当前位置:文档之家› 八年级初二数学 二次根式知识点及练习题及解析

八年级初二数学 二次根式知识点及练习题及解析

八年级初二数学 二次根式知识点及练习题及解析
八年级初二数学 二次根式知识点及练习题及解析

新人教版八年级数学下册二次根式单元测试题

2018人教版八年级下册二次根式单元测试题 1.下列各式中①a ;②1+b ; ③2a ; ④32+a ; ⑤12-x ; ⑥122++x x 一定是二次根式的有……………………………( )个。 A . 1 个 B. 2个 C. 3个 D. 4个 2.若3962=+-+b b b ,则b 的值为……………………………( ) A .0 B .0或1 C .b ≤3 D .b ≥3 3.下列二次根式中,最简二次根式是( ). . 4. 如果代数式有意义,那么x 的取值范围是…………………( ) A .x≥0 B .x≠1 C .x >0 D .x≥0且x≠1 5 =x 的取值范围是………………( ) A. 2x ≠ B. 0x ≥ C. 2x > D. 2x ≥ 6. 下列计算正确的是……………………………………………………( ) = = 4= 7. 计算22 1-631+8的结果是……………………………………( ) A .32-23 B .5-2 C .5-3 D .22 8.已知21+=m ,21-=n ,则代数式mn n m 322-+的值为…( ) B.±3 D. 5 9.化简)22(28+-得………………………………………………( ) A .—2 B .22- C .2 D . 224- 10.如果数轴上表示a 、b 两个数的点都在原点的左侧,且a 在b 的左侧, 则的值为2)(b a b a ++-……………………………………………【 】 A .b 2- B .b 2 C .a 2 D .a 2- 11.若整数x 满足|x|≤3,则使为整数的x 的值是 (只需填一个). 12.二次根式31 -x 有意义的条件是 。 13.已知a,b 为两个连续的整数,且a b <<,则a+b = 。 14.计算: = . =-?263_______________. 15.①比较大小:73- 152- ②=-2)52( 。 16.若实数、满足,则________. 17. 计算3 393a a a a -+= 。

北师版八年级数学-二次根式-知识点+练习题--详细

知识点一:二次根式的概念
二次根式复习
………………………………………………最新资料推荐………………………………………


文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
形如 (
)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因
注:二次根式的性质公式

)是逆用平方根的定义得出的结论。上面的公式也可以
为负数没有平方根,所以
是 为二次根式的前提条件,如 ,

等是 反过来应用:若
,则
,如:

.
二次根式,而 ,
等都不是二次根式。
知识点五:二次根式的性质
知识点二:取值范围
1. 二次根式有意义的条件:由二次根式的意义可知,当 a≧0 时, 所以要使二次根式有意义,只要使被开方数大于或等于零即可。
有意义,是二次根式,
文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
2. 二次根式无意义的条件:因负数没有算术平方根,所以当 a﹤0 时, 没有意义。
注:1、化简 时,一定要弄明白被开方数的底数 a 是正数还是负数,若是正数或 0,则等于 a 本
知识点三:二次根式 (
)的非负性
身,即
;若 a 是负数,则等于 a 的相反数-a,即

2、 中的 a 的取值范围可以是任意实数,即不论 a 取何值, 一定有意义;

)表示 a 的算术平方根,也就是说, (
)是一个非负数,即
0(
)。
注:因为二次根式 (
)表示 a 的算术平方根,而正数的算术平方根是正数,0 的算术平方根
3、化简
时,先将它化成 ,再根据绝对值的意义来进行化简。
是 0,所以非负数(
)的算术平方根是非负数,即
0(
),这个性质也就是非负数的 知识点六:
与 的异同点 1、不同点:
与 表示的意义是不同的,
算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若
, 正数 a 的算术平方根的平方,而 表示一个实数 a 的平方的算术平方根;在

表示一个 ,而
则 a=0,b=0;若
,则 a=0,b=0;若
,则 a=0,b=0。
中 a 可以是正实数,0,负实数。但
与 都是非负数,即

。因而它的
知识点四:二次根式( ) 的性质
运算的结果是有差别的,
,而
1/3

二次根式知识点总结及其应用

二次根式知识总结 一、基本知识点 1.二次根式的有关概念: (1)形如 的 式子叫做二次根式. (即一个 的算术平方根叫做二次根式 二次根式有意义的条件:被开方数大于或等于零 (2)满足下列两个条件的二次根式,叫做最简二次根式: ①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式; (3)几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。 2.二次根式的性质: (1) 非负性 3.二次根式的运算: 二次根式乘法法则 二次根式除法法则 二次根式的加减: (一化,二找,三合并 ) (1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; ( 3)合并同类二次根式。 Ps:类似于合并同类项,关键是把同类二次根式合并。 二次根式的混合运算:原来学习的运算律(结合律、交换律、分配律)仍然适用 0()a ≥0 2(2)(0 )a = ≥ = (0,0)a b = ≥ ≥ (0 0)a b = ≥> (0,0)a b = ≥≥ (0,0)a b = ≥>

二、二次根式的应用 1、非负性的运用 例:1.已知:0+=,求x-y 的值. 2、根据二次根式有意义的条件确定未知数的值 例1 有意义的x 的取值范围 例2.若2)(11y x x x +=-+-,则y x -=_____________。 3、运用数形结合,进行二次根式化简 例:.已知x,y 都是实数,且满足5.011+-+-

(完整版)八年级数学下册二次根式练习题及答案

八年级数学下册二次根式练习题及答案九年级数学科 检测范围:二次根式完卷时间:45分钟满分:100分 一、填空题。 1、当x ________时,2?x在实数范围内有意义。 2、计算: =________。 3、化简: = _______。 4、计算:2×=________。 5、化简:=_______。 6、计算:÷ 7、计算:-20-5=_______。 8化简: = ______。 1 2 35 =_______。 二、选择题。、x为何值时, x 在实数范围内有意义 x?1 A、x > 1 B、x ≥ 1 C、x 10a = - a ,则a的取值范围是

A、 a>0 B、 a 11、若a?4=,则的值为 A、B、1C、100 D、196 12、下列二次根式中,最简二次根式的是 A、17 B、13 C、±17 D、±13 2 ) 14、下列计算正确的是 A、2+ = B、2+=22 C、2= D、 15、若x A、-1B、1C、2x-D、5-2x 16、计算的结果是 A、2+1 B、3 C、1 D、-1 三、解答题。 17、计算: - 18、计算:00·008 19、利用计算器探索填空: 44?=_______; 444?8=_______; 444444?88=_______;…… 由此猜想: n个8) =__________。444???44?88??? 1、≤、、、65、、、、-二、选择题 9、A 10、D 11、C 12、B 13、B 14、C 15、D 16、 A 三、解答题 17、解:原式=2- 18、解:原式=[]200·

=00·=-22 19、解:;66;666;……;666…6。 20、解:∵x+ =,∴= 10, 121∴x+2,∴x+=8, xx 2 22 - + =-2 1 x1x 1221∴ = x+2, xx ∴x- = ±6。 1 x 5 初中数学二次根式测试题 判断题:. 1.2=2.……. ?1?x2 是二次根式.…………… 2?122=2?2

浙教版八年级数学下册第章二次根式知识点总结

知识点一:二次根式的概念 【知识要点】 二次根式的定义:形如的式子叫二次根式,其中 叫被开方数,只有当是一个非负数时,才有意义. 【例2】若式子13x -有意义,则x 的取值范围是 . 举一反三: 1、使代数式2 21x x -+-有意义的x 的取值范围是 2、如果代数式mn m 1 +-有意义,那么,直角坐标系中点P (m ,n )的位置在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 【例3】若y=5-x +x -5+2009,则x+y= 解题思路:式子a (a ≥0),50,50 x x -≥??-≥? 5x =,y=2009,则x+y=2014 举一反三: 1、若11x x ---2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .3 3、当a 取什么值时,代数式 211a ++取值最小,并求出这个最小值。 已知a 是 5整数部分,b 是 5的小数部分,求12a b ++的值。若17的整数部分为x ,小数部分为y ,求y x 12+的值. 知识点二:二次根式的性质 【知识要点】 1. 非负性:是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到. 2. ()()a a a 20=≥. 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完 全平方的形式: 3. a a a a a a 200==≥-

6、媒介传递法 适当选择介于两个数之间的媒介值,利用传递性进行比较。 7、作差比较法 在对两数比较大小时,经常运用如下性质:①0a b a b ->?>;②0a b a b -0,b>0时,则:① 1a a b b >?>; ②1a a b b

二次根式知识点

二次根式 教学目标: 1、理解分母有理化的意义,会寻找合适的有理化因式将分母有理化。 2、解决一元一次方程和一元一次不等式,体会二次根的运用。 3、认识由整式、分式、二次根式构成的代数式知识系统和逻辑顺序,体会 化归思想。 教学重点:1、理解分母有理化的意义,会寻找合适的有理化因式将分母有理化。 2、通过解决简单的实际问题以及解决一元一次方程和一元一次不等式,体会二次根的运用。 教学难点:理解分母有理化的意义,会寻找合适的有理化因式将分母有理化。 教学过程: 在二次根式运算中,实数运算律、运算性质以及运算顺序规定都适用。 1、二次根式的定义:式子 (a ≥0)叫做二次根式。 2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式; (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式。如 不是最简二次根式,因被开方 数中含有4是可开得尽方的因数,又如 , , ..........都不是 最简二次根式,而 , ,5 , 都是最简二次根式。 3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二 次根式就叫做同类二次根式。如 , , 就是同类二次根式,因为 =2 , =3 ,它们与 的被开方数均为2。 4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说 这两个代数式互为有理化因式。如 与 ,a+ 与a- , - 与 + ,互为有理化因式。 ()()?x y x y +-= 利用平方差公式,得 ()()x y x y +-=x-y 观察上面这个等式,左边是两个含有二次根式的代数式相乘,右边不含二次根式。 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说两个含有二次根式的代数式互为有理化因式,如x y +与x y -互为有理化因式, 2、二次根式的性质: 1. (a≥0)是一个非负数, 即 ≥0; 2.非负数的算术平方根再平方仍得这个数,即:( )2=a(a ≥0);

二次根式知识点总结

二次根式知识点总结 王亚平 1. 二次根式的概念 二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时, a 才有意义. 2. 二次根式的性质 1. 非负性:)0(≥a a 是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到. 2.)0()(2 ≥=a a a 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完 全平方的形式:)0()(2 ≥=a a a 3. ? ? ?<-≥==)0() 0(2 a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方 根代替. 3. 最简二次根式和同类二次根式 1、最简二次根式: (1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或 2、同类二次根式(可合并根式): 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式 4. 二次根式计算——分母有理化 1.分母有理化 定义:把分母中的根号化去,叫做分母有理化。 2.有理化因式:

两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。有理化因式确定方法如下: ①单项二次根式:利用a a a =?来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。 ②两项二次根式:利用平方差公式来确定。如b a +与b a - ,b a + 与 b a - ,y b x a +与y b x a -分别互为有理化因式。 3.分母有理化的方法与步骤: ①先将分子、分母化成最简二次根式; ②将分子、分母都乘以分母的有理化因式,使分母中不含根式; 5. 二次根式计算——二次根式的乘除 1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。 )0,0(≥≥? = b a b a ab 2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。 )0,0(≥≥= ? b a ab b a 3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根 。 )0,0(≥≥= b a b a b a 4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。 )0,0(≥≥= b a b a b a 注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还 要考虑字母的取值范围,最后把运算结果化成最简二次根式. 6. 二次根式计算——二次根式的加减 二次根式的被开方数相同时是可以直接合并的,如若不同,需要先把二次根式化成最简二次根式,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。 1、判断是否同类二次根式时,一定要先化成最简二次根式后再判断。 2、二次根式的加减分三个步骤: ①化成最简二次根式; ②找出同类二次根式; ③合并同类二次根式,不是同类二次根式的不能合并

人教版八年级数学下册《二次根式》

初中数学试卷 八年级数学《二次根式》检测题补偿2016.12 姓名____________ 得分__________ 一、选择题(每题3分,共27分) 1、如果3a -有意义,则a 的取值范围是( ) (A )0a ≥ (B )0a ≤ (C )3a ≥ (D )3a ≤ 2、若式子1 a a b -+有意义,则点P (a ,b )在( ) (A). 第一象限 (B). 第二象限 (C). 第三象限 (D). 第四象限 3、下列二次根式中,最简二次根式是( ) (A )8a (B )5a (C )3a (D )22a a b + 4、下列计算正确的是( ) (A )133164+== (B )11121412142÷=÷= (C )5252+= (D )31 2314= 5、m 为实数,则2 45m m ++的值一定是( )

(A )整数 (B )正整数 (C )正数 (D )负数 6、下列各数中,与23的积为有理数的是( ) (A)32+ (B)32- (C)32+- (D)3 7、下列根式不能与48 合并的是( ) (A)、0.12 (B)、 18 (C)、113 (D)、-75 8、估计1 832?+的运算结果的范围应在( ) A.1到2 B. 2到3 C. 3到4 D. 4到5 9、如果a 2=-a ,那么a 一定是 ( ) A 、负数 B 、正数 C 、正数或零 D 、负数或零 二、填空题(每题3分,共24分) 10、计算:①=-2)3.0( ②=-2 )52( ;2( 3.14)π- = 。 11、使代数式x x --312有意义的x 的取值范围是: . 12、若x x x x -?-=--32)3)(2(成立。则x 的取值范围为 ; 13、在实数范围内分解因式2233a a -+=______________. 14、若12+a 与34-a 的被开方数相同,则a = 。 15、24n 是整数,则正整数n 的最小值是 。 16、若2552y x x =-+-+,则y-x=___________。 17、比较大小:(1) 3 5 2 6 (2)2- 3- 三、解答题 18、计算

二次根式知识点总复习

二次根式知识点总复习 一、选择题 1.5 x+有意义,那么x的取值范围是() A.x≥5B.x>-5 C.x≥-5 D.x≤-5 【答案】C 【解析】 【分析】 先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可. 【详解】 Q式子5 x+有意义, ∴x+5≥0,解得x≥-5. 故答案选:C. 【点睛】 本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 2.如果最简二次根式38 -能够合并,那么a的值为() a-与172a A.2 B.3 C.4 D.5 【答案】D 【解析】 【分析】 根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可. 【详解】 根据题意得,3a-8=17-2a, 移项合并,得5a=25, 系数化为1,得a=5. 故选:D. 【点睛】 本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键. 3.实数a,b在数轴上对应点的位置如图所示,化简|a|+2 -的结果是() (a b) A.2a+b B.-2a+b C.b D.2a-b 【答案】B 【解析】 【分析】

根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简. 【详解】 解:由数轴可知:0a <,0b >, ∴0a b -<, ∴()2a a b a a b =-+-=-+, 故选:B . 【点睛】 本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键. 4.已知n 是整数,则n 的最小值是( ). A .3 B .5 C .15 D .25 【答案】C 【解析】 【分析】 【详解】 解:=Q 也是整数, ∴n 的最小正整数值是15,故选C . 5.在下列算式中:=②=; ③42 ==;=,其中正确的是( ) A .①③ B .②④ C .③④ D .①④ 【答案】B 【解析】 【分析】 根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案. 【详解】 ①错误; =②正确; 222 ==,故③错误; ==④正确; 故选:B. 【点睛】 本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.

二次根式知识点总结大全

二次根式 【知识回顾】 1.二次根式:式子a (a ≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质: (1)(a )2 =a (a ≥0); (2)==a a 2 5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. ab =a ·b (a≥0,b≥0); b b a a =(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】 a (a >0) a -(a <0) 0 (a =0);

1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153 x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围 (1)x x --+31 5;(2)22)-(x 例3、 在根式1) 222;2);3);4)275x a b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。 求代数式22,211881-+-+++-+-=x y y x x y y x x x y 例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( ) A. a>b B. a

人教版八年级数学下册二次根式知识讲解(基础)

二次根式(基础) 【学习目标】 1、理解二次根式的概念,了解被开方数是非负数的理由. 2、理解并掌握下列结论: a ≥0,(a ≥0), (a ≥0),(a ≥0),并利用它们进行计算和化简. 【要点梳理】 要点一、二次根式及代数式的概念 1.二次根式:一般地,我们把形如(a ≥0)?的式子叫做二次根式,“ ”称为二次根号. 要点诠释: 二次根式的两个要素:①根指数为2;②被开方数为非负数. 2.代数式:形如5,a ,a+b ,ab ,,x 3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式. 要点二、二次根式的性质 1.a ≥0,(a ≥0); 2. (a ≥0); 3. . 要点诠释: 1.二次根式(a ≥0)的值是非负数。一个非负数可以写成它的算术平方根的形式, 即2()(0a a a =≥). 2.2a 与2()a 要注意区别与联系:1).a 的取值范围不同,2()a 中a ≥0,2a 中a 为任意值。 2).a ≥0时,2()a =2a =a ;a <0时,2()a 无意义,2a =a -. 【典型例题】 类型一、二次根式的概念 1(2015春?潍坊期中)下列各式中 ,一定是二次根式的有( ) 个. A.2 B.3 C.4 D.5 【答案】 B 【解析】2231x +-,B . 【总结升华】0.

举一反三: 【变式】下列式子中二次根式的个数有( ). (1)13;(2)3-; (3)21x -+;(4)38; (5)21()3-;(6)1x -(1x >) A .2 B.3 C.4 D.5 【答案】B. 2. (2016?贵港)式子在实数范围内有意义,则x 的取值范围是( ) A .x <1 B .x ≤1 C .x >1 D .x ≥1 【思路点拨】被开方数是非负数,且分母不为零,由此得到:x ﹣1>0,据此求得x 的取值范围. 【答案】C . 【解析】 解:依题意得:x ﹣1>0, 解得x >1. 故选:C . 【总结升华】考查了二次根式的意义和性质.概念:式子(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零. 举一反三: 【变式】下列格式中,一定是二次根式的是( ). A. 23- B. ()20.3- C. 2- D. x 【答案】B. 类型二、二次根式的性质 3. 计算下列各式: (1)23 2()4 --2(3.14)π- 【答案与解析】(1) 33=-2=-42 ?原式. (2) =3.14-=-3.14ππ原式. 【总结升华】 二次根式性质的运用. 举一反三: 【高清课堂:二次根式及其乘除法(上)例3 (2)(3)】 【变式】(1)2)2 52(-=_____________. (2)2)2(2a a ---=_____________.

新人教版八年级数学下册二次根式的知识点汇总

二次根式的知识点汇总 知识点一: 二次根式的概念 形如()的式子叫做二次根式。 注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以 是 为二次根式的前提条件,如 , , 等是二次根式,而 , 等 都不是二次根式。 例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、 1 x 、x (x>0)、0、42、-2、1x y +、 x y +(x ≥0,y?≥0) . 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0. 知识点二:取值范围 1、 二次根式有意义的条件:由二次根式的意义可知,当a ≧0时, 有意义,是二次根式,所以要使二次根式 有意义,只要使被开方数大于或等于零即可。 2、 二次根式无意义的条件:因负数没有算术平方根,所以当a ﹤0时,没有意义。 例2.当x 是多少时,31x -在实数范围内有意义? 例3.当x 是多少时,23x ++1 1 x +在实数范围内有意义? 知识点三:二次根式 ( )的非负性 ( )表示a 的算术平方根,也就是说, ( )是一个非负数,即 0()。 注:因为二次根式()表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负 数( )的算术平方根是非负数,即 0( ),这个性质也就是非负数的算术平方根的性质,和绝对值、 偶次方类似。这个性质在解答题目时应用较多,如若 ,则a=0,b=0;若 ,则a=0,b=0;若 ,则a=0,b=0。 例4(1)已知y=2x -2x -,求 x y 的值.(2)1a +1b -=0,求a 2004+b 2004的值

二次根式知识点归纳及题型总结精华版

二次根式知识点归纳和题型归类 一、知识框图 二、知识要点梳理 知识点一、二次根式的主要性质: 1.; 2.; 3.; 4.积的算术平方根的性质:; 5.商的算术平方根的性质:. 6.若,则. 知识点二、二次根式的运算 1.二次根式的乘除运算 (1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2) 注意每一步运算的算理;

(3) 乘法公式的推广: 2.二次根式的加减运算 先化简,再运算, 3.二次根式的混合运算 (1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里; (2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. 一. 利用二次根式的双重非负性来解题(0≥a (a ≥0),即一个非负数的算术平方根是一个非负数。) 1.下列各式中一定是二次根式的是( )。 A 、3-; B 、x ; C 、12+x ; D 、1-x 2.x 取何值时,下列各式在实数范围内有意义。 (1) (2)121+-x (3)45++x x (6). (7)若1)1(-=-x x x x , 则x 的取值范围是 (8)若1 313++=++x x x x ,则x 的取值范围是 。 3.若13-m 有意义,则m 能取的最小整数值是 ;若20m 是一个正整数,则正整数m 的最小值是________. 4.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。 5. 若20042005a a a -+-=,则2 2004a -=_____________;若433+-+-=x x y ,则=+y x 6.设m 、n 满足3 29922-+-+-=m m m n ,则mn = 。 8. 若三角形的三边a 、b 、c 满足3442-++-b a a =0,则第三边c 的取值范围是 10.若0|84|=--+-m y x x ,且0>y 时,则( ) A 、10<)0() 0(0)(a a a b a a (即一个数的平方的算术平方根等于这个数的绝对值)来解题 1.已知233x x +=-x 3+x ,则( ) A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤0 2..已知a

八年级数学下册二次根式定义练习题

八年级数学下册二次根式定义练习题 一、选择题 1.要使式子x -1有意义,则x 的取值范围是( ) A.x≤1 B.x≥1 C.x >0 D.x >﹣1 2、下列各式一定是二次根式的是( ) A. B. C. D. 3.下列二次根式中,属于最简二次根式的是( ) A.2 x B.8 C.2x D.12+x 4x 的取值范围是( ) A .0x > B .2x ≥- C .2x ≥ D .2x ≤ 5、若式子34x -在实数范围内有意义,则x 的取值范围是( ) A.43x ≥ B. 43x> C. 34x ≥ D. 34 x> 6. 如果代数式有意义,那么x 的取值范围是( ) A .x≥0 B .x≠1 C .x >0 D .x≥0且x≠1 7 =成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x > D. 2x ≥ 8、在函数y=中,自变量x 的取值范围是( ) A.x ≥﹣2且x ≠0 B.x ≤2且x ≠0 C.x ≠0 D.x ≤﹣2 9、求使下列各式有意义的x 的取值范围? (1)2+x -x 23- (2)x -- 11+x (3) 1y x = - (4)2||12--x x

一、选择题 1.下列式子成立的是( ) A .33 1= B .2332=- C .332=-)( D.(3)2=6 2.化简8的结果是( ) A .2 B .4 C .22 D .±22 3.化简27 23-的结果是( ) A .32- B .32- C .36- D .2- 412a =-,则( ) A .a <12 B. a ≤12 C. a >12 D. a ≥12 5、已知y 3,则2xy 的值为( ) A .15- B .15 C .152- D . 152 6<0)得( ) A B C D 7、设实数a ,b 在数轴上对应的位置如图所示,化简 2a +|a +b |的结果是( ) A.-2a +b B.2a +b C.-b D. b 8、若+|2a ﹣b+1|=0,则(b ﹣a)2015=( ) A.﹣1 B.1 C.5 2015 D.﹣520159

八年级下册数学--二次根式知识点整理

二次根式 1、 算术平方根的定义:一般地,如果一个正数x 的平方等于a ,那么这个正数x 叫做 a 的算术平方根。 2、 解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。 如:-2x >4,不等式两边同除以-2得x <-2。不等式组的解集是两个不等式解集的公共部分。如 3、 分母≠0 4、 绝对值:|a |=a (a ≥0);|a |= - a (a <0) 一、 二次根式的概念 一般地,我们把形如 a (a ≥0)的式子叫做二次根式,“ ”称为二次根号。 ★ 正确理解二次根式的概念,要把握以下五点: (1) 二次根式的概念是从形式上界定的,必须含有二次根号“ ”,“ ”的根指数 为2,即“2 ”,我们一般省略根指数2,写作“ ”。如25 可以写作 5 。 (2) 二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。 (3) 式子 a 表示非负数a 的算术平方根,因此a ≥0, a ≥0。其中a ≥0是 a 有意 义的前提条件。 (4) 在具体问题中,如果已知二次根式 a ,就意味着给出了a ≥0这一隐含条件。 (5) 形如b a (a ≥0)的式子也是二次根式,b 与 a 是相乘的关系。要注意当b 是分 数时不能写成带分数,例如83 2 可写成8 2 3 ,但不能写成2 23 2 。 练习:一、判断下列各式,哪些是二次根式?(1) 6 ; (2)-18 ; (3)x 2+1 ; (4)3-8 ; (5)x 2 +2x+1 ; (6)3|x | ; (7)1+2x (x <- 12 ) 二、当x 取什么实数时,下列各式有意义?

(1)2-5x ; (2)4x 2+4x+1 二、二次根式的性质: 练习:计算(1)( 35 )2 (2) (4 3 )2 (3) (-62) (4)- (- 18 )2 (6)x 2-2x+1 + x 2-6x+9 (1≤x ≤3) ★( a )2(a ≥0)与a 2 的区别与联系:

二次根式知识总结与测试(极力推荐)

二次根式 教学目标: 1、进一步了解二次根式有意义的条件及其基本性质,熟练化简含二次根式的式子; 2、熟练地进行二次根式的加、减、乘、除混合运算。 教学重点、难点: 1、二次根式的意义及性质; 2、二次根式的混合运算; 3、综合运用二次根式的性质及运算法则化简和计算含二次根式的式子。 一:详细知识要点讲解; 【要点归纳】 1. 二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是 一个非负数时,才有意义. 2. 二次根式的性质: ① ② ③ ④ 3. 二次根式的运算 二次根式的运算主要是研究二次根式的乘除和加减. (1)二次根式的加减: 需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。 注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并.但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数. (2)二次根式的乘法: (3)二次根式的除法: 注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.(4)二次根式的混合运算:

先乘方(或开方),再乘除,最后加减,有括号的先算括号里面的;能利用运算律或乘法公式进行运算的,可适当改变运算顺序进行简便运算. 注意:进行根式运算时,要正确运用运算法则和乘法公式,分析题目特点,掌握方法与技巧,以便使运算过程简便.二次根式运算结果应尽可能化简.另外,根式的分数必须写成 假分数或真分数,不能写成带分数.例如不能写成. (5)有理化因式: 一般常见的互为有理化因式有如下几类: ①与;②与; ③与;④与. 说明:利用有理化因式的特点可以将分母有理化. 【难点指导】 1、如果是二次根式,则一定有;当时,必有; 2、当时,表示的算术平方根,因此有;反过来,也可以将一个非负数写成的形式; 3、表示的算术平方根,因此有,可以是任意实数; 4、区别和的不同: 中的可以取任意实数,中的只能是一个非负数,否则无意义. 5、简化二次根式的被开方数,主要有两个途径: (1)因式的内移:因式内移时,若,则将负号留在根号外.即:.(2)因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即: 6、二次根式的比较: (1)若,则有;(2)若,则有. 说明:一般情况下,可将根号外的因式都移到根号里面去以后再比较大小. 知识点1.二次根式的定义 形如()0 a的式子叫二次根式,其中a叫被开放数。 a ≥

初二数学下册二次根式

一、知识要点: 1)形式: 一般地,把式子)0(≥a a 叫做二次根式。二次根式的根指数为2次。 2)意义:被开方数0≥a 时,a 才有意义,a a ,0<没有意义。 注意:a 是被开方数,是根号里面的所有内容,可以是单项式,也可以是多项式。 特别地,当a a -,均有意义时,0=a 。即,一个式子中,有2个被开方数互为相反数时,则这两个被开方数均为0。 思考:设:n m ,都是实数,且满足3 6 9922-+-+-=n n n m 。求:n m ?的值 注意:a a ,0≥是个非负数 特别地,( )2,"",均为非负数,当几个非负数的和为0时,则每个非负数均为0。 3)利用)0()(2 ≥=a a a 给多项式在实数范围内分解因式 反过来2 )(a a =)0(≥a ,这样任何一个非负数都能写成一个数(其正的平方根)的平方。 特别地,这样可把在有理数范围内不能分解因式的式子在实数范围内分解因式。 4)最简二次根式的条件:1、被开方数中不含有分母(或小数) 2、被开方数中不含能开得尽方的因数或因式。 特别:当被开方数为多项式时,先因式分解分解成因式再判断根式是否是最简。 5)同类二次根式的概念 同类二次根式条件:化简后,1、被开方相同 2、都是二次根式 特别提醒:判断二次根式是否同类二次根式,必须先将二次根式化为最简二次根式,再 判断。 6)根式的化简 )0(<-a a 2a 的化简:a a =2,即a = )0(0=a )0(>a a 7)根式的乘除法 积(商)的算术平方根:)0,0(≥≥?= ?b a b a b a )0,0(>≥=b a b a b a

最新苏教版八年级下册数学第十二章二次根式知识点

第十二章二次根式 一、二次根式的概念 一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。 ★正确理解二次根式的概念,要把握以下五点: (1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2, 即“2 ”,我们一般省略根指数2,写作“”。如 2 5 可以写作 5 。 (2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。 (3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。其中a≥0是 a 有意义的前提条件。 (4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。要注意当b是分数 时不能写成带分数,例如8 3 2 可写成 8 2 3 ,但不能写成2 2 3 2 。 二、二次根式的性质:

★( a )2(a≥0)与a2的区别与联系:

三、代数式 用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起 来的式子叫代数式。例:3,x,x+y,3x (x≥0),-ab,s t (t≠0,x3都是代数式 注(1)单独一个数或字母也是代数式;(2)代数式中不能含有关系符号(>,<,=等)(1)将两个代数式用关系符号(>,<,=等)连接起来的式子叫关系式,方程和不等式都是关系式。如2x+3>3x-5是关系式。 列代数式的常用方法: (1)直接法:根据问题的语言叙述直接写出代数式。 (2)公式法:根据公式列出代数式。 (3)探究规律法:将蕴含在一组数或一组图形中的排列规律用代数式表示出来。 四、二次根式的乘除 1、单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单 项式里含有的字母,则连同它的指数作为积的一个因式。 2、单项式与单项式相除,把系数与同底数幂分别相除,作为商的因式,对于只在被 除式里含有的字母,则连同它的指数作为商的一个因式。 五、二次根式的乘法法则 a . b =ab (a≥0,b≥0)即:二次根式相乘,把被开方数相乘,根指数不变(1)进行二次根式的乘法运算时,一定不能忽略其被开方数a,b均为非负数这一条件。

初二数学下册第一章—二次根式-题(人教版)

初二数学下册第一章—二次根式题(人教版) 一.精心选一选(每小题题3分,共24分) 1.下列各式是二次根式的是() 2 x的取值范围可以是() A..–6 B.–5 C.–4 D.–3 3. 函数x的取值范围是() A .x≥–2 B. x>1 C.–2<x<1 D. x≥–2且x ≠1 4. ) A. x≥0,y≥0 B .x≥0且y>0 C. x,y同号 D. x 0 y ≥ 5.(福州)当m<0时,化简 m 的结果是() A. –1 B . 1 C. m D. –m 6.(杭州)已知m=- (×则结果中根号部分的范围是() A. 2<m<3 B. 4<m<5 C. –5<m<–4 D.–6<m<–5 7. 如果1,1的值为() A. 2 B. – D. 8. 已知x<2)

A. x–2 B. x+2 C. –x–2 D. 2–x 二、认真填空。(每小题3分,共18分) 9. 计算:(1 )2=_______; 10. a=_______ 11. ______与______之间. 12. 如右图,表格中a,b,c,d,e分别表示不同的四个实数,且表中每 行、每列、每条对角线的3个数之和都等于0.则a=____b=_____c=____d=____e=_____f=_____ 13. 若a,b 分别是62a–b的值是 _________ 14.是整数,则正整数n的最小值为_______ 三、认真计算,.(15题每题2分,16题每题3分 17题每题4分,共18分) 15. 当x是怎样的实数时,下列各式在实数范围内有意义? (1(2 16. 化简下列各式。 (3)(

相关主题
文本预览
相关文档 最新文档