当前位置:文档之家› 北京科技大学铸造合金及制备工艺4.1-铸造铝合金-1

北京科技大学铸造合金及制备工艺4.1-铸造铝合金-1

北京科技大学铸造合金及制备工艺4.1-铸造铝合金-1
北京科技大学铸造合金及制备工艺4.1-铸造铝合金-1

铝合金的熔炼与浇铸

铝合金的熔炼与浇铸 6.5.1铝合金的性能及应用 铝合金是比较年轻的材料,历史不过百年,铝合金以比重小,强度高著称,可以说没有铝合金就不可能有现代化的航空事业和宇航事业,在飞机、导弹、人造卫星中铝合金所占比重高达90%,是铸造生产中仅次于铸铁的第二大合金,其地壳含量达7.5%,在工业上有着重要地位。 铝合金有良好的表面光泽,在大气及淡水中具有良好的耐腐蚀性,故在民用器皿制造中,具有广泛的用途。纯铝在硝酸及醋酸等氧化性酸类介质中具有良好的耐蚀性,因而铝铸件在化学工业中也有一定的用途。纯铝及铝合金有良好的导热性能,放在化工生产中使用的热交换装置,以及动力机械上要求具有良好导热性能的零件,如燃机的汽缸盖和活塞等,也适于用铝合金来制造。 铝合金具有良好的铸造性能。由于熔点较低(纯铝熔点为660℃,铝合金的浇注温度一般约在730~750℃左右),故能广泛采用金属型及压力铸造等铸造方法,以提高铸件的在质量、尺寸精度和表面光洁程度以及生产效率。铝合金由于凝固潜热大,在重量相同条件下,铝液的凝固过程时间延续比铸钢和铸铁长得多,其流动性良好,有利于铸造薄壁和结构复杂的铸件。 铸造铝合金的分类、牌号: 铝合金按照加工方法的不同分为两大类,即压力加工铝合金和铸造铝合金(分别以YL和ZL表示)。在铸造铝合金中又依主要加入的合金元素的不同而分为四个系列,即铸造铝硅合金、铸造铝铜合金、铸造铝镁合金和铸造铅锌合金(分别以 ZL1X X,ZL2 X X,ZL3 X X和ZL4 X X表示),在每个系列中又按照化学成分及性能的不同而分为若干牌号。表1中列出了铸造铝合金国家标准所包括的几种铝合金的牌号。 6.5.2 铝合金的熔炼设备

北京科技大学2018年《534专业综合》考研大纲_北科大考研论坛

北京科技大学2018年《534专业综合》考研大纲 一、考试性质与范围 适用于“机械工程”、“车辆工程”等专业硕士研究生的入学考试,为复试科目。包含《机械制图》、《机械设计》、《机械制造工艺基础》、《自动控制原理》等四部分内容,为专业综合考试。 二、考试基本要求 全面掌握机械类(含机械工程、车辆工程等)专业的基础理论,理解和熟练掌握课程的重点内容,具备运用课程知识、方法解决问题的能力。 三、考试形式与分值 1.笔试,闭卷。 2.满分为150分,四部分内容各约占25%。 3.可携带尺、计算器等。 四、考试内容 第一部分机械制图 1、各种位置直线、平面的投影特性 2、常见回转体(圆柱、圆锥、球)截交线、相贯线的分析作图 3、组合体的画法、尺寸标注、识图方法 4、机件的表达方法 (1)视图表达:基本视图、向视图、局部视图、斜视图的画法和标注; (2)剖视图表达:剖视图的概念,全剖、半剖、局部剖的画法与标注; (3)断面表达:断面图的概念,移出断面与重合断面的画法与标注; (4)简化画法及规定画法。 5、标准件(螺纹及螺纹连接件、键、销、滚动轴承)的规定画法和标记方法 6、圆柱齿轮的基本参数、尺寸关系和规定画法 7、零件图 零件的表达方案确定;零件图的尺寸标注;表面粗糙度;极限与配合;零件常见工艺结构;零件图的绘制和阅读。 8、装配图 装配图的规定画法、特殊画法;常见装配结构;掌握阅读装配图的方法和步骤,能看懂中等复杂程度的装配图,并拆画零件图。 第二部分机械设计 1、机械设计总论 机械零件疲劳强度理论,机械零件的材料和热处理。 2、摩擦磨损与润滑 摩擦磨损和润滑的分类;液体动压润滑行成条件。 3、柔性传动(带传动和链传动) 传动特点及应用;传动设计计算;张紧。 4、齿轮传动 齿轮失效形式;齿轮材料及许用应力;计算载荷;齿轮受力分析及强度计算; 5、蜗杆传动 失效形式及材料选择;受力分析及强度计算;热平衡计算。 6、轴 轴的受力分析与分类;轴的强度计算。

A356铸造铝合金生产工艺流程

A356铸造铝合金生产工艺流程 目录 第一章概述 第一节铝合金的定义、性质和用途 第二节铝合金的分类及表示方法 第三节 A356合金的成分、组织和性能 第四节 A356合金的生产设备 第二章 A356合金的生产工艺 第一节 A356合金的生产工艺流程第二节熔炼 (1)铝熔体的特点 (2)铝熔体的精炼与净化 (3)熔炼工艺参数对铸锭质量的影响 第三节铸造 (1)铸造方法的分类 (2)铸造原理 (3)铸造工艺参数对铸锭质量的影响 第四节熔铸工艺 (1)配料工艺 (2)熔炼工艺 (3)铸造工艺 (4)取样工艺

第三章 A356合金常见缺陷及预防措施 第一节化学成分 第二节外观质量 第三节低倍针孔度 (1)针孔的定义与分类 (2)针孔形成的原因 (3)形成气孔的H2来源 (4)预防针孔形成的工艺措施 第一章概述 第一节铝合金的定义、性质和用途 所谓铝合金就是在工业纯铝中加入适量的其他元素,使铝的本质得到该善,以满足工业上和人们生活中的各种需要。由于其比重小,比强度高,具有良好的综合性能,因此,被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器皿制造等方面。 第二节铝合金的分类及表示方法 铝合金可分为两大类:变形铝合金和铸造铝合金,变形铝合金要先铸成锭,用于压延或拉伸,如:管、棒和板等;铸造铝合金,用于铸造固定铸件,如:活塞、汽缸和支架等。 变形铝合金牌号的表示方法大致有两种: 1、国家标准

用第一个字母L表示工业纯铝或铝合金,(取铝的汉语拼音第一个字母)。 第二个字母表示铝合金类别,下面几个字母分别表示: G——工业高纯铝 F——防锈铝合金 Y——硬铝合金 C——超硬铝合金 D——锻造铝合金 T——特殊铝合金 字母后面的数字表示该类合金的序号。如LF3表示3号防锈铝合金;LD2表示2号锻造铝合金;LY12表示12号硬铝合金;LC4表示4号超硬铝合金;LT21表示21号特殊铝合金。 2、引用美国四位数铝合金牌号表示方法,作为国家标准第一位数字表示铝合金系列,如: 1XXX 表示纯铝 2XXX 表示AL-Cu系合金 3XXX 表示AL-Mn系合金 4XXX 表示AL-Si系合金 5XXX 表示AL-Mg系合金 6XXX 表示AL-Mg-Si系合金 7XXX 表示AL-Zn系合金 8XXX 表示AL和其它元素的合金 9XXX 表示尚未使用的系列 最后两位数字表示某种具体的铝合金或铝的纯度,第二位数字表示对原来的合金或杂质范围的修改。 铸造铝合金牌号的表示方法:

铝合金铸造技术篇

国兴金属制品有限公司教育训练教材 铝合金铸造技术篇 一、前言: 铝合金为目前使用极为广泛的一种金属。在铸造上而言,不论重力铸造,砂模铸造、压铸精密铸造┄等各种铸造方法均可见到大量的铝合金铸件,由于这些方法铸造,其原因乃在于铝合金具有质量轻、机械质优良、耐腐蚀、美观以及机械加工容易等优点。因而不仅大量使用于一般生活用品,例如:运输工具、通信器材、运动器材料、家庭五金┄等商业用途上,亦大量使用于航空太空载具及武器系统等军事装备。 铝合金铸造技术的发展时间,已有数十年历史,由于机械设计及加工观念的改变与要求以及机械设计的日趋复杂,加上新的合金不断的被发展出来,部份的铸造用铝合金机械强度甚至超过一些锻造用铝合金,如A201、A206等,因而铸造的重要性再度被肯定,在铸造一般生活用品时,铝合金的铸造并非一困难工作,但要铸造高品质的铸件时,则铝合金的铸造就非想象中的容易。 影响铸件品质的要素有八点,例如:铸造方案的设计,材料的选择以及铝水的品 质等,其中铝水的品质,则系熔炼的工作。 二、熔炼设备 熔炉: 铝合金熔炼用的炉子,以热源区分,可分为两个主要的种类:燃料及电力。 在使用燃料的熔炉中,则又分为油炉及瓦斯两种。 而电力炉则可区分为反应炉及电阻炉。 在选择炉子时,值得考虑的因素甚多,例如:熔解量的多寡;能源的价格;原始设备的成本,安装的价格,设备维护的难易,厂房设施配合;以及产品的种类。就一般铝合金铸造的:由于铝件的重量有限,为求操作上的方便,以及成本的考虑,绝大部份均系采用坩锅炉(目前已大量改用连续炉)。 以不同加热方式的炉子而言,使用油炉或气炉,或可降低成本。但是,不论油炉或电炉,均有机会增加铝水中的氢气量。一般而言,在使用油炉时,所使用的燃油中带含有10-20%的水气,对气炉而言,例如瓦斯不包含空气之中,因温度而含的水分,而仅计算燃烧所产生水蒸气,至少在消耗气体量的两倍以上。而不论使用燃油或瓦斯气体为热源时,燃烧后产生的水气,必然是包围着熔解炉。因此,可想而知的是氢气 的来源必然可观。 三、铝汤处理之目的: 在铝汤有由原材料在熔解过程中发生的氢气或氧化物等非金属介在物之外,尚含钠碱

铝合金铸造工艺简介

铝合金铸造工艺简介 一、铸造概论 在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下: 由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。 1、铝合金铸造工艺性能 铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1) 流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。 (2) 收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在

铝合金的熔炼规范

铝合金的熔炼规范 适用于重力铸造和压铸用铝硅合金(包括Al-Si-Mg、Al-Si-Cu等)指导性文件:《铝合金的熔炼规范》。 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T9438-1999《铝合金铸件》、JISH5202-1999《铝合金铸件》、ASTMB108-03a《铝合金金属型铸件》、GB/T15115-1994《压铸铝合金》、JISH5302-2006《铝合金压铸件》、ASTMB85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T1196-2002《重熔用铝锭》 铝硅合金锭:GB/T8734-2000《铸造铝硅合金锭》 镁锭:GB3499-1983《镁锭》 铝铜中间合金:YS/T282-2000《铝中间合金锭》 铝锰中间合金:YS/T282-2000《铝中间合金锭》 各牌号的预制合金锭:GB/T8733-2000《铸造铝合金锭》、JISH2117-1984《铸件用再生铝合金锭》、ASTMB197-03《铸造铝合金锭》、JISH2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50%。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。

铝合金熔炼与铸造工艺规范与流程

铝合金熔炼与铸造工艺 规范与流程 Revised by Chen Zhen in 2021

铝合金熔炼与铸造工艺规范与流程 资料来源:全球铝业网铝业知识频道一、铝合金熔炼规范 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T 9438-1999《铝合金铸件》、JISH 5202-1999《铝合金铸件》、ASTM B 108-03a《铝合金金属型铸件》、GB/T 15115-1994《压铸铝合金》、JISH 5302-2006《铝合金压铸件》、ASTM B 85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T 1196-2002《重熔用铝锭》

铝硅合金锭:GB/T 8734-2000《铸造铝硅合金锭》 镁锭: GB 3499-1983《镁锭》 铝铜中间合金:YS/T 282-2000《铝中间合金锭》 铝锰中间合金:YS/T 282-2000《铝中间合金锭》 各牌号的预制合金锭:GB/T 8733-2000《铸造铝合金锭》、JISH 2117-1984《铸件用再生铝合金锭》、ASTM B 197-03《铸造铝合金锭》、JISH 2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50% 。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。 4)炉料预热 预热一般为350~450℃下保温2~4h。Zn、Mg、RE在200~250℃下保温2~4h。在保证坩埚涂料完整和充分预热的情况下,除Zn、Mg、Sr、Cd及RE等易燃材料外的炉料允许随炉预热。

北京科技大学铸造答案doc

习题五 班级姓名成绩 一、试对轴承盖铸件,选择两个可能的分型面,用符号表示在图上,并比较其优缺点,按你认为最好的分型面用符号表示出加工余量、拔模斜度和型芯轮廓,并指出造型方法。 材质:HT150 数量:单件生产 技术要求:保证φ126与φ90、φ74同心 二、如图所示的具有大平面的铸件,有下列几种分型面和浇注位置方案,合理的是( A )。 三、下图所示铸件为连接盘,试分析在单件小批生产时的分型面和浇注位置。

四、简述铸件选择分型面的一般原则,并在下图水管堵头的图中画出其合理的分型面位置。 五、试选择下图飞轮铸件的分型面和浇注位置,并说明理由。

分型面应往下移 六、标出下图所示铸件的最佳分型面和浇注位置,并简述理由。 七、下图铸件所示为轴承座,试分析在单件小批或成批生产时的分型面位置及造型方法。

八、何为零件图、铸件工艺图、木模图及铸型合箱图? 答:零件图:完整表达零件形状、尺寸和各种精度的工程图。 铸件工艺图:在零件图上表达出铸件形状、尺寸和各种铸造工艺过程的图。 木模图:从铸件工艺图上扒下的、用于表达做铸型的木模的形状和尺寸的图。 铸型合箱图:从铸件工艺图上扒下的、用于表达包括浇注系统在内的铸型合箱后的图。 九、通常,砂型铸造的浇注系统有哪几部分组成,其功能是什么? 答: 浇注系统的组成:①外浇口②直浇口③内浇口④横浇口 浇注系统功能:①平稳地将金属液充满型腔,避免冲坏型壁和型芯; ②挡住熔渣进入型腔 ③调节铸件的凝固顺序 十、何为特种铸造?常用的特种铸造有哪四种?各适合生产什么铸件? 答: 特种铸造:砂型铸造以外的铸造方法的统称。 常用特种铸造有:金属型铸造、熔模铸造、压力铸造和离心铸造四种;它们分别适合大批低熔点金属铸件、结构复杂不切削小型铸件、大批小型低熔点有色铸件和大批瓦类或套类铸件。 习题六 班级姓名成绩

北京科技大学焊接答案doc

习题九 班级姓名成绩 一、焊接方法分类如何?手工电弧焊属于哪一类?为什么? 答:焊接方法分类:熔化焊,压力焊,钎焊。 手工电弧焊属于熔化焊。 因为有填充金属,其熔化后形成熔池,熔池凝固形成焊缝。 二、从减少焊接应力的角度考虑,拼焊如图所示的钢板时,应怎样确定焊接顺序?试在图中标出,并说明理由。 答:先焊接短的焊缝;再焊接长的。 三、焊接应力产生的根本原因是什么?减少和消除焊接应力的措施有哪些? 答:金属材料具有热胀冷缩的基本属性。由于焊件在焊接过程中是局部受热且各部分材料冷却速度不同,因而导致焊件各部分材料产生不同程度的变形,引起了应力。焊接时局部加热是焊件产生应力与变形的根本原因。 减小焊接应力的工艺措: (1)选择合理的焊接顺序;设计时,焊缝不要密集交叉,截面和长度也应尽可能小。(2)预热法即在焊前将工件预热到350~400℃,然后再进行焊接。预热可使焊接金属和周围金属的温差减小,焊后又比较均匀地同时缓慢冷却收缩,因此,可显著减小焊接应力,也可同时减小焊接变形。 (3)焊后退火处理这也是最常用的、最有效的消除焊接应力的一种方法。整体退火处理一般可消除80%~90%的焊接应力。

四、制造如图所示的卧式贮罐,壁厚为16mm,人孔直径450mm,人孔管高250mm,排污管120×10(mm),原材料是16Mn(化学成分为0.16%C,1.4%Mn。0.4%Si),钢板尺寸2000×5000×16(mm)生产数量:3台 1.画出贮罐外表图,并表示出焊接缝布置。(接管焊缝不标) 2.选择下表所列的焊接方法、接头型式和坡口形状 3.简述石油贮罐的组装和焊接顺序 答:1)焊接筒身纵想焊缝; 2)焊接筒身的环焊缝及两边的封头; 3)焊接人孔和排污管。 五、阐述电弧焊的冶金特点: 答:答:电弧焊的冶金过程特点①焊接电弧和熔池金属的温度远高于一般的冶金温度,氧化、吸气、蒸发现象严重;②熔池体积小,周围又是温度低的冷金属,熔池处于液态的时间很短,冷却速度极快,冶金反应不完全,易产生气孔、夹渣等缺陷;焊件形成较大的热应力。

6063铝合金熔炼生产工艺手册

6063铝合金熔炼生产工艺手册 本文由全球铝业网 (https://www.doczj.com/doc/671454445.html,) 编辑,转载请注明出处,十分感谢! 一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、0.45-0.9%的镁、铁的最高限量为0.35%,其余杂质元素(Cu、Mn、Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。 6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和 Mg2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示:在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶于基体中的Mg2Si 越多,时效后的合金强度就越高,反之,则越低,如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg2Si的最大溶解度是1.85%,在 500℃时为1.05%,由此可见,温度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温度不够或外热内冷,造成型材淬火温度太低所致。 在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如果合金中有过剩的镁(即Mg:Si>1.73),镁会降低Mg2Si在铝中的固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响,由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择 6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易得到光亮的表面。 另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂漆)造成麻烦。 2.杂质元素的影响

铸造铝合金的熔炼(一)

铸造铝合金的熔炼(一) 铝合金熔炼的内容包括配料计算,炉料处理,熔炼设备选用,熔炼工具处理及熔炼工艺过程控制。 熔炼工艺过程控制的内容包括正确的加料次序。严格控制熔炼温度和时间、实现快速熔炼、效果显著的铝液净化处理和变质处理及掌握可靠的铝液炉前质量检测手段等。 熔炼工艺过程控制的目的是获得高质量的能满足下列要求的铝液: 1)化学成分符合国家标准,合金液成分均匀; 2)合金液纯净,气体、氧化夹杂、熔剂夹杂含量低。 3)需要变质处理的合金液,变质良好。 据统计因熔炼工艺过程控制不严而产生的废品中,如渗漏、气孔、夹渣等,主要原因是合金液中的气体、氧化夹渣、熔剂夹渣未清除所引起。因此在确保化学成分合格的前提下,熔炼工艺过程控制的主要任务是提高合金液的纯净度和变质效果。 1.铝合金的炉料 1.1炉料组成 炉料由新金属、中间合金、回炉料及重熔回炉料组成。 1.1.1 新金属 国标中可查到新金属的牌号、等级、纯度及用途,是炉料的主要组成,纯度高,可用来稀释回炉料中带入的杂质含量。 1.1.2 中间合金 为便于加入某些难熔合金元素,如铜、锰、硅等,或成分严格控制的元素如锑、锶、稀土等,需预先与纯铝制成中间合金。对中间合金的要求是:熔点和铝掖温度接近,合金元素比例尽可能高,化学成分均匀,冶金质量好,易于破碎,配料称重等。熔制中间合金的方法有直接熔化法和铝热法。 1.1.3 回炉料 回炉料可分成三类。第一类包括成分合格的报废铸件、浇冒口等,可直接使用;第二类包括小毛边、浇口杯中剩余的金属、冲压车间的边角料等,需重熔成再生合金锭,方能使用;第三类包括熔渣、切屑、炉底残渣及化学成分不合格又无法调整的废金属,如铁含量较高,需经专业化的冶金厂重熔成再生合金锭。 回炉料具有遗传性。遗传的内容包括有“纯度遗传”和“组织遗传”两种。纯度高、晶粒细的炉料遗传质量高,熔制的合金质量也会高,有时比等级较低的新金属熔制的合金质量更好。 1.2 配料计算 配料计算的任务是按照指定的合金牌号,计算出每一炉次的炉料组成及各种熔剂的用量。计算的依据是:新金属料、回炉料、中间合金的化学成分和杂质含量,各元素的烧损率,每一炉次的投料量等。一般有两种计算方法:(1)按投料量计算;(2)按铝锭重量即新金属重量计算。 2.炉料处理 炉料的合理保存及管理对于保证合金的质量有很重要的意义。在熔炼中一般均设有专门的炉料仓库,由专人负责管理。各种不同的炉料按种类、成分、品级分别存放,每批炉料均必须附有成分化验单,只有这样才能保证配料时化学成分的准确性。对于浇冒口废铸件等回炉料,如系直接回炉使用,则应按炉次分别堆放,浇冒口中的铁质过滤网在回炉前应予除掉。各种炉料安放处应保证干燥,如炉料受潮而腐蚀,则在装炉前应进行吹砂以除去表面腐蚀层。 3.炉料的加入次序

铝合金熔炼工艺流程和操作工艺

铝合金熔炼工艺流程和操作工艺(一) 装料 熔炼时,装入炉料的顺序和方法不仅关系到熔炼的时间、金属的烧损、热能消耗,还会影响到金属熔体的质量和炉子的使用寿命。装料的原则有: 1、装炉料顺序应合理。正确的装料要根据所加入炉料性质与状态而定,而且还应考虑到最快的熔化速度,最少的烧损以及准确的化学成分控制。 装料时,先装小块或薄片废料,铝锭和大块料装在中间,最后装中间合金。熔点易氧化的中间合金装在中下层。所装入的炉料应当在熔池中均匀分布,防止偏重。 小块或薄板料装在熔池下层,这样可减少烧损,同时还可以保护炉体免受大块料的直接冲击而损坏。中间合金有的熔点高,如AL-NI和AL-MN合金的熔点为750-800℃,装在上层,由于炉内上部温度高容易熔化,也有充分的时间扩散;使中间合金分布均匀,则有利于熔体的成分控制。 炉料装平,各处熔化速度相差不多这样可以防止偏重时造成的局部金属过热。 炉料应进量一次入炉,二次或多次加料会增加非金属夹杂物及含气量。 2、对于质量要求高的产品(包括锻件、模锻件、空心大梁和大梁型材等)的炉料除上述的装料要求外,在装料前必须向熔池内撒20-30kg粉状熔剂,在装炉过程中对炉料要分层撒粉状熔剂,这样可提高炉体的纯洁度,也可以减少损耗。 3、电炉装料时,应注意炉料最高点距电阻丝的距离不得少于100mm,否则容易引起短路。 熔化 炉料装完后即可升温。熔化是从固态转变为液态的过程。这一过程的好坏,对产品质量有决定性的影响。 A、覆盖 熔化过程中随着炉料温度的升高,特别是当炉料开始熔化后,金属外层表面所覆盖的氧化膜很容易破裂,将逐渐失去保护作用。气体在这时候很容易侵入,造成内部金属的进一步氧化。并且已熔化的液体或液流要向炉底流动,当液滴或液流进入底部汇集起来时,其表面的氧化膜就会混入熔体中。所以为了防止金属进一步氧化和减少进入熔体的氧化膜,在炉料软化下塌时,应适当向金属表面撒上一层粉状熔剂覆盖,其用量见表。这样也可以减少熔化过程中的金属吸气。 覆盖剂种类及用量 炉型及制品电气熔炼煤气炉熔炼 覆盖剂用量普通制品特殊制品普通制品特殊制品 (占投量) /% 0.4-0.5 0.5-0.6 1-2 2-4 覆盖剂种类粉状熔剂 Kcl:Nacl按1:1混合 B、加铜、加锌 当炉料熔化一部分后,即可向液体中均匀加入锌锭或铜板,以熔池中的熔体刚好能淹没住锌锭和铜板为宜。 这时应强调的是,铜板的熔点为1083℃,在铝合金熔炼温度范围内,铜是溶解在铝合金熔体中。因此,铜板如果加得过早,熔体未能将其盖住,这样将增加铜板的烧损;反之如果加得过晚,铜板来不及溶解和扩散,将延长熔化时间,影响合金的化学成分控制。 电炉熔炼时,应尽量避免更换电阻丝带,以防脏物落入熔体中,污染金属。 C、搅动熔体 熔化过程中应注意防止熔体过热,特别是天然气炉(或煤气炉)熔炼时炉膛温度高达1200℃,在这样高的温度下容易产生局部过热。为此当炉料熔化之后,应适当搅动熔体,以使熔池里各处温度均匀一致,同时也利于加速熔化.

铝合金铸造方式

离心铸造 一、概述 离心铸造是将液体金属浇入旋转的铸型中,使液体金属在离心力的作用下充填铸型和凝 固形成的一种铸造方法。 为实现上述工艺过程,必须采用离心铸造机创造使铸旋转的条件。根据铸型旋转轴在空间位置的不同,常用的有立式离心铸造机和卧式离心铸造机两种类型。 立式离心铸造机上的铸型是绕垂直轴旋转的(图1),它主要用来生产高度小于直径的圆环类铸件,有时也可用此种离心铸造机浇注异形铸件。 卧式离心铸造机的铸型是绕水平轴旋转的(图2),它主要用来生产长度大于直径的套 类和管类铸件。 图1 立式离心铸造示意图 图1 立式离心铸造示意图 1-浇包 2-铸型 3-液体金属 4-皮带轮和皮带 5-旋转轴 6-铸件 7-电动机 图2 卧式离心铸造示意图 1-浇包 2-浇注槽 3-铸型 4-液体金属 5-端差 6-铸件 由于离心铸造时,液体金属是在旋转情况下充填铸型并进行凝固的,因而离心铸造便具有下 述的一些特点:

1)液体金属能在铸型中形成中空的圆柱形自由表面,这样便可不用型芯就能铸出中空的 铸件,大大简化了套筒,管类铸件的生产过程; 2)由于旋转时液体金属所产生的离心力作用,离心铸造工艺可提高金属充镇铸型的能力,因此一些流动性较差的合金和薄壁铸件都可用离心铸造法生产; 3)由于离心力的作用,改善了补缩条件,气体和非金属夹杂也易于自液体金属中排出,因此离心铸件的组织较致密,缩孔(缩松)、气孔、夹杂等缺陷较少; 4)消除或大大节省浇注系统和冒口方面的金属消耗; 5)铸件易产生偏析,铸件内表面较粗糙。内表面尺寸不易控制。 离心铸造的第一个专利是在1809年由英国人爱尔恰尔特(Erchardt)提出的,直到二十世纪初期这一方法在生产方面才逐步地被采用。我国在三十年代也开始利用离心管、筒类铸件如铁管、铜套、缸套、双金属钢背铜套等方面,离心铸造几乎是一种主要的方法;此外在耐热钢辊道、一些特殊钢无缝纲管的毛坯,造纸机干燥滚筒等生产方面,离心铸造法也用得很有成效。目前已制出高度机械化、自动化的离心铸造机,已建起大量生产的机械化离心铸管车间。 几乎一切铸造合金都可用于离心铸造法生产,离心铸件的最小内径可达8毫米,最大直径可达3m,铸件的最大长度可达8m,离心铸件的重量范围为几牛至几万牛(零点几公斤至十多 吨)。 二、离心铸造工艺 1)离心铸型转速的选择 选择离心铸型的转速时,主要应考虑两个问题:(1)离心铸型的转速起码应保证液体金属在进入铸型后立刻能形成圆筒彩,绕轴线旋转;(2)充分利用离心力的作用,保证得到良好的铸件内部质量,避免铸件内产生缩孔、缩松、夹杂和气孔。 采用砂型离心铸造时,也要注意忽使液体金属对型壁具有太大的离心压力而引起铸件粘 砂胀砂等的缺陷。 2)离心铸造用铸型 离心铸造时使用的铸型有两大类,即金属型和非金属型。非金属型可为砂型、壳型、熔模壳型等。由于金属型在大量生产、成批生产时具有一系列的优点,所以在离心铸造时广泛地采 用金属型。 卧式悬臂离心铸造机上的金属型按其主体的结构特点可分为单层金属型和双层金属型两种。在单层金属型中,型壁由一层组成,单层金属型结构简单,操作方便,但它损坏后需要制作新的铸型才能开始生产,在此铸型中只能浇注单一外径尺寸的铸件。而在双层金属型中,型壁由两层组成,铸件在内型表面成形。双层金属型结构虽复杂性,但只要改变内型的工作表面尺寸就可浇注多种外径尺寸的离心铸件。长期工作后,只需更换结构较简单的内型就可把旧铸型当作新 的铸型使用。

铝硅合金的熔炼

铝硅合金的熔炼 冶金1班:郑伟1143081004 前言:从20世纪韧铝合金用于铸造工业以来,合金的成分有了很大的发展,合金的品种越来越丰富。早期使用的铸造铝台金含t3%2n和3%cu。这种合金在第一次世界大战前后用量很大,后来由于金屑型铸造的发展而被铝铜合金取代。同时,铝硅台金开始得到应用.铝镁合金也随之推出。 1919年,美国生产的铝合金铸件,97%以上由含8%cu的铝合金铸造。1933年,用这种合金生产的铸件仍占铝合金铸件的50%左右。除了在铸态下使用的合金外,后来又开发出可以热处理的铝锅台金,含大约4%cu o 随着金屑型铸造和压铸工艺的发展,铝硅合金得到广泛应用。近年来,在铸造领域应用的铝合金,除了铝硅系列合金之外,还有铝锅系列、铝镁系列、铝锌系列和其他系列的铝合金。在这些系列的合金中,除了少数的二元合金外,大多数都是添加多种合金元素的多元合金。 摘要:铝硅合金熔炼性质工艺流程 正文: 铝硅系列合金具有良好的铸造性能,较小的线胀系数,耐磨性能好,气密性也很好。这种合金被广泛地应用于铸造复杂的铸件,如汽车发动机铸件等。 铝的国家标准 铸造铝合金生产中所用的铝包括电解原铝重熔用铝锭和一定数量的再生铝。有些牌号的铸造铝合金要以电解原铝为原料,有些牌号则可以用大部分再生铝和小部分电解原铝作原料.有些牌号甚至可以完全用再生铝作原料。 电解原铝是用冰品石—氧化铝熔融盐电解法生产的。自中华人民共和国成立以来,我国的电解铝工业从无到有p生产技术和铝产量都有很大发展。1999年我国铝的总产量已达265万吨,跃居世界第三位,仅次于美国和俄罗斯。2003年我国铝的总产量达到542万吨,居世界首位。但是.我国铝的人均占有量还很少。 硅的国家标准 我国工业硅必须符合国家标憋哪288l一91,工业硅厂工业硅的内控标准如表2.4,2.5所示。

北京科技大学液态成形理论与工艺复习题答案10-19

第10讲铸件的宏观组织 1、简述铸件典型晶粒组织包括哪几部分?各部分的形成机理各是什么? 2、固相无扩散、液相均匀混合。假设右图PQ线是C S’(T1时固相成分)与界面处固相成分C S*的算术平均值,试证:C S"= C0(2-k0) 3、如何在铸件中获得细等轴晶组织? 第11讲砂型铸造 1、试述砂型铸造的特点和应用范围。 第12讲、第13讲特种铸造 1、金属型铸造有何优点? 2、熔模铸造的主要工艺过程包括哪些工序?该方法有何特点? 3、试述压力铸造、低压铸造与差压铸造各自的特点。试分析三者的异同。 4、什么是离心铸造?它有何优缺点?它应用在什么场合? 5、什么是实型铸造?该方法有何特点? 第14讲常用铸造合金与液态成形新工艺 1、为什么球墨铸铁的强度和塑性比灰铸铁高,而铸造性能比灰铸铁差? 答:①灰铸铁中的片状石墨的强度、硬度极低(Rm≤20MPa),塑性接近于零,因此灰铸铁的组织如同在钢的基体中分布着大量裂纹,同时石墨尖角处容易造成应力集中,容易导致铸件断裂。所以灰铸铁的强度和塑韧性较差。球墨铸铁通过球化处理使石墨呈球状,它对基体的缩减和割裂作用减至最低限度,基体强度的利用率可达70~90%,因此球墨铸铁具有比灰铸铁高得多的力学性能。②因为灰铸铁的碳当量接近共晶成分,结晶温度范围小,并呈逐层凝固方式结晶,因而其流动性好,铸造性能好;而球墨铸铁的碳当量较高,一般是过共晶成分,结晶温度范围较宽,倾向于糊状凝固,在结晶后期外壳不坚固,不足以承受本身石墨化的膨胀压力,促使型腔扩大,故它比灰铸铁易于产生缩孔、缩松、皮下气孔、夹渣等缺陷,因而铸造性能比灰铸铁差。 2、铸钢与球墨铸铁的力学性能和铸造性能有哪些不同?为什么? 答:①一般而言,铸钢具有较高的强度与塑韧性,其力学性能比铸铁好。而球墨铸铁中的石墨呈球状,它对基体的缩减和割裂作用减至最低限度,基体强度的利用率可达70~90%,抗拉强度可以和钢媲美(Rm=400-900MPa),塑韧性较好(A=2%~18%)。②铸钢的铸造性能比球墨铸铁差,因为:其熔点高,钢液易氧化;流动性不好;收缩较大,体收缩率为10~14%,线收缩率为2.2~2.5%。球墨铸铁结晶时由于石墨析出发生体积膨胀而可以抵消部分收缩,使总收缩较小。 3、为什么可锻铸铁只适宜生产薄壁小铸件?壁厚过大易出现什么问题? 答:可锻铸铁具有较高的力学性能,其碳、硅含量低(W C=2.4~2.8%,W Si=0.4~1.4%),熔点较高,流动性差、收缩大,因为其铸态组织为白口(碳以化合态Fe3C存在),没有石墨化

北京科技大学机械工程材料与成形工艺(机械)期末复习总结

工程材料与成形技术基础概念定义原理规律小结 一、材料部分 材料在外力作用下抵抗变形和断裂的能力称为材料的强度。 材料在外力作用下显现出的塑性变形能力称为材料的塑性。 拉伸过程中,载荷不增加而应变仍在增大的现象称为屈服。拉伸曲线上与此相对应的点应力σ , S 称为材料的屈服点。 称为材料的抗拉强度,它表明了试样被拉断前所能承载的最大应力。 拉伸曲线上D点的应力σ b 硬度是指材料抵抗其他硬物压入其表面的能力,它是衡量材料软硬程度的力学性能指标。一般情况下,材料的硬度越高,其耐磨性就越好。 韧性是指材料在塑性变形和断裂的全过程中吸收能量的能力,它是材料塑性和强度的综合表现。材料在交变应力作用下发生的断裂现象称为疲劳断裂。疲劳断裂可以在低于材料的屈服强度的应力下发生,断裂前也无明显的塑性变形,而且经常是在没有任何先兆的情况下突然断裂,因此疲劳断裂的后果是十分严重的。 工艺性能是指金属材料接受某种加工过程的难易程度。主要是铸造性能;锻造性;焊接性;热处理性能;切削加工性。 晶体的结构:在晶体中,原子(或分子)按一定的几何规律作周期性地排列;晶体表现出各向异性;具有的凝固点或熔点。而在非晶体中,原子(或分子)是无规则地堆积在一起。常见的有体心立方晶格、面心立方晶格和密排六方晶格。体心立方晶格的致密度比面心立方晶格结构的小。 晶体的缺陷(低要求):1)点缺陷2)线缺陷3)面缺陷 1)点缺陷—空位和间隙原子 在实际晶体结构中,晶格的某些结点,往往未被原子所占据,这种空着的位置称为空位。同时又可能在个别空隙处出现多余的原子,这种不占有正常的晶格位置,而处在晶格空隙之间的原子称为间隙原子。 2)线缺陷—位错 晶体中,某处有一列或若干列原子发生有规律的错排现象,称为位错。其特征是在一个方向上的尺寸很长,而另两个方向的尺寸很短。晶体中位错的数量通常用位错密度表示,位错密度是指单位体积内,位错线的总长度。 3)面缺陷——晶界和亚晶界 实际金属材料是多晶体材料,则在晶体内部存在着大量的晶界和亚晶界。晶界和亚晶界实际上是一个原子排列不规则的区域,该处晶体的晶格处于畸变状态,能量高于晶粒内部,在常温下强度和硬度较高,在高温下则较低,晶界容易被腐蚀等。 结晶概念:1、凝固:物质由液态转变成固态的过程;2、结晶:物质由液态转变成固态晶体的过程;3、理论结晶温度与实际结晶温度之差成为过冷度。(实际液态金属的结晶总是在有过冷度的条件下才进行的。) 金属的结晶都要经历晶核的形成和晶核的长大两个过程。 晶粒大小与性能之间的关系:一般情况下,晶粒越小,其强度、塑性、韧度越好。 晶粒大小的控制方法: 1)提高冷却速度,增加过冷度, 2)增加形核的数量,从而细化晶粒; 3) 针对大体积的液态金属进行变质处理或者孕育,加入人工晶核(非自发形核); 4)采用机械振动、超声波振动、电磁搅拌等,使枝晶破碎。

铸造铝合金熔炼工艺

铸造铝合金熔炼工艺 1工艺适用范围本熔炼工艺适用于砂型和金属型铸造ZL101A 合金的熔炼,可针对于重力铸造、低压铸造、倾转浇注、调压铸造等成型工艺使用。 本工艺可作为ZL101A 合金熔炼的母工艺,针对某一特定的成型工艺,如需特殊指出,可在此工艺基础上形成相应熔炼工艺,但不允许与母工艺相互冲突。 2工艺文件的抄报与保存工艺文件抄报、抄送范围:总师、副总师、技术部、质量部。工艺文件保存范围:电子文件备份和纸质文件送档案室保存,技术部、质量部各存一份使用文件。 3工艺详细内容 3.1熔炼设备、工具的选择及对后续熔炼质量的影响 3.1.1铝合金料熔化设备规定使用熔炼设备范围为:坩埚电阻炉,燃气连续熔化炉。对于金属型铸造可采用两种熔炼设备,使用燃气连续熔化炉熔化铝液,然后转包到坩埚电阻炉进行后续处理(精炼及变质);也可使用坩埚电阻炉熔化铝液及进行后续处理(精炼及变质)。 如采用金属型低压铸造、调压铸造成型工艺,可使用侧面开口注入铝液的机下炉进行连续生产。 采用坩埚电阻炉熔化铝液,铝液温度控制750℃以下,熔化过程的铝液吸气较少;采用燃气连续熔化炉熔化铝液,铝液温度控制容易超750℃,熔化过程的铝液吸气倾向较大。

3.1.2熔炼工具的选择及准备 熔炼前熔炼工具的准备对铝液熔炼质量影响较大,坩埚采用石墨及SiC 材质,使用前需进行预热烘干,烘干工艺如图1;如采用金属材质坩埚,最好选用不锈钢材质,如选用铸铁材质坩埚,以合金球墨铸铁为好。常用的浇包、浇勺等多采用不锈钢制作。 及工具进行喷砂处理,去除表面的铁锈及污物,然后预热到120~180 ℃,逐层喷涂,浇包、浇勺的涂料厚度0.3~0.8mm 为宜,坩埚涂料可稍厚一些。涂料最好选用专用的金属型非水基涂料,也可自行配制,基本配方如表1 所示,使用前涂料需预热到50~90 ℃。 表1 涂料配方 3.1.3炉料的存放与处理, 熔炼所使用的炉料需存放在干燥、不易混淆和污染的地方,铝

铝合金熔炼浇铸工艺分析

铝合金熔炼浇铸工艺分析 铝合金的熔炼与浇注是铸造生产中主要环节。严格控制熔炼与浇铸的全过程,对防止针孔、夹杂、欠铸、裂纹、气孔以及缩松等铸造缺陷起着重要的作用。由于铝熔体吸收氢倾向大,氧化能力强,易溶解铁,在熔炼与浇铸过程中必须采取简易而又谨慎的预防措施,以获得优质铸件。 熔炼: 熔炼铝合金在能源使用上分为传统燃料(煤、燃油、燃气)与电力加热,在热传递上分为辐射导热和感应加热。 坩埚式热电阻炉和熔池式的反射炉都属于辐射导热,坩埚式热电阻炉是通过辐射传递热量,导热效率低,内部溶液不流动,成分不容易均匀;有的会在原基础上加电磁搅拌装置,造价比较昂贵。熔池式反射炉使用燃煤,燃气,燃油,导热效率通过不断的工艺改进已经较高,但其更适合大量持续产出铝水,因其属于持续生产,会导致成分不稳定。 中频感应电炉是通过磁场转换感应加热,对空气的污染小,热量的损耗也小,是比较理想的加热方式,加热效率高,速度快,同时炉内有电磁扰动,铝水在内部产生对流,成分比较均匀。经过和同事交流得知,我们目前设计的产线将生产多种产品,规格相差较大,且产量相对较低,考虑到铝水量要求有限,但品质要求较高,非常适合使用中频感应电炉来参与铝水的熔炼。 中频感应电炉型号多样技术成熟,可根据我方具体需求采购相应容量和功率的炉体。 浇铸: 铝合金熔体易吸氧,因此我们应尽可能的让熔体避免与空气的接触。在工艺体现上应尽量减少熔炼和浇铸的时间,避免熔体的转包,避免在空气流通良好的环境下实施浇注作业等。 因本人在铝合金铸造上见识有限,只能根据个人的经验谈一些见解,减少空气接触的问题上,中频感应电炉熔炼期间可以加装炉盖,取料和调制精炼时都可以由观察口进行,必要时可以通氮气保护。浇铸方案上可采取1.流水线过熔炉口,直接炉体倾转就可实施浇铸作业。2.用保温铝水包转运;这样就灵活多了,既可以采用沙型固定,移动铝水包进行浇铸,也可以采用铝水包固定,移动沙型线进行浇铸。根据我方沙型种类较多,个人认为移动铝水包进行浇铸的方案较易实现自动化浇铸。3.铝熔体进入熔池型保温炉,通过浇道对流水线上沙型进行浇铸,这个比较适合持续性浇铸。考虑到我方对快速持续性浇铸没有需求,故比较推荐第1和第2方案,方案1排除任何空气干扰,铝水品质应该最好,但因其沙型规格较多实现起来比较困难。第2方案通过转运铝水包可较好的解决浇铸困难,同时也可实现快速连续浇铸。

铝合金熔炼与铸造工艺规范与流程

铝合金熔炼与铸造工艺规范与流程 资料来源:全球铝业网铝业知识频道一、铝合金熔炼规范 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T 9438-1999《铝合金铸件》、JISH 5202-1999《铝合金铸件》、ASTM B 108-03a《铝合金金属型铸件》、GB/T 15115-1994《压铸铝合金》、JISH 5302-2006《铝合金压铸件》、ASTM B 85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T 1196-2002《重熔用铝锭》 铝硅合金锭:GB/T 8734-2000《铸造铝硅合金锭》 镁锭: GB 3499-1983《镁锭》 铝铜中间合金:YS/T 282-2000《铝中间合金锭》 铝锰中间合金:YS/T 282-2000《铝中间合金锭》 各牌号的预制合金锭:GB/T 8733-2000《铸造铝合金锭》、JISH 2117-1984《铸件用再生铝合金锭》、ASTM B 197-03《铸造铝合金锭》、JISH 2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50% 。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。 4)炉料预热 预热一般为350~450℃下保温2~4h。Zn、Mg、RE在200~250℃下保温2~4h。在保证坩埚涂料完整和充分预热的情况下,除Zn、Mg、Sr、Cd及RE等易燃材料外的炉料允许随炉预热。 (3)精炼剂准备 ①铝合金的精炼一般采用六氯乙烷、DSG铝合金除渣除气剂、铝精炼剂ZS-AJ 01C等精炼剂。 ②六氯乙烷使用前,置于熔炉旁预热。

相关主题
文本预览
相关文档 最新文档