泥土用量大造价高,剪力墙中墙肢轴压比偏低的承载力发挥不充分,采用构造配筋的墙体延性低等常见问题,[5]如何对剪力墙结构体系进行优化,使其既发挥其抗侧能力强等优点,又降低工程造价,现就以下几方面进行论述。 3.1强周边,弱中部。剪力墙应尽量布置在结构周边,中部减少剪力墙的布置量,以提高结构的抗扭刚度,控制结构的周期比与位移比。另外,剪力墙宜沿主轴方向或其他方向双向布置,避免单向布置,并宜使两个受力方向的抗侧刚度接近。 3.2多均匀长墙,少短墙。选择对结构承受水平及竖直向荷载有利的隔墙位置布置剪力墙,尽量设置为长墙,以充分发挥剪力墙的作用。在较长的剪力墙宜开设门窗洞口,上下对齐、成列布置,形成明确的墙肢和连梁,将其分成长度较均匀的若干墙段,墙段之间宜采用弱连梁连接。 3.3剪力墙应自下到上连续布置,允许沿高度改变墙厚和混凝土强度等级,或减少部分墙肢,使侧向高度沿高度逐渐减小。这样一方面可以避免刚度突变,另一方面可以减轻自重,降低工程造价。 3.4尽量采用普通剪力墙和使墙肢长度较长,并且两端与翼墙相连,减少小墙肢和短肢墙的数量。应尽量减小墙肢长度的差异,使各片剪力墙分配的地震作用力均匀。这样发挥了剪力墙的抗侧移刚度,在满足规范层间位移角限值的情况下,减少剪力墙的数量;同时减少了开洞的数量和其两端边缘约束构件的数量从而减小暗柱的构造配筋面积,使得工程造价降低。 4.高层混凝土结构的优化设计 高层建筑的特点是建筑结构需同时承受水平和竖向的荷载作用。混凝土是高层建筑设计中的重要考虑因素。在进行结构设计时要充分考虑各种因素,确保结构的强度,刚度和延性均处于合理范围,高层混凝土结构的优化设计具体措施有以下几个方面。 4.1合理使用高强砼和高强钢筋 强砼和高强钢筋高优化构件截面尺寸的合理使用,可以减轻地基的承载量和高层建筑自重,从而减小超高层受地震破坏的程度。还减低施工单位的成本,使经效益最大化。 4.2布局优化 高层建筑宜使结构平面形状简单、规则,适合刚度和承载力分布均匀的结构单元。 4.3 抗震结构的优化

斜拉桥结构体系

斜拉桥结构体系 一、结构体系的分类 1、按照塔、梁、墩相互结合方式,可划分为漂浮体系、半漂浮体系、塔梁固结体系和刚构体系。 2、按照主梁的连续方式,有连续体系和T构体系等。 3、按照斜拉桥的锚固方式,有自锚体系、部分地锚体系和地锚体系。 4、按照塔的高度不同,有常规斜拉桥和矮塔斜拉桥体系。 二、结构体系介绍 1、漂浮体系:漂浮体系的特点是塔墩固结、塔梁分离。主梁除两端有支承外,其余全部用拉索悬吊,属于一种在纵向可稍作浮动的多跨柔性支承类型梁。一般在塔柱和主梁之间设置一种用来限制侧向变位的板式活聚四氟乙烯盘式橡胶支座,简称侧向限位支座。 漂浮体系的优点:主跨满载时,塔柱处的主梁截面无负弯矩峰值;由于主梁可以随塔柱的缩短而下降,所以温度、收缩和徐变内力均较小。密索体系中主梁各截面的变形和内力的变化较平缓,受力较均匀;地震时允许全梁纵向摆荡,成为长周期运动,从而吸震消能。目前,大跨斜拉桥多采用此种体系。 漂浮体系的缺点:当采用悬臂施工时,塔柱处主梁需临时固结,以抵抗施工过程中的不平衡弯矩纵向剪力。由于施工不可能做到完全对称,成桥后解除临时固结时,主梁会发生纵向摆动。 2、半漂浮体系:半漂浮体系的特点是塔墩固结,主梁在塔墩上设置竖向支承,成为具有多点弹性支承的三跨连续梁。可以是一个固定支座,三个活动支座;也可以是四个活动支座,一般均设活动支座,以避免由于不对称约束而导致不均衡温度变化。水平位移将由斜拉索制约。 3、塔梁固结体系:塔梁固结体系的特点是将塔梁固结并支承在墩上,斜拉索变为弹性支承。主梁的内力与挠度直接同主梁与索塔的弯曲刚度比值有关。这种体系的主梁一般只在一个塔柱处设置固定支座,而其余均为纵向乐意活动的支座。 塔梁固结体系的优点是显著减少主梁中央段承受的轴向拉力,索塔和主梁的温度内力极小。缺点是中孔满载时,主梁在墩顶处转角位移导致塔柱倾斜,使塔顶产生较大的水平位移,从而显著地增大主梁跨中挠度和边跨负弯矩。 4、刚构体系:刚构体系的特点是塔梁墩相互固结,形成跨度内具有多点弹性支承的刚构。 种体系的优点是既免除了大型支座又能满足悬臂施工的稳定要求;结构的整体刚度比较好,主梁挠度又小。缺点是主梁固结处负弯矩大,使固结处附近截面需要加大;。再则,为消除温度应力,应用于双塔斜拉桥中时要求墩身具有一定的柔性,常用语高墩的场合,以避免出现过大的附加内力。

如何做结构设计优化

如何做结构设计优化 一、结构设计优化必不可少 设计优化对于成本控制来说具有极端重要性,不可不察。而设计优化往往是被忽略的,更多的则是不具备这个能力。 设计优化主要是从成本控制的角度对原设计进行排查,排除设计的盲区和死角,发现差错、纠正不足,降低不安全因素,为您找回流失的成本。剔除原来设计中的虚高的,无用的,不安全的,不合理的成本。 结构设计优化,也如同人减去多余脂肪,达到健美目的,杜绝不必要的浪费。加大构件截面,提高配筋率,并不一定增加结构的安全度,有时反而是坏事,如增加建筑自重,形成超筋破坏等反作用。 结构设计优化并不是单纯的“挑毛病”,而是通过交流、沟通,找到更为合理、更经济的设计。结构设计的优化,不是以牺牲建筑适用性、结构安全度和抗震性能来求得经济效益。 在所有的设计优化中,结构设计优化空间最大,结构成本的弹性和离散性大,最有成本控制的意义,是优化的重点。 二、结构设计优化重点 结构设计优化根据优化深度难易分几个层次,一是结构体系与基础类型的优化与比选;二是规范方面解理错误的纠正;三是结构说明不适用条款的修正;四是钢筋构造不合理的改正;五是设计图纸纠错。

结构优化不是单方面以降低成本减少含量钢量为目的,结构优化是对原结构设计改进,不是追求局部最优,而是为了达到整体最优。 通过对多种结构方案进行选型和经济分析,提供决策依据;对影响结构的因素(如地勘、安评报告等)进行分析,统一技术措施;对构件截面及布置等进行调整,对荷载、计算参数等进行复核。 注重概念设计,从宏观上控制结构安全,根据力学概念和工程经验进行判断。 结构设计优化有“尺寸优化,形状优化,拓扑优化,布局优化、配筋优化、构造优化“等。 结构设计优化着重于以下几个方面: 1、选择规则的平面方案和立面方案,避免过大的外挑和内收,避免应力的突变,避免薄弱层,保持受力的均衡。尽量不设转换层,尤其是高位转换,同一建筑不要做多功能多用途设计。这受制于建筑设计。建筑设计往往追求外观的新奇现代,天马行空,不计成本,也不考虑抗震等因素。越是复杂的不规则的建筑造型其抗震性能下降建筑成本增加。应该追求简约而美的设计理念,摒弃复杂而丑的设计风格。 2、刚度与延性的平衡。结构刚度大,含钢量高,延性反而差,地震反应大,抗震性能低。延性的本质是提高结构的变形能力,控制结构整体破坏形态。可以通过减少刚度增加延性既提高抗震能力又能节约钢筋。 3、如结构体系的选择对造价影响甚大,如异形柱框架比普通框架含钢量大;短肢剪力墙含钢量比普通剪力墙结构高。 4、选择合理的基础形式,基础形式有独基、条基、桩基、筏基、基础梁、承台等,一般选择复合基础,即几种基础类型的组合,组合种类不宜过大,基础体系应简洁,如

A公司组织结构优化研究

A公司组织结构优化研究 随着社会的快速发展,企业组织结构对于加强企业的管理和控制有着十分重要的意义,而企业组织不断与外部环境发生相互作用,受到经济、社会、技术、员工和自然环境等因素综合影响,其生存和发展不仅有赖于组织的内部平衡和外部的适应,而且还面临着不断的优化调整。A公司是一家电站叶片和航空锻件的专业制造商,服务于全球能源和航空装备市场。随着公司将发展航空产业战略作为转型发展重要目标,原有的组织结构暴露出公司职能重叠、职责混淆、关键流程系统性差、效率低下、绩效指标体系有缺陷等问题,迫切需要对其组织结构进行优化设计与研究,以及为A公司未来发展、技术能力以及管理水平的提升提供强有力的驱动力。基于此,本文以A公司为研究对象,运用组织结构设计理论、战略管理理论等对A公司原有组织结构进行优化改进,针对其原有存在的问题,从公司的总体战略目标出发,基于核心业务流程,研究提出基于战略地图的组织结构优化设计的总体思路与方案,对核心业务流程、关键职能岗位以及关键绩效指标进行改进提升,提出A公司最新组织结构优化方案,为A公司当前遇到的困难、问题以及未来的发展所遇到的瓶颈提供了实际操作方案和基本方向。 本文共分六章。第一章绪论。简要介绍论文选题的研究背景与意义,以及其研究方法、技术路线等,对国内外有关组织结构研究成果进行了梳理。第二章相关理论概述。 分别对组织结构概念、类型、影响组织结构设计的因素、组织结构优化的流程等组织结构设计理论方面的内容,以及战略管理理论中的三大竞争战略进行了阐述。第三章A公司组织结构及问题分析。概述了A公司的基本情况与战略定位,运用咨询调研等方法,对A公司原有组织结构进行现状分析,指出了其存在的优劣问题。第四章A公司组织结构优化方案设计。 根据组织结构优化设计原则和应考虑的因素,提出基于战略地图的组织结构优化总体思路与方案,内容包括:公司各板块组织结构优化设计、业务流程优化设计、以及关键职能划分。第五章A公司组织结构优化方案实施。给出了优化后的组织结构方案的实施步骤、效果评估、保障措施以及建议。第六章结论与展望。 对论文全文进行总结,给出了论文全文的结论,并指出了A公司组织结构优化设计中需要进一步研究的问题。本文的主要创新之处:基于核心业务流程,提出

结构选型与布置

结构选型与布置

结构选型与布置 第一节结构设计知识要点 优秀的建筑设计应做到艺术、技术和经济性的三位一体,它是建筑师对这三方面知识充分掌握和创造性应用的产物。建筑师在完成建筑功能、建筑艺术性设计的同时,也应当兼顾建筑的安全性、适用性、耐久性和经济性,以便建筑设计时其他工种的同事能同自己良好的衔接。 在建筑技术设计作图中,首先要根据建筑平面布置及房屋层数和高度,选用合理的结构体系,如:砌体结构、框架结构、剪力墙结构、框架-剪力墙结构等。其次要合理地确定和布置竖向承重构件和抗侧力构件,这些构件一般包括:承重墙体、柱、框架和支撑等。墙体既是竖向承重构件,又是抗侧力构件,同时又是建筑平面分隔和围护的需要;框架是由梁和柱刚性连接组成的骨架,它能承受建筑物的竖向荷载,同时也能承担水平荷载(如风力、地震作用) ;支撑是作为承担建筑物水平荷载的专用构件,主要用于单层产房、钢结构和高层建筑中。再次是合理地选择楼(屋)盖体系,楼(屋)盖体系构件包括:楼板(屋面板)、梁系(屋架)。楼板主要功能是沿水平方向分隔建筑中的上下空间,将其承受的建筑使用荷载传递给梁系或直接传给框架梁;使用梁系主要是为了使较大空间的房间传力途径更加合理,梁系中次梁将荷载传递给主梁或框架梁,再传至柱或墙。最后应合理地选择基础形式,根据不同的结构体系、建筑体型和场地土类别为竖向承重构件选取合理的基础形式,例如带拉梁或不带拉梁的独立基础、条形基础、箱形基础、役形基础、桩基础等。 下面将主要介绍砌体结构、框架结构、剪力墙结构和框架-剪力墙结构的结构布置注意事项。 一、砌体结构 砌体结构有着悠久的历史和辉煌的记录,直至今日仍然广泛地应用在各类工业与民用建筑中。砌体结构有造价低廉、易于取材、建筑舒适度好、建筑能耗低、耐久性好、维护方便、抗火性能优异、施工设备和方法简单、外观优美等优势;同样也存在着强度低、材料用量多、自重大、砌筑质量较难保证、震害严重等问题。 (一)砌体结构的承重墙体系 1.横墙承重体系 横墙指横向承重墙体。横墙承重体系指建筑物楼(屋)盖的竖向荷载主要通过短向楼板或横墙间小梁传给横墙,再经横墙基础传至地基的结构体系。由于横墙是主要承重墙体, 它的间距不能太大,划分房屋开间的宽度一般为3~5m,即横墙间距。横墙承受两侧开间内由楼(屋)盖传来的竖向荷载和由风或横向水平地震作用产生的水平荷载,假若两侧开间宽度相同,横墙在竖向荷载作用下基本上处于轴心受压状态,在水平荷

建筑结构优化设计建议-侯善民

建筑结构优化设计建议 侯善民 201305 2013.05

第一章 第章基础 1、基础类型: ? 天然地基基础 ?复合地基→天然地基+增加体(柔性桩、刚性桩)? 桩基:常规桩基 后处理加强的后注浆钻孔灌注桩 先处理加强的劲性复合予制静压桩

第一章第章基础 ? 天然地基承载力不宜低于预期复合地基承载力的百分之四 十软土地基上采用复合地基要慎重组成复合地基的增采用复合地基应注意: 十,软土地基上采用复合地基要慎重。组成复合地基的增强体桩基,应具备一定刚度,并且不能是端承桩;随着复合地基承载力需求增大增强体桩基的支承刚度与 ? 随着复合地基承载力需求增大,增强体桩基的支承刚度与桩身强度,要求也需相应提高,对于20层~30层的高层建筑不宜采用单纯摩阻桩桩端进入较好的持力层但持筑,不宜采用单纯摩阻桩,桩端进入较好的持力层。但持力层不宜是强风化以上的岩层,桩身强度承载力要满足计算底板与桩基持力层选择需慎重 算,底板与桩基持力层选择需慎重。

第一章南京某小区复合地基事故第章基础 南京某小区复合地基事故: 该小区位于河西,七层砖混住宅,场地内有深厚的淤泥质软土层,增强体刚性桩未穿过软土层,施工也存在质量问题,建造过程中一直到结构封顶,沉降持续发展,最后采用锚杆静桩较好的才控制住降静压桩,压入深层较好的土层,才控制住沉降。最近几年,我们做了一批20层~30层100米以内的高层剪力墙住宅,采用刚性桩复合地基都取得成功。例如:淮安恒大、淮安中南、合肥融侨等都是20万~30万㎡的高层住宅小区,天然地基承载力约在200k 左右采用予应力管桩作为增加体然地基承载力约在200kpa左右,采用予应力管桩作为增加体, 复合地基承载力可达到500Kpa左右

项目管理类型企业组织结构优化设计

项目管理类型企业组织结构优化设计 一、组织结构设计的概念 组织结构设计,是通过对组织资源(如人力资源)的整合和优化,确立企业某一阶段的最合理的管控模式,实现组织资源价值最大化和组织绩效最大化。企业的组织结构设计就是在企业的组织中,对构成企业组织的各要素进行排列、组合,明确管理层次,分清各部门、各岗位之间的职责和相互协作关系,并使其在企业的战略目标过程中,获得最佳的工作业绩。 从最新的观念来看,企业的组织结构设计实质上是一个组织变革的过程,它是把企业的任务、流程、权力和责任重新进行有效组合和协调的一种活动。根据时代和市场的变化,进行组织结构设计或组织结构变革(再设计)的结果是大幅度地提高企业的运行效率和经济效益。 二. 案例公司简介 **技术经济发展有限公司,于1998年10月30日经国家工商行政管理局批准注册登记正式成立,注册资本金1000万元人民币。其中,中国**集团公司出资800万,占总股本的80%;北京**技术发展中心出资100万,占总股本的10%;宜昌**工程多能公司出资100万,占总股本的10%。至今,注册资本金为2844万元,**集团的股权比例为100%。 公司自成立以来,致力于工程项目的监理工作,有序开展了项目代建和总承包业务。目前,主要从事的核心业务有:监理监造、项目管理、技术服务、工程总承包业务。非核心业务有:房屋出租、招待所经营、物业管理和贸易等业务。公司拥有国家发改委工程咨询甲级资质,国家建设部水利水电工程甲级监理资质、房屋建筑工程甲级监理资质、公路工程甲级监理资质,国家水利部机电及金属结构设备制造监理甲级资质、水利工程建设环境保护监理资质。 三. **技术经济发展有限公司发展阶段研究 1、根据企业生命周期判断,**技术经济发展有限公司目前恰好正处于组织成长期的“规范期”阶段,并将向“成熟期”过度。在规范期,企业的管理核心是“市场扩展”,因此这个阶段各业务单元通过公司的授权得到快速成长。但同时,规范期的问题也开始暴露——充分的授权带来了业务单元的各自为政和本位主义,同时职能管理部门管理服务和支持指导无法跟上又进一步加重了业务单元的本位主义,这影响了资源配置的效率和企业的进一步发展。与当前组织的发展阶段相适应,公司现行的组织机构是分散的、地域性的,管理上充分

桥梁结构设计的优化

桥梁结构设计的优化 公路建设的发展为我国的经济创造了丰富的物质保障,桥梁是公路建设中最主要的一个部分,但是最近几年桥梁的安全事故频频发生,桥梁结构设计的优化问题已经受到人们的广泛关注。文章对现如今桥梁结构设计的现状进行了分析,阐述了设计中需要注意的几个问题,指出了桥梁结构设计优化的主要研究方向,希望能对我国的桥梁工程起到一定的参考价值。 标签:桥梁设计;结构设计;耐久性 桥梁结构设计的基本要求是要保证安全性、适用性以及经济性,不仅要求设计者要具备丰富的理论知识,还要具一定的工程经验,如果有经验上的偏差就会严重影响设计的准确性。桥梁结构设计要坚持因地制宜的基本原则,要充分结合建设单位公布的桥梁设计方案,积极学习国外的先进技术,引进一些新设备、新材料,严格依照施工设计的总则、荷载以及每种材料技术条件要求等施工设计标准,采取适当的设计方法,能最大限度地规避主管因素对桥梁结构设计造成的影响。 1 我国桥梁结构设计现状分析 桥梁结构的设计覆盖范围非常广,属于一种比较复杂的系统工程,只有将理论知识充分的融入进去才能有效的预防主观经验因素给设计带来的不利影响,在桥梁结构的设计中会出现很多问题,其中最主要的问题分为下面几种:(1)桥梁结构设计中考虑强度的因素要多于耐久性;(2)设计时重视强度的极限状态,而忽视使用的极限状态,然而桥梁结构属于整个生命周期里最为重要的使用性能表现;(3)桥梁结构设计中过于重视结构建造而忽视结构维护。 在实际的桥梁施工中,对桥梁的耐久性只是处于表面设计,一方面缺少明确的使用要求,另一方面还缺少专门关于耐久性的设计,这些问题是导致桥梁事故发生的主要因素,这些因素同桥梁结构设计的要求相背离,也不能满足当前桥梁结构设计在经济性方面的要求。 目前我国桥梁结构设计理论与构造体系不够完善,桥梁的设计特别是桥梁施工和安全的问题上还有很多需要改善的地方。结构设计的第一要务便是选择一套经济、适用的结构设计方案,然后对方案及连接方面进行设计,并选出施工规范允许的安全系数和指标来确保结构的安全性。 2 桥梁结构设计中需要注意的问题 2.1 桥梁结构的耐久性 目前我国在桥梁的结构设计方面已经取得了一定的成绩,但是这些研究都是针对材料和统计的,对结构设计的耐久性研究还是较为薄弱,因为在桥梁的使用

建筑结构优化设计

建筑结构优化设计 摘要:建筑项目投资大,建设周期长,对其进行结构优化设计能够有效的减少投资金额。建筑结构优化设计,是实现建筑本体功能与建筑投资成本的关键手段。因此,结构工程师必须在每一个工程项目的设计中都能做到不断地探求自然法则,不懈地追求相对的最佳最优,要通过反思比较,在经验积累中不断提高自己的判断力和创新力。 一、建筑结构优化设计 1、建筑结构优化设计的基本理论 结构优化设计不应仅仅在结构本身,而应包括建筑的各方面,科学地确定建筑结构优化设计几项基本原则并有效地按照这些基本原则去进行建筑结构设计,是非常重要的。建筑结构的优化设计主要体现在建筑工程的决策阶段、设计阶段、建设阶段。在建筑工程的决策阶段,确定结构优化设计所要达到的总体目标,满足本体功能,最大程度保障安全性,缩减投资成本:在建筑工程的设计阶段,确定每一个子系统及整体结构的优化布局;在建筑工程的建设阶段,以结构优化设计为建设原则,组织建设好每一个子系统从而实现整体结构优化布局。决策阶段结构优化选择是关键,设计阶段结构优化设计是核心,建设阶段结构优化建设是基础,3个阶段互相验证、互为补充、缺一不可。 2、建筑结构优化设计的基本要求 (1)功能性 建筑是人类的基础物质生存环境,建筑结构优化的终极目标就是

为了满足人类对物质生存环境的最大化需求。对功能性的满足也不再局限于传统的实用性功能,而是增添了舒适性、美观性、协调性等多种新元素,满足人类对基础物质生存环境的更高要求。 (2)安全性 建筑作为人类生存的基础生存环境,与人类的生产、生活紧密相关,安全性成为建筑结构优化设计的必然考虑因素。一味追求建筑结构的优化设计,忽略决策阶段、设计阶段、建设阶段的安全性,其作为建筑不但没有任何实际意义,反而会给人类正常生产和生活带来致命的危害。因此,安全性是结构优化设计中的必然考虑因素。 (3)经济性 建筑结构优化设计的经济性是市场经济条件下对资源配置提出的新要求。经济性是指通过建筑结构的优化设计,最大化的节约各种材料资源,达到减少建设成本的目标。另外,各种材料资源都存在一定的稀缺特性,建筑结构的优化设计能科学合理的减少材料的使用量,节省建设材料使用成本。 二、建筑结构优化设计基本原则 1、提高建筑舒适度原则 所谓好的建筑,应是从建筑、结构、装饰装修到给排水、暖通、空调、燃气、电气安装等各专业的优化设计组合,是整体优化设计,如果仅仅是某个专业设计得好,是不可能被称作是一个好建筑的,结构设计也不能例外的;建筑结构设计要能最大程度地满足建筑平面布置、内部空间高度和建筑立面等使用功能和外形观感的要求,投入使

就某一结构体系桥梁施工技术

就某一结构体系浅谈桥梁施工技术摘要:纵观近几年我国公路上修建的高等级的大、中桥梁发现,几乎都采用先简支后连续结构体系。文章阐述了先简支后连续结构体系在实际工程中的优点和施工工艺要点,探讨了施工过程中采用的简便易行的工艺技术,最后提出先简支后连续桥梁施工的质量控制意见。 关键词:先简支后;连续桥梁施工;桥梁设计 abstract: according at the big bridge in the construction of high-grade highways in our country recent years, almost always uses simple supported-continuous system. the article elaborated the advantages of the simple supported-continuous system in practical engineering and main points of construction technique, discusses the construction process in a simple and convenient technology, finally put forward the simply supported continuous bridge construction quality control. key words: simply supported continuous bridge; construction; bridge design 中图分类号:tu74近几年,随着桥梁建设的飞速发展,国内来出现了一种新型梁桥结构一先简支后结构连续梁桥,它兼顾了简支梁桥和连续梁桥的优点,全国各省份特别是在高速公路桥梁设计中逐渐以先简支后结构连续梁桥代替了原来单一的简支梁桥或连续

可靠度桥梁结构优化设计

可靠度的桥梁结构优化设计 摘要:基于可靠度的桥梁结构优化设计将桥梁结构作为一个整体研究,而且能够考虑和处理桥梁结构设计中的随机不确定性因素,较传统的结构优化设计更为合理。阐述了基于可靠度的桥梁结构优化设计基本思想以及发展方向。 关键词:可靠度;桥梁结构;优化;设计 abstract: based on the reliability of bridge structure optimization design will bridge structure as a whole study, but also to consider and deal with the design of bridge structure stochastic uncertainty, a traditional structure optimization design is more reasonable. the paper based on reliability of bridge structure optimization design basic ideas and development direction. keywords: reliability; bridge structure; optimization; design 中图分类号:s611文献标识码:a 文章编号: 1引言 桥梁结构设计的基本原则是安全、适用和经济。传统的桥梁结构设计主要是采用定值设计的方法,既不能描述和处理桥梁结构中客观存在的各种不确定性因素,也不能定量地分析计算安全、适用及经济的各项指标,更无法科学地协调它们之间的矛盾,使它们达

结构优化设计是在满足规范要求

结构优化设计是在满足规范要求、保证结构安全和建筑产品品质的前提下,通过合理的结构布置、科学的计算论证、适度的构造措施,充分发挥材料性能、合理节约造价的设计方法。结构优化设计在当前竞争日益激烈的建筑设计市场成为大势所趋。如何在满足建筑功能的前提下,保证结构安全并控制含钢量成为摆在结构设计工程师面前的现实课题。本文总结了以往的设计经验,参考了相关文献,给出了结构优化设计的步骤和一些具体措施,供设计人员参考。 1结构优化设计的步骤 笔者认为,结构优化设计的合理步骤应该是:①在方案阶段,通过与建筑专业的充分沟通,对建筑的平面布置、立面造型、柱网布置等提出合理的建议和要求,使结构的高度、复杂程度、不规则程度均控制在合理范围内,避免抗震审查,为降低含钢量争取主动权;②在初步设计阶段,通过对结构体系、结构布置、建筑材料、设计参数、基础型式等内容的多方案技术经济性比较,选出最优方案,整体控制含钢量;③在具体计算过程中,通过精确的荷载计算、细致的模型调整,使结构达到最优受力状态,进一步降低用钢量;④在施工图阶段通过精细的配筋设计抠出多余钢筋,彻底降低含钢量。 在进行多方案的技术经济性比较时,应综合考虑材料费、模板费、基坑开挖降水支护费用、措施费、施工难易、工期长短等因素,与甲方协商后择优选用。 2结构体系与布置优化 结构体系和布置对造价影响很大,应予重视。 1)应根据建筑布置、高度和使用功能要求选择经济合理的结构体系。比如,异形柱框架比普通框架用钢量大,在可能的情况下尽量采用前者;短肢剪力墙比普通剪力墙含钢量高,在可能的情况下尽量采用后者。 2)应选择比较规则的平面方案和立面方案。尽量避免平面凸凹不规则或楼板开大洞,控制平面长宽比,合理设缝,使结构刚度中心与质量中心尽量靠近。竖向应避免有过大的外挑或内收,同时注意限制薄弱层、跃层、转换层等不利因素,使侧向刚度和水平承载力沿高度尽量均匀平缓变化。 3)应选择合理、均匀的柱网尺寸,使板、梁、柱、墙的受力合理,从而降低构件的用钢量。柱网大则楼盖用钢量大,柱网小则柱子用钢量增大,应根据建筑实际情况和经验合理布置。例如,住宅中小开间结构中墙柱的作用不能得到充分发挥,过多的墙柱还会导致较大的地震作用,可考虑采用大开间结构体系,既节约造价,又便于建筑灵活布置。 4)应选择经济合理的楼盖体系。楼盖质量大,层数多,占整体造价比重高,对楼盖的类型、构件的尺寸、数量、间距等应进行对比分析,选择最优的方案。一般住宅宜采用现浇梁板楼盖,预应力楼盖的预应力钢筋容易被二次装修破坏,井字梁楼盖影响室内美观,均不推荐。办公楼等大空间结构宜采用十字梁、井字梁、预应力梁板方案。双向板比单向板经济,应多做双向板。板的厚度,双向板宜控制在短跨的1/35,单向板宜控制在短跨的1/30,此时板易满足强度和变形要求,经济性好。 5)剪力墙结构的优化空间很大,应下大力气优化。剪力墙的布置宜规则、均匀、对称,以控制结构扭转变形。在满足规范和计算的前提下应尽量减少墙的数量,限制墙肢长度,控制连梁刚度,剪力墙能落地的就全部落地不做框支转换层,平面能布置成大开问的尽量布置成大开间,墙体的厚度满足构造要求和轴压比的要求即可。连梁刚度太大时可通过梁中开水平缝变成双梁、增大跨高比等措施降低连梁刚度。尽量少用短肢剪力墙,限制“一”字墙,少做转换。 6)降低含钢量的小技巧:①楼电梯间不宣布置在房屋端部或转角处。因其空间刚度较小,设在端部对抗扭不利,设在转角处应力集中。②框架结构层刚度较弱时,加大柱尺寸或梁高都可显著增大层刚度,而提高混凝土强度效果不明显。③柱的截面尺寸,多层宜2层~3层

(完整版)桥梁工程简答题

五、问答题 1)桥梁有哪些基本类型?按照结构体系分类,各种类型的受力特点是什么? 答:梁桥、拱桥、斜拉桥、悬索桥。按结构体系划分,有梁式桥、拱桥、钢架桥、缆索承重桥(即悬索桥、斜拉桥)等四种基本体系。梁式桥:梁作为承重结构是以它的抗弯能力来承受荷载的。拱桥:主要承重结构是拱肋或拱圈,以承压为主。刚架桥:由于梁与柱的刚性连接,梁因柱的抗弯刚度而得到卸载作用,整个体系是压弯构件,也是有推力的结构。缆索桥:它是以承压的塔、受拉的索与承弯的梁体组合起来的一种结构体系。 2)桥梁按哪两种指标划分桥梁的大小?具体有哪些规定? 答:按多孔跨径总L和单孔跨径划分。 3)各种体系桥梁的常用跨径范围是多少?各种桥梁目前最大跨径是多少,代表性的桥梁名称? 答:梁桥常用跨径在20米以下,采用预应力混凝土结构时跨度一般不超过40米。代表性的桥梁有丫髻沙。拱桥一般跨径在500米以内。目前最大跨径552米的重庆朝天门大桥。钢构桥一般跨径为40-50米之间。目前最大跨径为 4)桥梁的基本组成部分有哪些?各组成部分的作用如何? 答:有五大件和五小件组成。具体有桥跨结构、支座系统、桥墩、桥台、基础、桥面铺装、排水防水系统、栏杆、伸缩缝和灯光照明。桥跨结构是线路遇到障碍时,跨越这类障碍的主要承载结构。支座系统式支承上部结构并传递荷载于桥梁墩台上,应满足上部结构在荷载、温度或其他因素所预计的位移功能。桥墩是支承两侧桥跨上部结构的建筑物。桥台位于河道两岸,一端与路堤相接防止路堤滑塌,另一端支承桥跨上部结构。基础保证墩台安全并将荷载传至地基的结构部分。桥面铺装、排水防水系统、栏杆、伸缩缝、灯光照明与桥梁的服务功能有关。 5)桥梁规划设计的基本原则是什么? 答:桥梁工程建设必须遵照“安全、经济、适用、美观”的基本原则,设计时要充分考虑建造技术的先进性以及环境保护和可持续发展的要求。 6)桥梁设计必须考虑的基本要求有哪些?设计资料需勘测、调查哪些内容? 答:要考虑桥梁的具体任务,桥位,桥位附近的地形,桥位的地质情况,河流的水文情况。设计资料需勘测、调查河道性质,桥位处的河床断面,了解洪水位的多年历史资料,通过分析推算设计洪水位,测量河床比降,向航运部门了解和协商确定设计通航水位和通航净空,对于大型桥梁工程应调查桥址附近风向、风速,以及桥址附近有关的地震资料,调查了解当地的建筑材料来源情况。 7)大型桥梁的设计程序包括哪些内容? 答:分为前期工作及设计阶段。前期工作包括编制预可行性研究报告和可行性研究报告。设计阶段按“三阶段设计”,即初步设计、技术设计、与施工图设计。 8)桥梁的分孔考虑哪些因素?桥梁标高的确定要考虑哪些因素? 答:要考虑通航条件要求、地形和地质条件、水文情况以及经济技术和美观的要求。要考虑设计洪水位、桥下通航净空要求,结合桥型、跨径综合考虑,以确定合理的标高。 9)桥梁纵断面设计包括哪些内容? 答:包括桥梁总跨径的确定,桥梁额分孔、桥面标高与桥下净空、桥上及桥头的纵坡布置等。 10)桥梁横断面设计包括哪些内容? 答:桥梁的宽度,中间带宽度及路肩宽度,板上人行道和自行车道的设置桥梁的线性及桥头引道设置设计等。 11)为什么大、中跨桥梁的两端要设置桥头引道? 答:桥头引道起到连接道路与桥梁的结构,是道路与桥梁的显性协调。 12)什么是桥梁美学? 答:它是通过桥梁建筑实体与空间的形态美及相关因素的美学处理,形成一种实用与审美相结合的造型艺术。 13)桥梁墩台冲刷是一种什么现象?

设计优化工作方案

设计优化工作方案 我院优化设计工作室面向地房地产开发企业和其他投资控制管理精细严谨的建设业主单位,站在专业的角度和高度,以我们的专业和技术使建筑结构设计更加合理、更经济、更安全,致力于结构优化设计,为业主单位节省项目开发的经济成本。 优化设计工作室将以专业的技术、严谨的态度、精细的工作实现房地产开发企业(业主单位)价值的最大化,建设、设计单位、顾问优化单位三方共赢之目标。 优化方式 优化设计工作室服务方式包括结果优化和过程优化两种。 结果优化是在施工图设计完成后进行的设计优化,通过对原设计图纸进行结构布置优化和施工图精细化设计并提出优化报告,说服原设计单位对原设计图纸进行设计修改的优化方式,或另行由我院出图审查。 过程优化是在设计过程中提前沟通、同步进行的优化方式,通过对设计产品进行过程控制,实现最优化的设计目标,包括方案设计、扩初设计、施工图设计三个阶段。 业务咨询 1、前期洽谈,客户需求确认; 2、根据客户提供的设计资料进行设计整体质量评估,并为客户提供设计质量评估; 3、与客户进一步沟通,讨论工作细节问题; 4、签定咨询项目合同,开展正式结构优化工作; 5、根据进度开展咨询优化工作,并按阶段完成咨询优化报告; 6、项目通过结构施工图审查,完成优化项目总结。 优化理念 结构设计包括结构选型、结构布置、结构计算、施工图配筋等四个方面,结构优化也是从上述四个方面进行。一个优秀的结构设计应该满足: 1、结构体系选择恰当,材料选择合适; 2、结构布置均匀、对称、简洁、合理; 3、结构计算荷载输入正确、参数设置合理、计算结果满足规范; 4、施工图配筋设计精细、构造措施周密、方便施工。 通过结构优化,在满足安全和建筑物功能、效果的前提下,将建筑物钢筋混凝土含量指标控制在最低水平,以实现项目利益最大化,并得到业主的高度认可和满意。 优化评估 优化设计工作室根据相关设计资料从地下室结构、基础、上部结构布置、计算分析及结构施工图细节设计等多方面对设计质量进行有效评估,让业主单位对设计质量心中有底。评估设计质量服务内容: 1、上部结构体系合理性评估;

浅谈组织结构优化设计说明

浅谈组织结构优化设计 伴随外部环境的剧烈变化以及信息技术的不断发展,关于组织结构的理论和概念层出不 穷:事业部制,职能型组织结构,客户型组织结构,矩阵式组织结构,网络式组织结构等。 组织结构的实践则更加丰富多彩,从战略变革到流程再造,无不涉及组织结构的调整与优 化。但现实不容乐观,企业常常陷入组织结构的困惑:面对不同的组织模型,不知如何选择; 设计了看似完美的组织结构,却难以实施。本文先从组织结构的定义入手,来对组织机构 有一个初步的认识,再通过对几种典型组织机构的定义的介绍、组织结构图的展示、优缺 点的列举、适用围的概括来形成对组织结构进一步的了解,并通过对组织结构发展趋势 的介绍来把握组织结构的最新动态,最后结合以上基本理论对组织结构优化调整在石油产 业中应用进行案例分析。 1组织结构的定义 组织结构(Organizational Structure)是指,对于工作任务如何进行分工、分组和协调合作。组织结构是表明组织各部分排列顺序、空间位置、聚散状态、联系方式以及各要素之间相 互关系的一种模式,是整个管理系统的“框架”,其本质是为实现组织战略目标而采取的一 种分工协作体系,组织结构必须随着组织的重大战略调整而调整。 2组织结构的几种基本类型及其特征 2.1直线制组织结构 直线制组织结构是最古老的组织结构形式。所谓的“直线”是指在这种组织结构下,职 权直接从高层开始向下“流动”(传递、分解),经过若干个管理层次达到组织最低层。其特 点是: (1)组织中每一位主管人员对其直接下属拥有直接职权。 (2)组织中的每一个人只对他的直接上级负责或报告工作。 (3)主管人员在其管辖围,拥有绝对的职权或完全职权。即,主管人员对所管辖的 部门的所有业务活动行使决策权、指挥权和监督权。 2.1.1直线型组织结构特征

桥梁结构体系及其优化与创新

桥梁结构体系及其优化与创新 摘要:随着我国交通事业的迅速发展,桥梁结构体系也越来越复杂,因此对结 构体系的优化问题得到了许多研究者的关注。本文主要针对桥梁结构体系的基本 概念、优化和创新的方法进行阐述,为设计和施工人员提供合理的优化思路与方法,为以后桥梁体系的优化和创新工作奠定基础。 关键词:桥梁;结构体系;优化;创新;发展;. 1 桥梁结构体系 1.1 桥梁结构体型的定义 桥梁结构体系主要是指某一桥梁在功能、外观和受力方式等方面的状态情况。桥梁结构体系中分为三方面概述,第一方面指的是结构的功能,桥梁结构的主要 功能是为人和车辆等提供跨越河流、山谷的一种跨越建筑物。第二方面代表着桥 梁结构的形式,根据结构类型,可分为四种基本体系:梁桥、拱桥、斜拉桥和悬 索桥等形式。第三方面与桥梁结构的力学方面相关,代表为结构的受力状态,它 包括结构中荷载的传递方式使其达到一种平衡的状态,属于结构体系和核心部分。 对于相同桥型的桥梁体系,受力形态不同,其最主要的影响因素可归纳为三 个点:一、桥梁结构体系在约束状况影响,如结构支座处的沉降脱空等;二、结 构内部荷载传递方式的影响,比如桥梁在墩梁处是支座连接还是固接,都会导致 桥梁结构体系传力和受力的不同;三、结构构件之间承受荷载力的分配比例影响,如拱桥中刚拱柔梁和刚拱刚梁在承受荷载时,不同构件所受力的大小不同。 1.2 评判桥梁体系优劣的标准 我们首先应该对桥梁的跨径范围进行合理的评估和设计。每种桥梁体系都不 能违背它的极限标准,梁式桥不可能做成几百年米一跨的,这显然是不符合实际 的猜想;同样,对于悬索桥而言,除了是满足景观的需求以外,也不可能修建的 跨度只有几十米 此外,在选择桥梁体系时必须考虑项目当地的环境总况。它对应结构受力形 态的第一点:外界对结构体系的约束。比如:有些地基处主要是软土地质,不利 于承受水平推力,因此我们应该合理选取无推力拱体系,而在地基承载力很强的 情况下,又应该选取有推力拱体系。 由于结构刚度越大,承受分配荷载也越多,所以合理分配结构构件刚度十分 重要。这对应于结构受力形态的第三点:主要构件间的受力分配。较为优秀的结 构体系既有合理的构件刚度分配,又满足结构受力和稳定的基本要求。总的来说,没有一个固定的标准来评判桥梁体系的优劣,但在确定桥梁体系时仍需要多方面 因素进行考虑。 2 桥梁结构体系的研究、优化与创新 2.1 桥梁结构体系的研究 在桥梁结构体系的研究目的就是为了对一个完整结构的受力状态和特性有所 掌握,并对其进行优化处理,根据工程的需求进行改进,更好的实施。 桥梁结构体系的综合力学特性就是对各种桥梁形态进行力学分析,研究其适 用范围,为桥型的选择提供数据支撑,国内外研究者对此进行了大量的研究,并 得到了丰硕的成果。针对同一种桥梁类型的不同受力体系进行对比分析,得出各 个体系之间的受力共性和差异,因地制宜地选择最优的受力体系进行实施,桥梁 结构受力的状态可以从参数、新型桥梁体系受力性能和新材料的影响等方面进行

项目名称新型加速度传感器结构布局优化设计技术研究

项目名称:新型加速度传感器结构布局优化设计技术研究 所属单位:长沙理工大学汽机学院 新型加速度传感器结构布局优化设计技术研究 团队名称:梦路创业团队 所属高校:长沙理工大学 团队介绍 梦路创业团队是来自理工大学汽车与机械工程学院的专业创业团队,现拥有研究生6人,博士1人,博士生导师1人,个人情况见附表1。创业团队不怕吃苦,敢于拼搏,相信在不久的将来,我们会用自己的双手实现自己的创业梦想。 负责人简历 冯斌,男,1983年10生,中共党员,长沙理工大学汽机学院汽机学院07级载运工具运用工程专业研究生。06年于长沙理工大学测控技术与仪器专业毕业,后工作于湖南九天科技有限公司从事汽车仪器仪表开发。本科期间,努力学习,多次受到学校及湖南省奖励;在公司期间,研发团队获得公司明星团队称号。进入研究生阶段,参与国家863项目两项,申请获得湖南省“大学生创新性实验项目”课题一项,目前在研。 指导老师简历 荣见华, 男, 1963年7月生, 湖南岳阳人, 博士, 教授, 汽车与机械工程学院副院长。1989年3月进入中国飞机强度研究所工作。1992年10月-2000年7月担任中国飞机结构强度研究所振动研究室副主任, 1998年6月晋升研究员,2005年转评为教授。长期从事飞机振动结构动力学设计、结构分析与优化设计、考虑多约束的机翼/外挂系统颤振优化设计等理论、算法和应用研究工作, 参与了歼八三、歼十等型号飞机的研制工作。~年,作为访问学者,在澳大利亚墨尔本皇家理工大学、维多利亚理工大学从事考虑动力学要求的结构形状、拓扑的渐进结构优化的研究工作。主持与参加的多项部级预研项目均取得重大成果,作为主要参加者获国家科技进步二等奖一项。作为主持人获部级科技进步二等奖一项。2000年调入长沙理工大学,主要开展结构拓扑优化与静、动力学性能控制的研究工作。近年来,作为主持人和主要参加者完成了国家自然科学基金二项, 并主持完成了省部级重点研究项目二项。主持开发了一套SVDS-I型优化软件系统。在国内外期刊上发表论文共计53篇,其中二十一篇被SCI和EI收录。专着一本、合编着一本。在本课题中总体负责。

相关主题
文本预览
相关文档 最新文档