当前位置:文档之家› 气象数据一体化平台设计方案

气象数据一体化平台设计方案

气象数据一体化平台设计方案
气象数据一体化平台设计方案

项目编号:RJ20150020

气象数据一体化信息服务平台

设计方案

2016年1月

南京助事达软件科技有限公司

气象数据一体化平台-设计方案

目录

1概述 (3)

1.1背景与预期 (3)

1.2建设内容 (4)

2设计方案 (5)

2.1系统架构 (5)

2.1.1.平台总体架构图 (5)

2.1.2.数据流概览 (6)

2.2分布式解析引擎 (6)

2.2.1.分布式解析引擎概述 (6)

2.2.2.分布式解析设计架构 (7)

2.3气象分布式数据库设计 (12)

2.3.1.气象一体化平台分布式数据库设计概述 (12)

2.3.2.分布式数据库设计架构 (15)

2.4气象资料云服务引擎 (17)

2.4.1.应用授权机制 (17)

2.4.2.授权认证机制 (17)

2.4.3.服务请求基础参数体系建立 (17)

2.5服务版本管理体系建立 (18)

2.5.1.版本管理设计 (18)

2.5.2.建立服务API帮助文档 (18)

1概述

1.1背景与预期

针对以往基础数据库建设分散、标准不统一、服务能力差等问题,按照“系统集成,数据集中,资源集约,功能完善,突出特色”的思路,经过两年半的努力,依托江苏预报业务一体化平台项目建设,初步建成全省统一的基础数据环境,有效提高了信息资源的利用率和数据服务能力,为本省率先实现气象现代化提供了有力支撑。

信息中心在全省气象信息业务建设的基础上,先后出台几十项标准或规范,为一体化体系提供标准支撑,完善了我省气象信息的标准规范体系;优化数据传输流程,时效性可靠性提升显著,省内区域自动站可实现60秒内、雷达数据8分钟之内、省际共享上海市区域自动站100秒内到达预报员桌面;通过“软CAST”同步机制,省市间数据实现了秒级流转;完成了自动站、土壤水份、精细化等50多类数据的解析入库,数据解析的种类和覆盖范围在不断扩充,确保了数据的完整性、一致性。架设全省云平台实现硬件资源的统一管理与分配,达到资源集约化、应用多样化的目标。

为进一步提高和增强气象数据服务能力,科学准确的做好数据服务工作,结合前期预报业务一体化平台使用和市县推广应用情况,在气象数据传输、数据存储和数据应用方面,提出诸多改进措施和方案,旨在不断的提高气象数据服务能力和质量。

1.2建设内容

根据江苏气象现代化发展的需求,在现有工作基础上,进一步完善全省基础资源配置和管理,开展智能化、个性化的基础数据环境信息服务平台的设计和开发,继续优化各类基础资料的收集处理流程,做好统一数据环境在市县的推广应用,着手开展适合本省的实时质量控制方法研究和质控系统的设计和开发工作,提高数据服务质量。通过建立团队协作机制,联合进行数据处理和信息技术应用开发,建立数据规范;完成实时/历史数据库设计、解码和入库。

2设计方案

2.1系统架构

2.1.1.平台总体架构图

图表1平台总体架构图

2.1.2.数据流概览

图表2数据流概览

2.2分布式解析引擎

2.2.1.分布式解析引擎概述

气象资料的来源有多种,包括上百种类型的气象资料报文、各个业务系统产出的气象服务产品、来自于CIMISS的数据资料等等。由于资料种类繁多、场地分散、解析入库方式及质量参差不齐等等各种问题的存在,同样为了满足集中管理、统一标准的业务目标需求,我们最终使用了气象数据分布式解析引擎来实现其各种功能。

2.2.2.分布式解析设计架构

图表3分布式解析设计架构

分布式解析云的核心主要由四个部分组成:

a)解析云服务

主要通过实时发布远程对象的方式为各个功能域提供分进程间信息共享平台。共享的远程对象主要包括:报文资源文件夹监控对象、分布式解析器运行时对象、服务全局控制对象、智能化解析配置对象、全局报文解析组件适配对象等。

实质:远程对象以信道作为发布渠道,来进行客户端和服务器之间的通信。信道包括客户端的信道部分和服务器的信道部分。

发布的内容以消息作为载体,消息包含远程对象的信息、被调用方法的名称以及所有的参数。

图表4分布式客户端与服务间通信原理

报文资源文件夹监控对象:

每种资源文件都存储在一个或多个文件夹中,当有新的文件加入时解析云自动将待解析的文件加入到解析资源池(即任务队列)。当分布式解析器中有存在空闲的解析器时,此解析器则会自动向服务申请一个解析任务。

之后,当一个任务被解析器处理完毕后,其就会从任务队列中自动删除,同时将相对应的原始数据文件自动移动到已处理文件目录下面。

分布式解析器运行时对象:

每个报文解析器分别部署在一个或多个服务器上,那么各个解析器运行状态的管理就十分的重要。为了满足全局监控,定向管理的目标,云解析平台将分布式解析器运行时对象作为各功能域内部可见的全局对象进行发布。即各个解析器运行后自动向云服务发送注册请求,云服务接受请求后则将此解析器加入到解析器队列中用于后期的监控及管理。

服务全局控制对象:

主要负责服务的启动、暂停、重启以及重新加载配置文件等工作。

智能化解析配置对象:

此对象主要为分布式解析引擎提供解析知识库,为了实现解析组件的可插拔我们将智能解析配置对象也作为全局对象进行发布。可以从云解析管理器中对其内容进行更改,更改后云服务自动通知各个解析器接下来的解析工作使用新的解析知识库进行报文识别及智能解析。

全局报文解析组件适配对象:

为了使报文的识别实现动态化扩展,我们将解析适配器对象进行全局发布,当云解析管理器对解析适配器信息进行更改后云解析服务将自动应用新的解析适配方案。所有的分布式解析器都使用云解析服务提供的统一解析适配器进行解析适配工作,所以当云服务的适配器方案改变后各个解析器自动使用新的方案进行适配工作。

b)云解析管理器

云解析管理器是云解析服务的一个客户端,主要用于辅助云解析服务工作,为云解析服务提供可视化操作界面。如云解析服务提供的各个实时对象的管理及运行时参数的维护管理等工作都在云解析器中进行操作。

如报文解析组件适配信息配置、智能化解析知识库配置、分布式客户端监控、资源池监控、解析组件配置、数据源配置、运行日志管理等。

c)分布式解析引擎

分布式解析引擎是云解析服务的运算核心,所有类型的数据都通过此引擎进行解析运算。报文解析引擎由三大支撑组件(数据类型识别组件、智能化解析组件和解析组件适配器)和解析组件池组成。

数据类型识别组件:

数据类型识别组件主要对当前申请到的解析资源进行自动识别,主要通过数据文件名、数据段特殊标记以及其他特性化配置方式进行识别。数据类型被识别后向解析引擎反馈此文件的解析适配标识。

解析组件适配器:

解析组件适配器主要将数据类型识别组件反馈的解析适配标识进行适配,并从解析组件工厂中构造一个适合此适配标记的解析组件智能化解析组件:

智能化解析组件主要将智能解析知识库中的信息翻译成解析器能

够识别的信息结构,并将此信息结构提供给解析组件进行报文解析。

解析组件池:

由一系列报文解析组件组成,如重要天气报解析组件、A文件解析组件、高空资料解析组件、自动站解析组件等等。每个解析组件都遵从解析引擎的报文解析流程,最终完成报文的解析。报文解析流程如下:

图表5报文解析流程

d)分布式解析器

分布式报文解析器主要有如下几个特性:

1.分布式:即此解析器可以在多台服务器上同时运行,同样也可以在一台服务器上运行多个实例。

2.可扩展性:解析器中搭载的是解析组件引擎,而解析组件队列可

在远程服务中直接获取,所以当云解析服务更新组件配置或加入新的解析组件时各个解析器同时受益。

3.并行计算:每个解析器的都在独立的进程中进行运算,所以当多个解析器同时对解析任务池中的任务进行解析时大大缩短了解析的时间缩短,提高解析效率。

4.可管理性:每个解析组件运行后首先会注册到解析云服务,同时解析云服务会将此信息反馈给解析服务管理器,管理器收到信息后将此解析组件加入到本地的可视化解析组件管理列表中,对其进行实施监控。当一个解析器出错或强行退出时,解析云自动注销其消息订阅事件,并通知解析云服务管理器,管理器从管理列表中将此解析器移除,或提醒管理员此解析器已下线。

2.3气象分布式数据库设计

2.3.1.气象一体化平台分布式数据库设计概述

从目前江苏省气象信息的数据结构及分布情况分析,我们的数据属于异构数据库。即现有的数据使用了多个DBMS,如SQL Server,Oracle等。由于各种气象资料较为繁杂,存储的数据结构也不尽相同。

所以我们建立的分布式数据库管理架构不但要解决分布式存储的问题还需要解决异构数据库的问题。

本架构设计的核心原理是通过分布式数据服务全局共享数据节点索引对象。并使用分布式数据库管理引擎来对各个数据节点进行高

效的存取操作。

数据索引需要建立在一个全局共同遵守的标准之上,这个标准中规定了在不同数据分片场景下各个数据节点应共同包含或通过逻辑映射的方式包含相应的属性。如在水平分片场景下,各个数据节点应共同拥有日期属性,日期属性可分为(年、月、旬、候、时间)等多个分类方式。如同属于年分类的场景下,则需要共同拥有年属性。

如在垂直分片场景下,各个数据节点应共同拥有要素类型属性。

分布式存储的核心问题是对数据分片和数据分配方式,分片的方式分为水平分片、垂直分片、导出分片和混合分片。

水平分片:即按一定的条件把全局关系的所有元组划分成若干不相交的子集,每个子集为关系的一个片段。根据分析我们可以通过时间节点对数据进行水平分片。

垂直分片:即把一个全局关系的属性集分成若干子集,并在这些子集上作投影运算,每个投影称为垂直分片。如我们可以通过气象要素进行空间的垂直分片。

导出分片:又称为导出水平分片,即水平分片的条件不是本关系属性的条件,而是其他关系属性的条件。我们一般在特殊的数据应用场景中使用此分片方式。如对数据按站点所在的城市为条件进行数据分片,因站点所在的城市这个属性一般不在要素基本属性中存在,而是在站点信息关系表中存在,那么此种分片则称为导出分片。

混合分片:综合了以上三种分片方式进行数据分片。

数据分配方式分为:集中式、分割式、全复制式和混合式。

根据气象数据的特点我们建议采用分割式的数据分配方式,即所有数据只有一份,它被分割成若干逻辑片段,每个逻辑片段被指派在一个特定的场地上。同时服务器的磁盘阵列使用冗余磁盘阵列(RAID)的方式进行管理,并建议使用RAID10(即RAID 0+ 1)。

虚拟化技术

虚拟化是一种资源管理技术,是将计算机的各种实体资源,如服务器、网络、内存及存储等,予以抽象、转换后呈现出来,打破实体结构间的不可切割的障碍,使用户可以比原本的组态更好的方式来应用这些资源。这些资源的新虚拟部份是不受现有资源的架设方式,地域或物理组态所限制。一般所指的虚拟化资源包括计算能力和资料存储。

在实际的生产环境中,虚拟化技术主要用来解决高性能的物理硬件产能过剩和老的旧的硬件产能过低的重组重用,透明化底层物理硬件,从而最大化的利用物理硬件。

因为我们需要将数据节点存储在多个场地上,为了节约硬件产品,并充分利用硬件的计算资源以及存储资源,我们可以将一台工作站虚拟成多个存储场地。

2.3.2.分布式数据库设计架构

图表6分布式数据库总体设计方案

分布式数据库的核心模块分为:分布式数据库通讯服务(CM)、分布式数据库管理器(DDBMS)、云存储接口(Cloud Data API)、Data

Client、Data Query Standard Lib 和Data Save Standard Lib。

分布式数据库通讯服务:

负责在分布式数据库的各场地之间传送全局对象、消息和数据,完成通信功能。

图表7分布式查询核心原理图

核心的全局对象是分布式数据索引对象(Data Index Struct),每个分布式客户端上线后将自动注册到分布式数据库通讯服务,通讯服务自动将其加入到Distributed Client Stack中,同时根据客户端报送的数据节点名称,服务自动为其初始化局部数据库数据索引对象,并将关键索引存储为Hash Table的key-value模式。并为其订阅全局数据检索和数据保存事件等,当有数据检索请求时,服务通过并行化编

程技术使所有分布式客户端同时处理此事件,当某个分布式客户端处理发现本地索引中无相关key或不满足其数据分片条件时则直接退出响应。如果相关条件都在其索引范围内,则进行本地化数据查询操作,并将结果以Data Set的形式返回至事件源。所有并行流程执行完成后事件源将Data Set集反馈给查询者。

分布式数据库管理系统(DDBMS):

分布式数据库管理系统主要用于

2.4气象资料云服务引擎

2.4.1.应用授权机制

即每一个接入服务的应用都需要申请一个AppKey,此Key对应着一套数据访问授权,同时记录应用名称、开发者、软件功能等信息。

2.4.2.授权认证机制

即所有服务请求都必须提交AppKey,请求的数据访问权限都必须在此AppKey的权限框架下。

所有数据请求到达服务器端后进入统一的认证通道,认证通过后服务通过相关的请求参数反馈相应的数据,否则提示应用请求认证失败。

2.4.

3.服务请求基础参数体系建立

为规范化管理,每一个服务请求应能够包含部分基础请求参数,

如区域来源(如地区标记)、资料类型、返回值类型(JSON、XML、其他格式文件)、等。

2.5服务版本管理体系建立

为保障服务的可扩展性以及服务的兼容性,必须建立完善的版本管理体系。

2.5.1.版本管理设计

为保障后期服务功能的升级不会影响前期的使用,每一个服务的升级都对应一个不同的版本号。升级后的服务和升级前的服务都可以独立运行。并通过统一服务管理查询界面可以查询到每一个服务各个版本间升级的变化以及各个版本调用的参数列表。

2.5.2.建立服务API帮助文档

数据服务以REST架构为核心,REST的请求一般分为两种,即:GET和POST。

使用GET模式的请求仅需要定义完整的请求参数,使用者根据参数的描述建立相应的请求URL即可。

使用POST模式的请求需要提供相应的请求数据包格式,为保障外部应用的调用,API帮助文档中将给出各个服务的调用范式,并提供部分开发语言的调用Demo。

服务API帮助文档和对应的服务一同纳入版本管理,即同一服务的不同版本需要提供不同的帮助文档以帮助第三方应用能够顺利的

使用。

“新一代天气雷达信息共享平台”项目-中国气象局

中国气象局客户案例 中国气象局是国务院直属事业单位,成立于1949年12月。1994年由国务院直属机构改为国务院直属事业单位后,经国务院授权,承担全国气象工作的政府行政管理职能,负责全国气象工作的组织管理。 为了更好的满足气象、水利、航空、林业等各行业需求,实现对农村、沿海、重要江河流域、主要战略经济区和地质灾害易发区域的气象灾害监测,提高应对极端气象灾害的综合监测预警能力、抵御能力和减灾能力。同时避免民航、水利等其他部门对天气雷达观测网的重复建设,最大程度地发挥投资效益,在全国范围内共享天气雷达观测网信息,中国气象局“新一代天气雷达信息共享平台”项目应运而生。 建设信息共享平台遭遇双重挑战 为了满足新的业务发展需求,中国气象局需要使用支持天气雷达的信息共享平台来共享资源并且处理大量的气象数据。同时,该平台还要对各种类型的数据都具有很高的兼容性和可扩充性。然而,中国气象局的传统系统是以项目为导向的、单独的非标准化系统,无法提供所需的基础架构和应用系统来收集、处理、保存、共享集成的气象信息。如何实现规范化的数据管理和提供高效快捷的数据服务,成为建设信息共享平台过程中遭遇的两大挑战。 挑战一:数据是气象业务中最核心、最宝贵的资源,是对大气的一份历史记录,具有不可再生性。随着卫星、雷达、自动站等气象综合观测系统的迅速发展,每年数据的增长 量都高达100TB以上量级。同时,数据规范性不高,数据标准不统一。如何对海量 数据进行规范、有效的存放、管理成为首要问题。 挑战二:由于国家级与省级之间的数据交换途径多样化,气象数据的各类用户使用数据接口、FTP、Web等多种方式获得所需的各类气象数据和产品,数值天气预报模型需 要同时给结构化及非结构化形式的信息提供强大支持。如何提供高效快捷的数据服 务成为建设信息共享平台过程中遇到的又一大挑战。 IBM助力打造智慧的信息共享平台 经过对系统安全性、稳定性、可扩展性等多方面的考量,中国气象局最终选择了IBM high-performance computing(HPC)平台来构建“新一代天气雷达信息共享平台”。在IBM Power 服务器、IBM通用并行文件系统(GPFS)和高性能计算系统(HPC:High Performance Computing system)的有效应用下,大大提高了气象数据模型的处理速度,并使国家气象局计算系统运算能力得到了有效提升,整体预报分析处理能力也达到了更高的水平,可以为公众提供更精准,更全面的气象服务。目前,国家气象局可以按照需要,生成不同省市未来一周每日的天气情况,并帮助确保气象问题得以快速检测,获得不同维度的各类量化数据和指标,可将单一特定气象资料库的平均搜索时间缩短高达3分钟,并且将雷达信息的平均生成时间缩短6分钟。 IBM解决方案提供三层云环境–基础架构即是服务、平台即是服务、软件即是服务。通过集成IBM通用并行文件系统与Tivoli Storage Manager软件,项目组创建了可以调节的统

航空气象信息服务系统

航空气象信息服务系统 建设方案 XXX科技股份有限公司 2012年3

目录 1.1建设背景 (1) 1.2系统概述 (1) 1.3主要功能 (1) 1.3.1通告预警 (2) 1.3.2气象资料收集处理 (2) 1.3.3气象报文 (2) 1.3.4飞行文件 (2) 1.3.5卫星云图 (3) 1.3.6雷达图像 (3) 1.3.7自动观测 (3) 1.3.8传真图 (3) 1.3.9航空预告图管理 (3) 1.3.10台风路径图 (4) 1.3.11系统管理 (4) 1.4系统特点 (4) 1.4.1实用性 (4) 1.4.2提高企业形象 (5) 1.4.3提高安全保障水平 (5)

1.1 建设背景 近年来,随着航空事业迅速发展,我国新一代航空运输系统的目标之一是全面、系统地提高天气观测和预报水平,大大减少天气对飞行的影响。在此框架下,我公司将建设航空气象信息服务系统,气象信息将从单一的业务辅助系统的角色向着面向地区,面向预报过程,面向决策支持的气象数据搜集的综合信息服务系统,此系统建成将大大降低天气对飞行的影响。 气象信息服务系统是行业用户获取气象信息的平台,该系统对各种气象数据和产品进行了整合并提供有效的分析,同时融合了各种相关的用户业务流程和工作习惯,减少用户操作,避免错忘漏的发生。系统实现气象信息传递、交换、处理的电子化,推进企业办公自动化、公文交换无纸化、管理决策网络化,人道服务电子化,,节约办公经费、提高办公效率和提升办公质量,为推进航空事业发展提供保障。建成后的系统将为各航空公司和其它专业用户提供统一的服务接口,为区域管制中心运行的保障服务,飞行流量管理、航空公司集中运行控制、机场运行管理的服务等相关决策提供理论依据。 1.2 系统概述 航空气象信息服务系统是为航空气象部门、管制部门、航空公司及机场指挥部门等提供航空气象信息服务的综合性航空专业气象业务系统。其功能主要包括实现气象中心发布短期天气预警的功能,实现航空报文的检索显示,实现飞行气象文件提取,实现各种气象资料的检索显示,实现预报产品的检索显示,并完成用户的权限控制管理和系统配置参数的管理。 1.3 主要功能

气象站点数据插值处理流程

注:下面的为之前做的方法(7-以后不用做),里面的参数与现在的有出入,自己找到区域内站点,插值过程如下。 气象站点数据插值处理流程 1气象站点数据整理 Excel格式,第一行输入字段名称,包括站点名称、x经度(lon)、y纬度(lat)、平均气温、平均风速、相对湿度、平均日照时数。其中经纬度需换算为度的形式,其它数据换算为对应单位。 2excel气象数据转为shape格式的矢量点数据插值分析 (1)打开Arcgis,添加excel气象站点数据。打开LC_Ther10-11_16m合并_warp_裁剪BIL1.00_cj重采样6066_经纬度.img,打开边界.shp,三个应该能叠加在一起 (2)在arcgis内容列表中右键单击excel表,选择“显示XY数据”,设置X、Y字段为表中对应经-x、纬-y度字段,编辑坐标系,设置为气象站点经纬度获取时的坐标系,这里为地理坐标系WGS84。(图中错了,按上述,要不就换下一下XY对应的经纬度试一试看看形状对就可以了) (3)导出为shape格式的点数据。右键单击上一个步骤中新生成的事件图层,单击“数据-导出数据”。需注意导出数据的坐标系应选择“此图层的源数据”。

(4)设置Arcgis环境。在“地理处理”菜单下单击“环境”,在环境设置窗口中选择“处理范围”,选择一个处理好的遥感数据(LC_Ther10-11_16m合并_warp_裁剪BIL1.00_cj重采样6066_经纬度.img,主要是参考该遥感数据的行数和列数)。再选择“栅格分析”,按下图设置插值的分辨率为“0.0045”,掩膜文件设置为边界2/LC_Ther10-11_16m合并_warp_裁剪BIL1.00_cj重采样6066_经纬度.img。注意:生成出来的是否有坐标系,插值-环境-输出坐标系-与**相同 (5)气象站点数据插值。在toolbox中选择工具箱“Spatial Analyst————反距离权法”,默认12个数据参与运算,“Z值字段”分别选择平均风速、平均气温、相对湿度,直接输出,不要改输出路径名字。再导出数据。在差值分析界面最下栏也有环境,进去设置,注意经纬度显示位置是经纬度投影的投影坐标系,UTM不能用 (6)数据转换为image格式。上步骤中得到的插值栅格数据是Arcgis格式的栅格格式(grid格式),该格式envi识别不了。右键单击插值数据选择“数据—导出数据”,设置导出数据格式为image。 (7)再用envi claas 转换为UTM投影 (8)UTM 设置参数:datum:(原来为North America 1927)改为为WGS84, zone 49。 E: 719614.2770 N: 4100314.6180 X/Y PIXEL: 16.0 meter output x size: 8723 output y size: 6066

《大数据云气象》阅读练习及解析答案

大数据云气象 ①我们平时从电视、报纸、网站或手机上获取的看似简单的天气预报,其背后却有着极其庞杂的数据采集和分析作支撑。用现在时髦的话来说,天气预报是经过“云计算”得到的 大数据产品。 ②为了获取精确的气象预报,气象部门历来都会收集大量数据,组成超大的“数据库”。这些数据来自一个庞大的观测网络。目前,全国有 2 000多个地面站、120多个高空探测站、6颗在轨卫星、5万多个自动监测站、600多个农业检测站、300多个雷达站等,逐日逐小时甚至逐分钟对不同地点、不同高度的各种气象要素进行监测。仅在贵州,每天就有85个气象站、3万多个区域自动气象站、7部新一代多普勒天气雷达、2个探空雷达站对贵州境内 的各种气象要素进行实时监测。 ③随着预报业务的不断发展以及大数据、云计算的应用,这些数据变得更加精密,数量也持续增加,气象预报也变得越来越精确。现在,我们已经可以随时随地....通过电脑、手机、 电视、网站等查询天气预报,其精度甚至可以精确到一公里...、一小时 ...以内。 ④早晨起床后,穿薄的还是厚的衣服?要不要进行晨练?长假期间是否要外出旅游?旅 游时需要带哪些随身物品……如何选择,天气预报会为你提供有效的参考。 ⑤随着各行各业对气象信息的需求越来越大,气象部门还需要针对不同领域、不同行业、不同群体制作相应的气象产品,包括面向社会群体的公众气象服务,面向水利、电力、交通、农业以及其他部门或企业的专业专项服务,以及针对干旱、暴雨、森林火险、雷电等灾害性天气的气象灾害预报预警服务等。 ⑥比如说能源,可以通过分析电力负荷历史加上气象数据进行用电量估算;农业方面, 通过某一地的农耕历史与相关气候信息,就可以指导农户进行农作物种养殖结构调整;还有交通,航班准点率历史加上机场历史天气特征,就可以得到航班延误预测……这些日益丰富 的气象产品构成了气象大数据的重要部分,让我们的生活变得更加丰富、便捷。 ⑦当气象邂逅大数据,气象大数据将大有作为,它必将更大程度地减轻灾害损失,为社会创造更多的财富,为人们带来更加美好的生活。 (1)第②段主要运用了________和________的说明方法,作用是________。 (2)阅读第④⑤⑥段,你认为下面这句话放在其中哪段的开头合适?为什么? 更精细、更准确、更长时效的天气预报让我们日常生活中的衣食住行变得更加便捷。 答:________________________________________________________________________ ________________________________________________________________________ (3)分析下列句子中加点词语的表达效果。 现在,我们已经可以随时随地 ....通过电脑、手机、电视、网站等查询天气预报,其精度甚 至可以精确到一公里 ...以内。 ...、一小时 答:________________________________________________________________________

国家气象中心气象信息共享门户系统技术方案

国家气象中心气象信息共享门户系统 技术方案

1项目概况 随着国家气象中心天气预报业务精细化水平的发展,预报产品不断丰富,对外辐射能力不断增强。现有业务流程中存在的业务系统部署多,业务系统之间彼此独立,数据到产品缺乏统一的管理系统,协调能力不足等问题,已无法满足当前快速发展的现代化天气业务的需求。气象信息共享门户将在国家气象中心现有业务基础上建立完善业务流转与控制体系,优化中心的预报服务业务流程,提高数据流转和产品利用效率,减少预报服务过程中的人为干预,降低中间环节的复杂度与出错率,增强预报服务协同能力,推进预报和服务业务系统的建设应用,促进天气监视、预报及决策服务平台专业化发展,为国家气象中心现代天气发展及服务能力提升打下良好基础。同时将建立业务系统规范和数据规范,建立标准化的数据和服务,对预报员、服务人员和业务管理人员身份、权限进行数字化的管理,对国家气象中心主要预报、服务业务系统的运行、数据流转状态等实现实时监视,实现对整个中心业务系统的数据衔接与流转控制,实现对预报员身份信息、准入系统信息、业务监控信息、产品流转状态、任务调度等所有实时信息的显示和统计分析,实现预报产品和服务产品的分发控制,并增强国家气象中心互联网展示气象产品的水平。 2业务需求分析 2.1 业务现状分析 国家气象中心是全国天气预报的国家级中心,也是世界气象组织亚洲区域气象中心、核污染扩散紧急响应中心,其前身中央气象台,成立于1950年3月1日。50多年来,国家气象中心有了巨大发展。国家气象中心的气象服务包括为党中央、国务院和有关政府部门制订指导国民经济发展、组织指挥防灾减灾科学决策所需气象信息的决策气象服务,通过电视、广播、报纸、网站等媒介为公众提供公益气象服务,向国家重点工程、企事业单位趋利避害组织生产所需的专业

气象资料业务系统(MDOS)操作平台业务流程汇总

气象资料业务系统(MDOS 操作平台业务流程一、地面自动站观测资料上传 按业务规定上传国家级测站实时地面气象分钟数据文件、小时数据文件、日数据文件、日照数据文件、 (辐射数据文件。 每日定时观测后, 登录 MDOS 平台查看本站数据完整性, 对缺测时次及时补传。 二、疑误信息处理与反馈 台站配置应值班手机,用于接收台站疑误信息短信;值班手机要保证 24小时开机,手机号码变动应及时向省级管理部门上报。 台站对疑误信息的反馈包括定时反馈、被动反馈和更正数据反馈。 (1定时反馈:在每日定时观测后,登录 MDOS 操作平台,查询本站国家站和区域站未处理疑误信息并反馈。保证疑误数据在下一次定时观测前完成反馈。 A:国家站数据质控信息处理——台站处理与反馈——台站未处理 B:区域站数据质控信息处理——台站处理与反馈——台站未处理 台站级数据处理:处理并反馈省级提交给台站的疑误查询信息。包括 3种处理流程: 流程 1:确认数据无误→处理完成。 流程 2:确认数据错误→修正(给出修改值→处理完成。流程 3:批量数据为缺测→处理完成。 (2被动反馈:收到疑误信息短信和电话后,实时登录 MDOS 操作平台反馈; 接到显性错误短信后, 先核对显性错误数据值, 检查相应观测仪器, 查明可能引起出现错误数据的原因, 并及时进行相关数据处理和观测仪器维护等工作。对省级转交台站

处理的疑误信息, 及时查明原因, 通过 MDOS 操作平台进行数据处理和反馈。台站在 收到疑误信息 12小时之内完成反馈。守班时段应急响应期间, 接收到疑误短信或电话后 1小时内进行反馈。 (3更正数据反馈:对台站本地更正过的数据要及时向省级进行反馈,更正报时效内的数据既可通过“ MDOS 数据查询与质疑”功能主动填报反馈, 也可发送更正报 进行修改;时效外的数据可通过 MDOS 平台的“数据查询与质疑”进行修改。 三、台站变动登记 包括变动信息登记(名称,台站号,级别,观测时间,机构,位置,要素, 仪器,障碍物,守班,其他 ,图像、观测记录和规范。 四、台站附加信息登记 (1备注信息登记,通过选择记录年月,事件类型,填入具体内容后,点击即可完成登记。 (2若该台站同一时间同一事件类型已经有记录内容,选择记录年月,事件类型后,具体内容文本框会显示已经填写登记的内容,用户可以直接修改后提交。 (3一般备注事件,本月天气气候概况,图像、观测记录和规范操作参照纪要信息登记方法。 五、产品下载与保存 A 、 J 文件在 MDOS 平台“功能菜单”中的“产品制作与数据服务”下的“ A 、 J 、 Y 文件管理”模块中下载。 每月 6号前将下载后的 A 、 J 文件上传至 10.79.3.18/xj/zdzh/目录下,上传后的文件如有变更请及时进行更新。

气象大数据资料

1 引言 在气象行业内部,气象数据的价值已经和正在被深入挖掘着。但是,不能将气象预报产品的社会化推广简单地认为就是“气象大数据的广泛应用”。 大数据实际上是一种混杂数据,气象大数据应该是指气象行业所拥有的以及锁接触到的全体数据,包括传统的气象数据和对外服务提供的影视音频资料、网页资料、预报文本以及地理位置相关数据、社会经济共享数据等等。 传统的”气象数据“,地面观测、气象卫星遥感、天气雷达和数值预报产品四类数据占数据总量的90%以上,基本的气象数据直接用途是气象业务、天气预报、气候预测以及气象服务。“大数据应用”与目前的气象服务有所不同,前者是气象数据的“深度应用”和“增值应用”,后者是既定业务数据加工产品的社会推广应用。 “大数据的核心就是预测”,这是《大数据时代》的作者舍恩伯格的名言。天气和气候系统是典型的非线性系统,无法通过运用简单的统计分析方法来对其进行准确的预报和预测。人们常说的南美丛林里一只蝴蝶扇动几下翅膀,会在几周后引发北美的一场暴风雪这一现象,形象地描绘了气象科学的复杂性。运用统计分析方法进行天气预报在数十年前便已被气象科学界否决了——也就是说,目前经典的大数据应用方法并不适用于天气预报业务。 现在,气象行业的公共服务职能越来越强,面向政府提供决策服务,面向公众提供气象预报预警服务,面向社会发展,应对气候发展节能减排。这些决策信息怎么来依赖于我们对气象数据的处理。

气象大数据应该在跨行业综合应用这一“增值应用”价值挖掘过程中焕发出的新的光芒。 2 大数据平台的基本构成 2.1 概述 “大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。 从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘(SaaS),但它必须依托云计算的分布式处理、分布式数据库(PaaS)和云存储、虚拟化技术(IaaS)。 大数据可通过许多方式来存储、获取、处理和分析。每个大数据来源都有不同的特征,包括数据的频率、量、速度、类型和真实性。处理并存储大数据时,会涉及到更多维度,比如治理、安全性和策略。选择一种架构并构建合适的大数据解决方案极具挑战,因为需要考虑非常多的因素。 气象行业的数据情况则更为复杂,除了“机器生成”(可以理解为遥测、传感设备产生的观测数据,大量参与气象服务和共享的信息都以文本、图片、视频等多种形式存储,符合“大数据”的4V特点:Volume(大量)、Velocity(高速)、

气象信息系统的构成

镇江高等职业技术学校毕业论文设计 气象信息系统构成 院系名称:信息系 专业:计算机应用技术 班级: 1109 学生姓名:史弘俊 指导老师:刘欢笑 日期:2015 年12月28日

目录 一、摘要 (1) 二、气象信息系统的构成 (3) 2.1 通信系统 (4) 2.1.1 通信系统的组成 (4) 2.1.2 通信系统的分类 (5) 三、网络系统 (6) 四、高性能计算机系统 (7) 五、数据管理和服务系统 (8) 六、信息共享平台 (9) 七、总结 (10) 八、致谢 (11) 九、参考文献 (12)

气象信息系统构成 专业班级:1109 学生姓名:史弘俊 指导老师: XXX 职称:XXXX 摘要:气象信息系统是气象信息与技术保障体系的组成部分,是气象业务的公共技术 基础支撑系统,主要包括通信与网络、高性能计算机、信息存储与共享、数据处理与管理、探测数据质量控制、气象仪器与观测方法研究、气象技术装备管理、气象仪器的计量检定、技术保障等。气象信息交流是现代气象业务的基础系统和支撑系统。他主要包括:通信网络、数据存储管理与共享服务,高性能计算机交流等,信息交流作为气象信息的传输,存储管理、计算机处理,资源共享的基础设施,其发生是气象现代化水平的重要标志之一,并直接影响到气象业务部门和广大用户能否及时快速的获取和发送国内外气象信息,关系到气象能否为各级政府,国民经济国防建设等提供优质气象服务,气象信息交流的发展经受到其他气象业务交流发展的驱动,又制约着其他系统的快速发展。 目前气象部门内的气象信息系统主要由通信系统、网络系统、计算环境、数据管理与服务几个部分组成。 关键词:通信系统网络系统高性能计算系统数据管理与服务

气象数据处理流程

气象数据处理流程1.数据下载 1.1.登录中国气象科学数据共享服务网 1.2.注册用户 1.3.选择地面气象资料 1.4.选择中国地面国际交换站日值数据 选择所需数据点击预览(本次气象数据为:降水量、日最高气温、日最低气温、平均湿度、辐射度、积雪厚度等;地区为:黑龙江省、吉林省、辽宁省、内蒙古) 下载数据并同时下载文档说明 1.5.网站数据粘贴并保存为TXT文档 2.建立属性库 2.1.存储后的TXT文档用Excel打开并将第一列按逗号分列 2.2.站点数据处理 2.2.1.由于站点数据为经纬度数据 为方便插值数据设置分辨率(1公里)减少投影变换次数,先将站点坐标转为大地坐标并添加X、Y列存储大地坐标值后将各项数据按照站点字段年月日合成总数据库 (注意:数据库存储为DBF3格式,个字段均为数值型坐标需设置小数位数) 为填补插值后北部和东部数据的空缺采用最邻近法将漠河北部、富锦东部补齐2点数据。

2.2.2.利用VBA程序 Sub we() i = 6 For j = 1 To 30 Windows("").Activate Rows("1:1").Select Field:=5, Criteria1:=i Field:=6, Criteria1:=j Windows("").Activate Rows("1:1").Select Windows("book" + CStr(j)).Activate Range("A1:n100").Select Range("I14").Activate ChDir "C:\Documents and Settings\王\桌面" Filename:="C:\Documents and Settings\王\桌面\6\" & InputBox("输入保存名", Title = "保存名字", "20070" + CStr(i) + "0" + CStr(j)), _ FileFormat:=xlDBF4, CreateBackup:=False SaveChanges:=True Next j End Sub 将数据库按照日期分为365个文件 3.建立回归模型增加点密度 由于现有的日辐射值数据不能覆盖东三省(如图),需要对现有数据建模分析,以增加气象数据各点密度。 已有数据10个太阳辐射站点,为了实现回归模型更好拟合效果,将10个样本全部作为回归参数。利用SPSS软件建模步骤:

气象信息系统

“气象信息系统”系统设计说明书 文件状态:[ ] 草稿[√] 正式发布[ ] 正在修改文件标识 当前版本 1.0.0 作者 完成日期2011年12月5日 版本历史 版本/状态修订人修改日期备注 第一部分概述 1、文档说明 本文档描述“气象信息”系统的设计文档,系统使用面向对象的设计方法,首先设计系统的总体结构,再设计各个用例的实现。 2、系统需求概述 气象工作人员在工作中需要查阅和管理如下信息:天气(晴、多云、阴、小雨(雪)、大雨(雪)、暴雨(雪)、雾等)、温度、湿度、空气质量状况(优、良、轻度污染、重度污染)等信息。工作人员以“天”为单位发布信息,需要进行登录认证,对数据进行增加、删除、修改、查询等。普通用户无需登录即可直接进入系统查询天气情况,使用浏览器访问该系统。系统的用例图如图一所示: 气象业务管理系统 工作人员 登陆 退出 增加气象信息 删除气象信息 修改气象信息 查询气象信息 普通用户<> <> <> <> <> <> <> 发布气象信息 <> 图一:“气象信息系统”系统的用例图

第二部分 系统总体结构 系统设计时基于MVC 设计模型,采用三层架构,如图二所示。 图二:气象信息系统的体系结构 第三部分、系统设计 1、关键抽象 从需求中可以得出系统的如下关键抽象:气象工作人员、气象信息、普通用户。这些实体可以设计为JavaBean 类,例如气象工作人员具有这些属性:姓名、工作证号和出生日期等。工作人员和气象信息之间具有如下关系:一个气象工作人员可以增加、修改、删除、发布、查询气象信息,每天的气象信息可以被多个气象工作人员来操作更新;每天的气象信息包括天气、温度、湿度、空气质量等。而普通人员可以查询每日的气象信息。图三描述了系统的关键抽象,他们为系统的模型。 +setuserName()+getuserName()+setpassword()+getpassword() -userName : string -password : string -weatherworker +setdate()+getdate()+setweather()+getweather()+settemperature()+gettemperature()+sethumidity()+gethumidity()+setairQuality()+getairQuality() -date : string -weather : string -temperatuer : float -humidity : float -airQuality : string weatherinfo +getdate()+getweather()+gettemperature()+gethumidity()+getairQuality() commonperson 图3 “气象信息系统”关系模型 2、用例的设计 使用面向对象设计时,关键在于描述那些对象如何交互完成用例的功能,通常将对象发送消息的相互调用过程画成时序图。下面将逐一解释用例的时序图。

智慧气象大数据平台整体解决方案 气象局大数据平台整体解决方案

气象大数据平台 建 设 方 案

目录 第一章引言 (1) 第二章大数据平台的基本构成 (3) 2.1概述 (3) 2.2数据基础决定平台框架 (4) 2.2.1 从分类大数据到选择大数据解决方案 (4) 2.2.2 依据大数据类型对业务问题进行分类 (7) 2.2.3 使用大数据类型对大数据特征进行分类 (9) 2.3数据分类决定应用方案 (12) 2.4大数据平台的逻辑层次 (13) 2.4.1 大数据集成层 (14) 2.4.2 大数据存储层 (15) 2.4.3 大数据分析层 (15) 2.4.4 大数据应用层 (16) 第三章大数据平台的功能架构 (16) 3.1组件构成 (16) 3.1.1 横向层 (16) 3.1.1.1 大数据集成层 (16) 3.1.1.2 大数据存储层 (19) 3.1.1.3 分析层 (20) 3.1.1.4 使用层 (21) 3.1.2 垂直层 (23) 3.1.2.1 信息集成 (24) 3.1.2.2 大数据治理 (24) 3.1.2.3 服务质量层 (25) 3.1.2.4 系统管理 (27)

3.2功能应用 (28) 3.3原子模式 (28) 3.3.1 数据使用组件 (29) 3.3.1.1 可视化组件 (29) 3.3.1.2 即席发现组件 (30) 3.3.1.3 数据转储组件 (31) 3.3.1.4 信息推送/通知组件 (31) 3.3.1.5 自动响应组件 (32) 3.3.2 数据处理组件 (32) 3.3.2.1 历史数据分析组件 (32) 3.3.2.2 高级分析组件 (33) 3.3.2.3 预处理原始数据组件 (34) 3.3.2.4 即席分析组件 (35) 3.3.3 数据访问组件 (36) 3.3.3.1 web和社交媒体访问组件 (36) 3.3.3.2 物联网设备数据的访问组件 (39) 3.3.3.3 基础数据(观测数据和生产数据)的访问模式 (40) 3.3.4 数据存储组件 (41) 3.3.4.1 分布式非结构化数据存储组件 (41) 3.3.4.2 分布式结构化数据存储组件 (42) 3.3.4.3 传统数据存储组件 (42) 3.3.4.4 云存储组件 (42) 3.4复合模式 (43) 3.4.1 存储和探索复合组件 (43) 3.4.2 专业分析和预测分析组件 (44) 3.4.3 OLAP在线分析 (45) 3.4.4 原子模式和符合模式的映射 (46) 3.4.4.1.1 图 10. 将原子模式映射到架构层 (48) 3.5解决方案模式(模拟应用场景) (48)

气象大数据技术架构思路

气象大数据应用技术架构 设计思路 二〇一五年五月

文档信息 客户单位: 内部技术机密心项目: 文档:.docx 版本:0.9(150521) 发布日期: 未发布 修订历史

目录 文档信息 (ii) 修订历史 (ii) 1 引言 (1) 2 气象行业大数据分类 (2) 2.1 概述 (2) 2.2 从分类大数据到选择大数据解决方案 (3) 2.3 依据大数据类型对业务问题进行分类 (5) 2.4 使用大数据类型对大数据特征进行分类 (6) 2.5 依据大数据类型对气象信息进行处理..................................... 错误!未定义书签。 3 大数据平台架构..................................................................................... 错误!未定义书签。 3.1 大数据解决方案的逻辑构成 (9) 3.1.1 大数据来源..................................................................... 错误!未定义书签。 3.1.2 数据改动和存储层 (10) 3.1.3 大数据分析层 (10) 3.1.4 大数据应用层 (10) 3.2 大数据解决方案的组件构成 (11) 3.2.1 横向层 (11) 3.2.2 垂直层 (16) 4 大数据平台组成..................................................................................... 错误!未定义书签。 4.1 概述 (19) 4.2 原子模式 (19) 4.2.1 数据使用组件 (20) 4.2.2 数据处理组件 (22) 4.2.3 数据访问组件 (24) 4.2.4 数据存储组件 (28) 4.3 复合模式 (29) 4.3.1 存储和探索复合组件 (30) 4.3.2 专业分析和预测分析组件 (30) 4.3.3 OLAP在线分析 (31) 4.3.4 原子模式和符合模式的映射 (32) 4.4 解决方案模式(模拟应用场景) (35) 5 技术架构实现选择产品 (35) 5.1 概述 (35) 5.2 技术架构的关键问题 (35) 5.3 分布式存储与分布式应用 (35) 5.4 服务平台的硬件架构与调整 (37) 5.5 数据库与数据仓库 (37) 5.6 NOSQL数据库 (37) 5.7 数据集成工具 (37) 5.8 数据分析软件 (37) 5.9 Web应用以及Web开发的关键问题 (37) 6 我们的研发策略 (37)

气象数据处理流程

气象数据处理流程 1.数据下载 1.1. 登录中国气象科学数据共享服务网 1.2. 注册用户 1.3. 1.4. 辐射度、1.5. 2. 2.1. 2.2. 2.2.1. 为方便插值数据设置分辨率(1公里)减少投影变换次数,先将站点坐标转为大地坐标 并添加X、Y列存储大地坐标值后将各项数据按照站点字段年月日合成总数据库 (注意:数据库存储为DBF3格式,个字段均为数值型坐标需设置小数位数) 为填补插值后北部和东部数据的空缺采用最邻近法将漠河北部、富锦东部补齐2点数据。 2.2.2.利用VBA程序 Sub we() i = 6

For j = 1 To 30 Windows("chengle.dbf").Activate Rows("1:1").Select Selection.AutoFilter Selection.AutoFilter Field:=5, Criteria1:=i Selection.AutoFilter Field:=6, Criteria1:=j Cells.Select Selection.Copy Workbooks.Add ActiveSheet.Paste Windows("chengle.dbf").Activate ", Title = " 3. 利用 3.1. 3.2. 选择分析→回归→非线性回归 3.3. 将辐射值设为因变量 将经度(X)和纬度(Y)作为自变量,采用二次趋势面模型(f=b0+b1*x+b2*y+b3*x2+b4*x*y+b5*y2)进行回归,回归方法采用强迫引入法。 如图,在模型表达式中输入模型方程。 在参数中设置参数初始值

气象信息综合服务平台方案

天津市气象信息综合服务平台 软件技术方案
北京航天宏图信息技术有限责任公司

版本管理 版本 生效日期
变更内容
文档管理
编制人
文档审批 审批人
职位
签名
日期

目录
1 概述 ................................................................... 6
1.1 项目背景............................................................. 6 1.2 系统概述............................................................. 6 1.3 建设目标............................................................. 7 1.4 设计依据............................................................. 7 1.5 术语与缩略语......................................................... 8
1.5.1 术语............................................................. 8
2 设计约束与要求 ........................................................ 11
2.1 设计约束............................................................ 11 2.1.1 研制方法........................................................ 11 2.1.2 文档要求........................................................ 11
2.2 设计约束............................................................ 12 2.2.1 硬件环境........................................................ 12 2.2.2 软件环境........................................................ 12
3 总体需求分析 .......................................................... 14
3.1 系统总体定位........................................................ 14 3.2 系统总体目标........................................................ 14 3.3 系统主要功能........................................................ 15
3.3.1 支撑平台........................................................ 16 3.3.2 发布平台........................................................ 16 3.4 系统主要用户........................................................ 16
4 业务模式分析 .......................................................... 17
4.1 业务模式............................................................ 17 4.2 数据流程............................................................ 18
5 支撑平台需求规定 ...................................................... 19
5.1 主要功能............................................................ 19 5.2 组成与结构.......................................................... 20 5.3 基础支撑模块........................................................ 20
5.3.1 数据源管理...................................................... 20 5.3.2 基础数据的综合查询与管理........................................ 20 5.4 产品生产模块........................................................ 21 5.4.1 模型服务管理.................................................... 21 5.4.2 模型分类管理.................................................... 21 5.4.3 生产调度管理.................................................... 21 5.4.4 模型调度监控.................................................... 21 5.5 模型集成............................................................ 21 5.5.1 气象灾害风险区划评价模型集成.................................... 21 5.6 产品管理模块........................................................ 23

气象大数据技术架构思路

气象大数据技术架构思路 This model paper was revised by the Standardization Office on December 10, 2020

气象大数据应用技术架构 设计思路 二〇一五年五月 文档信息 客户单 内部技术机密心 位: 项目: 文档:.docx 版本:(150521) 未发布 发布日 期:

修订历史 目录

1引言 在气象行业内部,气象数据的价值已经和正在被深入挖掘着。但是,不能将气象预报产品的社会化推广简单地认为就是“气象大数据的广泛应用”。 大数据实际上是一种混杂数据,气象大数据应该是指气象行业所拥有的以及锁接触到的全体数据,包括传统的气象数据和对外服务提供的影视音频资料、网页资料、预报文本以及地理位置相关数据、社会经济共享数据等等。 传统的”气象数据“,地面观测、气象卫星遥感、天气雷达和数值预报产品四类数据占数据总量的90%以上,基本的气象数据直接用途是气象业务、天气预报、气候预测以及气象服务。“大数据应用”与目前的气象服务有所不同,前者是气象数据的“深度应用”和“增值应用”,后者是既定业务数据加工产品的社会推广应用。 “大数据的核心就是预测”,这是《大数据时代》的作者舍恩伯格的名言。天气和气候系统是典型的非线性系统,无法通过运用简单的统计分析方法来对其进行准确的预报和预测。人们常说的南美丛林里一只蝴蝶扇动几下翅膀,会在几周后引发北美的一场暴风雪这一现象,形象地描绘了气象科学的复杂性。运用统计分析方法进行天气预报在数十年前便已被气象科学界否决了——也就是说,目前经典的大数据应用方法并不适用于天气预报业务。 现在,气象行业的公共服务职能越来越强,面向政府提供决策服务,面向公众提供气象预报预警服务,面向社会发展,应对气候发展节能减排。这些决策信息怎么来依赖于我们对气象数据的处理。

气象信息系统考试

南京信息工程大学试卷 一、填空题 (每小题 1 分,共20分) 1、现代天气工程学的基本要素有气象资料库、气象应用程序库、图形图像 库和预报员。 2、常用的现代气象数据有农业气象资料辐射资料 、海洋气象资料 水文气象资料 、分析资料 、气象灾害资料 、历史及替代资料 、冰雪圈资料、气化学与大气物理资料等。 3、气象专用程序库是气象系统工程中的基础。天气分析预报方法和过程可通过提交给计 算机的程序命令来实现。通常,一个气象程序库包括基本教学分析与计算方法库、专用气象程序库及输入输出资料界面接口方法库等三项内容 4、GrADS种数据集是一个五维数据场,以二维数组片的形式按水平,垂直, 物理变量, 时间 序列的顺序排放。 5、MICAPS 3.0 采用开放式软件框架,实现多平台运行,系统框架 管理各功能模块,功能模块可以任意增加或删除。系统提供多种气象资料分析和可视化、预报制作、分析、产品生成功能。 二、简述题(3小题,共30分) 1、简述气候统计学的2个分支及含义。描述性统计方法和推论性统计方法 2、简述气候统计分析的一般步骤。 3、数据的距平标准化的核心思想。数据标准化处理是不仅使得数据间便于比较,其核心思 想是试图消除数据的“位置”和离散程度对进一步分析所带来的影响; 三、应用题(共30分) 1、现有三个数据文件2009080806.ctl、fnl_20090808_06_00_c、fnl_20090808_06_00_c.idx, 根据各grads命令行注释,请编写画图文件huatu.gs画出200hPa等压面的UGRDprs图。 'open d:/fnl_20090808_06_00_c.ctl' 打开文件ctl文件 'set lon 113 125'设置经度变化从东经113度至125度 'set lat 29 37' 设置纬度变化从北纬29度至北纬37度 'set mpdset cnworld' 设置地图数据集为中国地图和世界地图 'set map 15 1 5' 设置颜色为灰,线型为1,线宽为5,并绘制背景地图 'draw map' 绘制地图 'set lev 200' 设置高度为200 'enable print d:/20090808_06_200hb.gmf' 打开磁盘文件,用于存放图元数据 'set grads off' 设置不打印出GrADS标记

相关主题
文本预览
相关文档 最新文档