当前位置:文档之家› LMS_Test._lab_锤击法模态分析步骤

LMS_Test._lab_锤击法模态分析步骤

LMS_Test._lab_锤击法模态分析步骤
LMS_Test._lab_锤击法模态分析步骤

LMS https://www.doczj.com/doc/6710491822.html,b

锤击法模态测试流程

比利时LMS国际公司北京代表处

技术支持:邓江华

LMS Test. Lab锤击法模态测试及分析的流程在软件窗口底部以工作表形式表示,按照每一个工作表依次进行即可,如下图示。

1Documentation――可以进行备忘录,测试图片等需要记录的文字或图片的输入,作为测试工作的辅助记录,如下图示。

2Geometry――创建几何(参见创建几何步骤说明)

3Channel setup――通道设置,在该选项卡中可进行数采前端对应通道的设置,如定义传感器名称,传感器灵敏度等操作。

4Calibration――对传感器进行标定

5Impact scope――锤击示波,用来确定各通道量程

6Impact setup――锤击设置,设置触发级、带宽、窗以及激励点选择

7Measure――设置完成后进行测试

以下为进行模态测试的流程。

步骤一:通道设置(Channel setup)

假设已创建好了模型,传感器已布置完成,数采前端已连接完成。

通道设置窗口如下图示,在锤击法试验中,首先将力锤输入的通道定义为参考通道,其他为传感器对应的通道

1——选取测试通道

2——定义参考通道,通常为力锤输入的通道

3——依次在ChannelGroupld中定义传感器测量类型(对加速度计和力锤则选vibration),在point中定义测点名称(也可对应为几何模型上的节点名,见后),在Direction中设置测点所测振动的方向,InputMode中设置传感器类型(通常为ICP,若为应变则选Bridge,若为位移则选Vlltage DC),在Measured Quantity中定义测量量(加速度、力、位移等),在Electrical Unit中定义输入量的单位,通常均为mv.另外若已经确定传感器的灵敏度则可在Actual Sensitivity中直接输入灵敏度值,否则可在Calibration工作表中进行标定。

注:通道设置中测点名称使用几何模型名称的方法

步骤二:锤击示波(Impact scope)

在该工作表中可设置测试的量程范围,以保证得到更精确的测试结果。设置如下图示。在进行了图中1和2所示的设置后,即可进行图中3所示的设置,期间可进行多次锤击,尽量保

持所施加力的大小基本一致。以保证系统能确定一个合适的量程范围。

步骤三:锤击设置(Impact setup)

在该工作表中即进行锤击测试的设置,即触发级、带宽,窗及锤击点选取等,该工作表的界面窗口如下图示。

测试设置流程如下图示

?触发级设置

触发级设置流程如下图示

1. 开始示波

2. 锤击测试物体直到可以看见脉冲

3. 停止示波

4. 点击应用建议值以确定触发设置(触发级水平及预触发,见下图)

5. 确认触发设置

?带宽设置

设置要分析的带宽范围,然后通过两次锤击进行检查带宽的选择是否合适,以确定锤头的选择,该工作表窗口如下

带宽设置流程如下图示

1.设定分析带宽

2. 开始检查

3. 锤击两次

4. 停止检查

通过观察频带范围内激励点谱分布趋势确定带宽的选取是否合适,如下图示

?加窗设置

这里的加窗是针对激励信号和响应信号进行,窗口如下

对窗函数的设置可按以下步骤进行

停止测量后可直接选上图中5所示apply suggested,应用软件的建议值,也可通过以下方式进行手动设置。

如下图示,可如a所示在文本框中更改具体数值,也可在窗口中通过拖光标进行设置,如下

图C示。

?驱动点设置

驱动点菜单用于快速测试一组驱动点,并把它一起显示和比较,以确定最佳激励点,驱动点

设置窗口如下图所示

驱动点设置的步骤如下图所示:

1——在第一行中设置驱动点位置及方向

2——单击start开始测量

3——力锤敲击选定的驱动点

4——窗口下端显示已敲击次数和剩余次数

5——单击stop停止锤击测量

6——单击Display在左侧窗口中显示FRF,通过此按钮可以显示所有驱动点下产生的FRF 曲线,以进行各个驱动点锤击效果的比较。

步骤四:测量(measure)

完成了前述所有的设置后,即可进行锤击法模态测试,测量窗口如下图示

所有的设置,另外还可对测量中的一些计算和操作进行设置。

上图中1所示为对采样频率等的设置,2为窗函数的设置,3为触发级的设置,这三种设置已在前面完成,当然也可在此处进行修改,但最好不改。

通过4处的设置可选择测试是移动力锤还是移动加速度计,通过5可设置测量的平均次数以

及接收每次测量的方式(自动接受implicit还是手动控制explicit),通过6可定义在模态

试验中要计算的函数,一般按默认即可,通过7可对锤击过程进行控制,可选取自动拒绝过载激励和双击,以保证完美的测试。另外还可设置FRF估计方法,分为H1,H2,Hv,一般可选后者。

完成所有的设置后即可进行测量,如下图示。

步骤五:确认(validate)

这样整个锤击法模态的测试就完成了,接下来即进行模态的分析。

midas时程分析

16. 时程分析 概述 对下面受移动荷载的简支梁运行时程分析。 ?材料 弹性模量 : 2.4?1011 psi 容重(γ) : 0.1 lbf/in3 ?截面 截面面积(Area) : 1.0 in2 截面惯性矩(Iyy) : 0.083333 in4 半径(radius) : 10.0 in 厚度(thickness) : 2.0 in 重力加速度(g) : 1.0 in/sec2

速度 容重 整体坐标系原点 (a)受移动荷载的简支梁 (b)时程荷载函数 图 16.1 分析模型 模型是受600 in/sec速度的移动荷载的简支梁结构。通过时程分析了解动力荷载下结构的反映,改变荷载周期来查看共振的影响。

设定基本环境 打开新文件以‘时程分析 1.mgb’为名保存. 文件 / 新文件 文件 / 保存 ( 时程分析 1 ) 设定单位体系。 工具 / 单位体系 长度 > in ; 力 > lbf 图 16.2 设定单位体系

设定结构类型为 X-Z 平面。且为了特征值分析,设定自重自动转换为节点质量。 模型/ 结构类型 结构类型 > X-Z 平面 将结构的自重转换为质量> 转换到 X, Y, Z 重力加速度( 1 ) 点格(关) 捕捉点(关) 捕捉节点捕捉单元正面 图 16.3 设定结构类型

定义材料以及截面 输入材料和截面,采用用户定义的类型和数值的类型输入数据。 模型/ 特性/ 材料 一般> 名称( 材料) ; 类型> 用户定义 用户定义 > 规范>无 分析数据 > 弹性模量 ( 2.4E+11 ) 容重( 0.1 ) ? 模型/ 特性/ 截面 数值 名称( 截面) ; 截面形状> Pipe 尺寸 > D ( 10 ) ; t w( 2 ) 截面特性值> 面积( 1 ) ; Iyy ( 0.083333 )? 图 16.4 定义材料图 16.5 定义截面

midas连续梁分析报告实例

1. 连续梁分析概述 比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、 内力。 3跨连续两次超静定 3跨静定 3跨连续1次超静定 图 1.1 分析模型

?材料 钢材: Grade3 ?截面 数值 : 箱形截面 400×200×12 mm ?荷载 1. 均布荷载 : 1.0 tonf/m 2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差) 设定基本环境 打开新文件,以‘连续梁分析.mgb’为名存档。单位体系设定为‘m’和‘tonf’。 文件/ 新文件 文件/ 存档(连续梁分析 ) 工具 / 单位体系 长度> m ; 力 > tonf 图 1.2 设定单位体系

设定结构类型为 X-Z 平面。 模型 / 结构类型 结构类型> X-Z 平面? 设定材料以及截面 材料选择钢材GB(S)(中国标准规格),定义截面。 模型 / 材料和截面特性 / 材料 名称( Grade3) 设计类型 > 钢材 规范> GB(S) ; 数据库> Grade3 ? 模型 / 材料和截面特性 / 截面 截面数据 截面号( 1 ) ; 截面形状 > 箱形截面; 用户:如图输入 ; 名称> 400×200×12 ? 选择“数据库”中的任 意材料,材料的基本特 性值(弹性模量、泊松 比、线膨胀系数、容 重)将自动输出。 图 1.3 定义材料图 1.4 定义截面建立节点和单元

为了生成连续梁单元,首先输入节点。 正面, 捕捉点 (关), 捕捉轴线 (关) 捕捉节点 (开), 捕捉单元 (开), 自动对齐 模型 / 节点 / 建立节点 坐标 ( x, y, z ) ( 0, 0, 0 ) 图 1.5 建立节点 参照用户手册的“输 入单元时主要考虑事项”

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

锤击法

锤击法施工设备 锤击法是利用桩锤的冲击克服土对桩的阻力,使桩沉到预定深度或达到持力层。这是最常用的一种沉桩方法。 打桩设备包括桩锤、桩架和动力装置。 (1)桩锤 桩锤是对桩施加冲击,将桩打入土中的主要机具。桩锤主要有落锤、蒸汽锤、柴油锤和液压锤,目前应用最多的是柴油锤。 ①落锤落锤构造简单,使用方便,能随意调整落锤高度。轻型落锤一般均用卷扬机拉升施打。落锤生产效率低、桩身易损失。落锤重量一般为0.5~1.5t,重型锤可达数吨。 ②柴油锤柴油锤利用燃油爆炸的能量,推动活塞往复运动产生冲击进行锤击打桩。柴油锤结构简单、使用方便,不需从外部供应能源。但在过软的土中由于贯入度过大,燃油不易爆发,往往桩锤反跳不起来,会使工作循环中断。另一个缺点是会造成噪音和空气污染等公害,故在城市中施工受到一定限制。柴油锤冲击部分的重量有2.0t,2.5t,3.5t,4.5t,6.0t,7.2t等数种。每分钟锤击次数约40~80次。可以用于大型混凝土桩和钢管桩等。 ③蒸汽锤蒸汽锤利用蒸汽的动力进行锤击。根据其工作情况又可分为单动式汽锤与双动式汽锤。单动式汽锤的冲击体只在上升时耗用动力,下降靠自重;双动式汽锤的冲击体升降均由蒸汽推动。蒸汽锤需要配备一套锅炉设备。 单动式汽锤的冲击力较大,可以打各种桩,常用锤重为3~10t。每分钟锤击数为25~30次。 双动式汽锤的外壳(即汽缸)是固定在桩头上的,而锤是在外壳内上下运动。因冲击频率高(100~200次/min),所以工作效率高。它适宜打各种桩,也可在水下打桩并用于拔桩。锤重一般为0.6~6t。 ④液压锤液压锤是一种新型打桩设备,它的冲击缸体通过液压油提升与降落。冲击缸体下部充满氮气,当冲击缸下落时,首先是冲击头对桩施加压力,接着是通过可压缩的氮气对桩施加压力,使冲击缸体对桩施加压力的过程延长,因此每一击能获得更大的贯入度。液压锤不排出任何废气,无噪音,冲击频率高,并适合水下打桩,是理想的冲击式打桩设备,但构造复杂,造价高。 用锤击沉桩时,为防止桩受冲击应力过大而损坏,力求采用“重锤轻击”。如采用轻锤重击,锤击功能很大一部分被桩身吸收,桩不易打入,且桩头容易打碎。锤重可根据土质、桩的规格等参考表2-1进行选择,如能进行锤击应力计算则更为科学。 表2-1锤重选择表

用midas做稳定分析步骤

用MIDAS来做稳定分析的处理方法(笔记整理) 对一个网壳或空间桁架这样的整体结构而言,稳定会涉及三类问题: A.整个结构的稳定性 B.构成结构的单个杆件的稳定性 C.单个杆件里的局部稳定(如其中的板件的稳定)A整个结构的稳定性: 1. 在数学处理上是求特征值问题的特征值屈曲,又叫平衡分叉失稳或者分支点失稳 特征:结构达到某种荷载时,除结构原来的平衡状态存在外,还可能出现第二个平衡态 2:极值点失稳 特征:失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,结构失稳时相应的荷载称为极限荷载。 3:跳跃失稳,性质和极值点失稳类似,可以归入第二类。B构成结构的单个杆件的稳定性 通过设计的时候可以验算秆件的稳定性,尽管这里面存在一个计算长度的选取问题而显得不完善,但总是安全的。 C 单个杆件里的局部稳定(如其中的板件的稳定) 在MIDAS里面,我想已不能在整体结构的范围内解决了,但是单个秆件的局部稳定可以利用板单元(对于实体现在还没

有办法做屈曲分析)来模拟单个构件,然后分析出整体稳定屈曲系数。和A是同样的道理,这里充分体现了结构即构件,构件即结构的道理 A整个结构的稳定性: 分析方法: 1:线性屈曲分析(对象:桁架,粱,板) 在一定变形状态下的结构的静力平衡方程式可以写成下列形式: (1):结构的弹性刚度矩阵:结构的几何刚度矩阵:结构的整体位移向量:结构的外力向量 结构的几何刚度矩阵可通过将各个单元的几何刚度矩阵相加而得,各个单元的几何刚度矩阵由以下方法求得。几何刚度矩阵表示结构在变形状态下的刚度变化,与施加的荷载有直接的关系。任意构件受到压力时,刚度有减小的倾向;反之,受到拉力时,刚度有增大的倾向。大家所熟知的欧拉公式,对于一个杆单元,当所受压力超过N=3.1415^2*E*I/L^2时,杆的弯曲刚度就消失了,同样的道理不仅适用单根压杆,也适用与整个框架体系通过特征值分析求得的解有特征值和特征向量,特征值就是临界荷载,特征向量是对应于临界荷载的屈曲模态。临界荷载可以用已知的初始值和临界荷载的乘积计算得到。临界荷载和屈曲模态意味着所输入的临界荷载作用到结构时,结构就发生与屈曲模态相同形态的屈

模态试验及分析的基本步骤

模态试验及分析的基本步骤 1.动态数据的采集及响应函数分析 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。 2.建立结构数学模型 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 3.参数识别 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,识别的结果也不会理想。 4.振型动画 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振动直观的想象,所以必须采用振型动画的办法,将放大的振型叠加到原始的几何形状上。

midas施工阶段分析

目录 Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 (2) Q2、 POSTCS阶段的意义 (2) Q3、施工阶段定义时结构组激活材龄的意义 (2) Q4、施工阶段分析独立模型和累加模型的关系 (2) Q5、施工阶段接续分析的用途及使用注意事项 (2) Q6、边界激活选择变形前变形后的区别 (3) Q7、体内力体外力的特点及其影响 (4) Q8、如何考虑对最大悬臂状态的屈曲分析 (4) Q9、需要查看当前步骤结果时的注意事项 (5) Q10、普通钢筋对收缩徐变的影响 (5) Q11、如何考虑混凝土强度发展 (5) Q12、从施工阶段分析荷载工况的含义 (5) Q13、转换最终阶段内力为POSTCS阶段初始内力的意义 (6) Q14、赋予各构件初始切向位移的意义 (6) Q15、如何得到阶段步骤分析结果图形 (6) Q16、施工阶段联合截面分析的注意事项 (6) Q17、如何考虑在发生变形后的钢梁上浇注混凝土板 (7)

Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 A1.“施工阶段荷载”类型仅用于施工阶段荷载分析,在POSTCS阶段不能进行分析。如果将在施工阶段作用的荷载定义为其他荷载类型,则该荷载既在施工阶段作用,也在成桥状态作用。在施工阶段作用的效应累加在CS合计中,在成桥状态作用的荷载效应以“ST荷载工况名称”的形式体现。 因此为了避免相同的荷载重复作用,对于在施工阶段作用的荷载,其荷载类型最好定义为施工阶段荷载。 注:荷载类型“施工荷载”和“恒荷载”一样,都属于既可以在施工阶段作用也可以在POSTCS阶段独立作用的荷载类型。 Q2、P OSTCS阶段的意义 A2.POSTCS是以最终分析阶段模型为基础,考虑其他非施工阶段荷载作用的状态。通常是成桥状态,但如果在施工阶段分析控制数据中定义了分析截止的施工阶段,则那个施工阶段的模型就是POSTCS阶段的基本模型。沉降、移动荷载、动力荷载(反应谱、时程)都是只能在POSTCS阶段进行分析的荷载类型。 施工阶段的荷载效应累计在CS合计中,而POSTCS阶段各个荷载的效应独立存在。 POSTCS阶段荷载效应有ST荷载,移动荷载,沉降荷载和动力荷载工况。 有些分析功能也只能在POSTCS阶段进行:屈曲、特征值。 Q3、施工阶段定义时结构组激活材龄的意义 A3.程序中有两个地方需要输入材龄,一处是收缩徐变函数定义时需输入材龄,用于计算收缩应变;一处是施工阶段定义时结构组激活材龄,用于计算徐变系数和混凝土强度发展。因此当考虑徐变和混凝土强度发展时,施工阶段定义时的激活材龄一定要准确定义。 当进行施工阶段联合截面分析时,计算徐变和混凝土强度发展的材龄采用的是施工阶段联合截面定义时输入的材龄,此时在施工阶段定义时的结构组激活材龄不起作用。 为了保险起见,在定义施工阶段和施工阶段联合截面分析时都要准确的输入结构组的激活材龄。 Q4、施工阶段分析独立模型和累加模型的关系 A4.进行施工阶段分析的目的,就是通过考虑施工过程中前后各个施工阶段的相互影响,对各个施工阶段以及POSTCS阶段进行结构性能的评估,因此通常进行的都是累加模型分析。 对于线性分析,程序始终按累加模型进行分析,如欲得到某个阶段的独立模型下的受力状态,可以通过另存当前施工阶段功能,自动建立当前施工阶段模型,进行独立分析。 在个别情况下,需要考虑当前阶段的非线性特性时,可以进行非线性独立模型分析,如悬索桥考虑初始平衡状态时的倒拆分析,需用进行非线性独立模型分析。 Q5、施工阶段接续分析的用途及使用注意事项 A5.对于复杂施工阶段模型,一次建模很难保证结构布筋合理,都要经过反复调整布筋。 每次修改施工阶段信息后,都必须重新从初始阶段计算。接续分析的功能就是可以指定接续分析的阶段,被指定为接续分析开始阶段前的施工阶段不能进行修改,其后的施工阶段可以进行再次修改,修改完毕后,不必重新计算,只需执行分析〉运行接续

迈达斯Midas-civil梁格法建模实例

北京迈达斯技术有限公司

目录 概要 (3) 设置操作环境........................................................................................................... 错误!未定义书签。定义材料和截面....................................................................................................... 错误!未定义书签。建立结构模型........................................................................................................... 错误!未定义书签。PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。输入荷载 .................................................................................................................. 错误!未定义书签。定义施工阶段. (60) 输入移动荷载数据................................................................................................... 错误!未定义书签。输入支座沉降........................................................................................................... 错误!未定义书签。运行结构分析 .......................................................................................................... 错误!未定义书签。查看分析结果........................................................................................................... 错误!未定义书签。PSC设计................................................................................................................... 错误!未定义书签。

土的击实试验步骤修订稿

土的击实试验步骤 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

土的实验 2007-11-08 20:14:01 阅读163 评论1 字号:大中小 土的击实试验步骤 土的CBR实验 土的压实性 工程建设中广泛用到填土,例如路基、土堤、土坝、飞机跑道、平整场地修建建筑物等,都是把土作为建筑材料按一定要求和范围进行堆填而成。显然,未经压实的填土,强度低,压缩性大且不均匀,遇水易发生塌陷等现象。因此,这些填土一般都要经过压实,以减少其沉降量,降低其透水性,提高其强度。特别是高土石坝,往往是方量达数百万方甚至干百万方以上,是质量要求很高的人工填土。进行填土时,通常采用夯实、振动或辗压等方法,使土得到压实。土的压实就是指填土在压实能量作用下,使土颗粒克服粒间阻力而重新排列,使土中的孔隙减小、密度增加,从而使填土在短时间内得到新的结构强度。土的压实在松软地基处理方 面也得到广泛应用。 实践经验表明,压实细粒土宜用夯击机具或压力较大的辗压机具,同时必需控制土的含水量。对过湿的粘性土进行辗压或夯实时会出现软弹现象,填土难以压实;对很干的粘性土进行辗压或夯实时,也不能把填土充分压实。因此,含水量太高或太低的填土都得不到好的压密效果,必须把填土的含水量控制在适当的范围内。压实粗粒土时,则宜采用振动机具,同时充分洒水。两种不同的做法说明细粒土和粗粒土具有不同的压密性质。 11.2.1 粘性土的压实性 研究粘性土的压实性可以在试验室或现场进行。在试验室内研究土的压实性是通过击实试验进行的。试验的仪器和方法见《土工试验方法标准GBJ123-88》。试验时将某一种土配成若干份具有不同含水量的土样。将每份土样装入击实仪内,用完全同样的方法加以击实。击实后,测出压实土的含水量和干密度。以含水量为横坐标,干密度为纵坐标,绘制含水量-干密度曲线如图11-3所示。这种试验称为土的击实试验。 图11-3 粘性土的击实曲线 1. 最优含水量与最大干密度 在一定的压实功能(在试验室压实功能是用击数表示的)下使土最容易压实,并能达到最大密实度时的含水量称为土的最优含水量。在图11-3所示的击实曲线上,峰值干密度对应的含水量就是最优含水量。同一种土,干密度愈大,孔隙比愈小,所以最大干密度相应于击实试

实验十 用锤击法测量简支梁的模态参数

实验十用锤击法测量简支梁的模态参数 一、实验目的 1、了解测力法实验模态分析原理。 2、掌握用锤击法测试结构模态参数的方法。 二、实验系统框图 图1-2-19 测试系统框图 三、实验原理 目前,结构的特性参数测量主要有三种方法:经典模态分析、运行模态分析(OMA)和运行变形振型分析(ODS)。 1、经典模态分析也称实验模态分析,它是通过给结构施加一个激振力,激起结构振动,测量结构响应及激振力之间的频率响应函数,来寻求结构的模态参数。因此,实验模态分析方法也称测力法模态分析。在测量频率响应函数时,可采用力锤和激振器两种激励方式。力锤激励方式简单易行,特适合现场测试,一般支持快速的多参考技术和小的各向同性结构。由于力锤移动方便,在这种激励方式下,一般采用的是多点激励,单点响应方式,即测量的是频率响应函数矩阵中的一行。激振器激励时,由于激振器安装比较困难,多采用单点激励、多点响应的方法,即测量的是频率响应函数矩阵中的一列。这种激励方式可使用多种激励信号,且激振能量较大,适合于大型或复杂结构。 2、运行模态分析与经典模态分析相比,不需要输入力,只通过测量响应来决定结构的模态参数,以此,这种分析方法也称为不测力法模态分析。其优点在于无需激励设备,测试时不干扰结构的正常工作,且测试的响应代表了结构的真实工作环境,测试成本低,方便和快速。测量能够被一次完成(快速,数据一致性好)或多次完成(受限于传感器的数量),若一次测量(一个数据组)时,不需要参考传感器。而多次测量(多个数据组)时,对所有的数据组,需要一个或多个固定的加速度传感器作为参考。 3、运行变形振型分析中,测量并显示结构在稳态、准稳态或瞬态运行状态过程中的振动模式。引起振动的因素包括发动机转速、压力、温度、流动和环境力等。ODS分析包括时域ODS、频谱域ODS(FFT或者Order)、非稳态升/降速ODS。

ansys模态分析步骤

模态分析步骤 第1步:载入模型 Plot>Volumes 第2步:指定分析标题并设置分析范畴 1 设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2 选取菜单途径 Main Menu>Preference ,单击 Structure,单击OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现Element Types对话框,单击Add出现Library of Element Types 对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 选取菜单途径Main Menu>Preprocessor>Material Props>Material Models。出现Define Material Model Behavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步:划分网格 选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出

现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh Volumes对话框,其他保持不变单击Pick All,完成网格划分。 第6步:进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Modal单击 OK。 选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),单击OK,出现Subspace Model Analysis对话框,选择频率的起始值,其他保持不变,单击OK。 第7步:施加边界条件. 选取Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply或OK即可。第8步:指定要扩展的模态数。选取菜单途径Main Menu>Solution>Load Step Opts>ExpansionPass>Expand Modes,出现Expand Modes对话框,在number of modes to expand 处输入第6步相应的数字,单击 OK即可。(当选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应

土工击实试验方法研究

土工击实实验方法的研究 击实实验是建筑物地基、道路地基、室内地坪及场地平整等施工和验收的重要依据。笔者基于工作中积累的实际操作经验,介绍击实实验的方法及其要点,对其进行研究,以期获得对施工有指导意义的数据。 1 研究土击实性的意义 用土作为填筑材料,如修筑道路、堤坝、机场跑道、运动场、建筑物地基及基础回填等,工程中经常遇到填土压实的问题。经过搬运未经压实的填土,原状结构已被破坏,孔隙、空洞较多,土质不均匀,压缩量大,强度低,抗水性能差。为改善填土的工程性质,提高土的强度,降低土的压缩性和渗透性,必须按一定的标准,采用重锤夯实、机械碾压或振动等方法将土压实到一定标准,以满足工程的质量标准。 研究土的填筑特性,常用现场填筑实验和室内击实实验两种方法。前者是在现场选一实验地段,按设计要求和施工方法进行填土,并同时进行有关的测试工作,以查明填筑条件(包括土料、堆填方法,压实机械等)与填筑效果的关系。该方法能反应施工的实际情况,但需时间和费用较多,只在重大工程中进行。室内土工击实实验是近似的模拟现场填筑的一种半经验性的实验。实验时,在一定条件下用锤击法将土击实,以研究土在不同击实功能下的击实特性,以便获取设计数值,为工程设计提供初步的填筑标准。该方法是目前研究填土击实特性的重要方法。[1] 2 土工击实实验方法 土工击实实验是研究土压实性能的基本方法,也是建筑工程必须实验的工程之一。实验采用击实仪法,即通过锤击使土密实,测定土样在一定击实功能的作用下达到最大密度时的含水量(最优含水量)和此时的干密度(最大干密度)。为了满足工程需要,必须制定土的压实标准。通常,工地压实质量控制采用压实度,计算式为: K= ρ d / ρdmax 式中,k为压实度,% ;ρd为工地碾压的干密度,g/cm3。ρdmax为室内实验最大干密度,g/cm3 。 若k越接近100% ,则压实质量越高。对于受力主层或者重要工程K要求大些;对于非受力主层或次要工程,k值可小些[2]。 3 土工击实实验曲线 室内击实实验,击实功瞬时作用于土,土的含水量基本不变。在同一击实功作用下,一定范围内增加含水量,土的干密度增大,但含水量增加到一定程度后,土的干密度就变小。根据这一规律可以得到在一定击实功作用下含水量W与干

迈达斯Midas-civil梁格法建模实例

迈达斯技术

目录 概要 (3) 设置操作环境................................................................................................................ 错误!未定义书签。定义材料和截面............................................................................................................ 错误!未定义书签。建立结构模型................................................................................................................ 错误!未定义书签。PSC截面钢筋输入......................................................................................................... 错误!未定义书签。输入荷载 ........................................................................................................................ 错误!未定义书签。定义施工阶段. (62) 输入移动荷载数据........................................................................................................ 错误!未定义书签。输入支座沉降................................................................................................................ 错误!未定义书签。运行结构分析................................................................................................................ 错误!未定义书签。查看分析结果................................................................................................................ 错误!未定义书签。PSC设计 ......................................................................................................................... 错误!未定义书签。

标准击实实验

标准击实实验(轻击)中的击实功是怎样确定的?我真的具体的值,现要具体的计算公式。谢谢。 是不是75mgh/v ? 式中m 位击锤质量,h 为落高, g 为重力加速度,v 为筒体积。 第六章 土的击实试验 一、试验目的 在标准击实方法下测定土的最大干密度和最优含水率,为控制路堤、土坝或填土地基等的密实度及质量评价,提供重要依据。 二、基本原理 击实仪法是用锤击,使土密度增大,目的是在室内利用击实仪,测定土样在一定击实功能作用下达到最大密度时的含水率(最优含水率)和此时的干密度(最大干密度),借以了解土的压实特性。 目前国内常用的击实方法有两种: (1)轻型击实:适用于粒径小于5mm 的细粒土,锤底直径为51mm ,击锤质量为2.5kg ,落距为305mm ,单位体积击实功为591.6kJ /m 3;分3层夯实,每层25击。 (2)重型击实:适用于粒径不大于40mm 的土。击实筒内径为152mm ,筒高116mm ,击锤质量为4.5kg ,落距为457mm ,单位体积击实功为2682.7kJ /3 m (其他与轻型击实相同);分5层击实,每层56击。 三、仪器设备 (1)击实仪(图6-1):主要由击实筒和击锤组成。 (2)天平:称量为200g ,感量为0.01g ;称量为2kg ,感量为1g ; (3)台秤:称量为l0kg ,感量为5g ; (4)推土器; (5)筛:孔径为5mm ; (6)其它:喷水设备、碾土设备、修土刀、小量筒、盛土盘、测含 水率设备及保温设备等。 四、操作步骤 1、取一定量的代表性风干土样,对于轻型击实试验为20kg ,对于重 型击实试验为50kg 。 2、将风干土样碾碎后过5mm 的筛(轻型击实试验)或过20mm 的筛(重型击实试验),将筛下的土样搅匀,并测定土样的风干含水率。 3、根据土的塑限预估最优含水率,加水湿润制备不少于5个含水率的试样,含水率一次相差为2%,且其中有两个含水率大于塑限,两个含水率小于塑限,一个含水率接近塑限。 按式(6-1)计算制备试样所需的加水量: )()1(000w w w m m w -?+= (6-1) 图6-1 击实仪 1-击实筒;2-护筒;3-导筒; 4-击锤;5-底板

https://www.doczj.com/doc/6710491822.html,b操作指导书-锤击测试Impact-Testing

https://www.doczj.com/doc/6710491822.html,b操作指导书-锤击测试Impact-Testing

https://www.doczj.com/doc/6710491822.html,b操作指南——锤击测试Impacting Testing

2016年1月

序言 这个部分介绍https://www.doczj.com/doc/6710491822.html,b的锤击法测试Impact Testing模块的常用操作,工作界面的详细内容及略掉部分参见《LMS Test Lab帮助中译文_锤击测试Impact Testing》,主要针对目前能够进行且经常进行的实验。因作者水平有限,讹误在所难免。

目录 序言 (1) 目录 (2) 1.锤击测试Impact Testing概述 (1) 1.1 工作界面 (1) 1.2 模块功能 (1) 1.3 锤击测试流程 (2) 1.3.1 测试准备 (2) 1.3.2 软件打开方法 (2) 1.3.2 软件流程 (3) 1.4 常见问题 (4) 1.4.1 电脑与数采的网络连接 (4) 1.4.2 软件无法启动 (4) 2 文档Documentation与数据Navigator (6) 2.1 文档 (6) 2.1.1 工作界面 (6) 2.1.2 常用操作 (7) 2.2 数据 (8) 3.通道设置Channel Setup (9) 3.1 工作界面 (9) 3.2 常用操作 (10)

3.2.1 设置通道属性可见性 (10) 3.2.2 力锤通道设置 (11) 3.2.3 加速度传感器通道设置 (12) 3.2.4 加载与保存通道设置 (14) 3.3 术语简介 (15) 3.3.1 通道类型 (15) 3.3.2 输入通道Input Channels.. 16 4.校准Calibration (19) 4.1 工作界面 (19) 4.2 常用操作 (19) 4.2.1 加速度传感器校准 (19) 4.3 术语简介 (21) 5.锤击示波Impact Scope (22) 5.1 工作界面 (22) 5.2 常用操作 (23) 5.2.1 采样参数 (23) 5.2.2 量程设定 (23) 5.2.3 示波设置与观察 (24) 5.2.4 触发设置 (25) 5.2.5 其它 (25) 5.3 术语简介....... 错误!未定义书签。 6.锤击设置Impact Setup (26)

栈桥——迈达斯分析验算示例(清晰版)

栈桥分析 北京迈达斯技术有限公司

目 录 栈桥分析 (1) 1、工程概况 (1) 2、定义材料和截面 (2) 定义钢材的材料特性 (2) 定义截面 (2) 3、建模 (4) 建立第一片贝雷片 (4) 建立其余的贝雷片 (8) 建立支撑架 (9) 建立分配梁 (12) 4、添加边界 (17) 添加弹性连接 (17) 添加一般连接 (19) 释放梁端约束 (22) 5、输入荷载 (22)

添加荷载工况 (22) 6、输入移动荷载分析数据 (23) 定义横向联系梁组 (23) 定义移动荷载分析数据 (23) 输入车辆荷载 (24) 移动荷载分析控制 (26) 7、运行结构分析 (27) 8、查看结果 (27) 生成荷载组合 (27) 查看位移 (28) 查看轴力 (29) 利用结果表格查看应力 (30)

栈桥分析 1、工程概况 一座用贝雷片搭建的施工栈桥,跨径15m(5片贝雷片),支承条件为简支,桥面宽6米。设计荷载汽—20,验算荷载挂—50。贝雷片的横向布置为5×90cm,共6片主梁,在贝雷片主梁上布置I20a分配梁,位置作用于贝雷片上弦杆的每个节点处,间距约75cm。如下图所示: 贝雷片参数:材料16Mn;弦杆2I10a槽钢(C 100x48x5.3/8.5,间距8cm),腹杆I8(h=80mm,b=50mm, tf=4.5mm ,tw=6.5mm)。贝雷片的连接为销接。 图1 贝雷片计算图示(单位:mm) 支撑架参数:材料A3钢,截面L63X4。 分配横梁参数:材料A3钢,截面I20a,长度6m。

建模要点:贝雷片主梁用梁单元,销接释放绕梁端y-y轴的旋转自由度;支撑架用桁架单元;分配横梁用梁单元,与贝雷主梁的连接采用节点弹性连接(仅连接平动自由度,旋转自由度不连接);车道布置一个车道,居中布置。 2、定义材料和截面 定义钢材的材料特性 模型 / 材料和截面特性 / 材料/添加 材料号:1 类型>钢材;规范:JTJ(S) 数据库>16Mn (适用) 材料号:2 类型>钢材;规范:JTJ(S) 数据库>A3 确认 定义截面 注:midas/Civil的截面库中含有丰富的型钢截面,同时还拥有强大的截面自定义功能。 模型 / 材料和截面特性 / 截面/添加 数据库/用户 截面号1; 名称:(弦杆) 截面类型:(双槽钢截面) 选择用户定义,数据库名称(GB-YB); 截面名称:C 100x48x5.3/8.5 C:(80mm)点击适用

ansys模态分析步骤

模态分析步骤 第1步: 载入模型Plot>Volumes 第2步: 指定分析标题并设置分析范畴 1设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2选取菜单途径MainMenu>Preference ,单击Structure,单击OK第3步: 定义单元类型 MainMenu>Preprocessor>ElementType>Add/Edit/Delete,出现Element Types 对话框,单击Add出现Library of Element Types对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close 按钮就完成这项设置了。 第4步: 指定材料性能 选取菜单途径MainMenu>Preprocessor>MaterialProps>MaterialModels。出现DefineMaterialModelBehavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步: 划分网格

选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool 对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh Volumes对话框,其他保持不变单击Pick All,完成网格划分。 第6步: 进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Modal单击OK。 选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis对话框,选中Subspace模态提取法,在Number ofmodes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),单击OK,出现Subspace Model Analysis对话框,选择频率的起始值,其他保持不变,单击OK。 第7步: 施加边界条件.选取 MainMenu>Solution>Defineloads>Apply>Structural>Displacement,出现 ApplyU,ROTonKPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(AllDOF,UX,UY,UZ)相应的约束,单击apply或OK即可。 第8步: 指定要扩展的模态数。选取菜单途径 MainMenu>Solution>LoadStepOpts>ExpansionPass>ExpandModes,出现Expand Modes对话框,在number of modes to expand处输入第6步相应的数字,单击OK 即可。(当选取MainMenu>Solution>AnalysisType>AnalysisOptions,将出现ModalAnalysis对话框,选中Subspace模态提取法,在Number of modes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),同时选择number of modes to expand输入相应值时,这步可以省略)

相关主题
文本预览
相关文档 最新文档