当前位置:文档之家› 一类变系数抛物型微分方程的自由边界问题

一类变系数抛物型微分方程的自由边界问题

一类变系数抛物型微分方程的自由边界问题
一类变系数抛物型微分方程的自由边界问题

二阶变系数线性微分方程的特解

二阶变系数线性微分方程的特解 张金战 ( 陇南师范高等专科学校, 甘肃成县 742500) 摘要: 在已知二阶变系数齐次微分方程的一个非零特解的条件下, 可以得到 该齐次微分方程和与它对应的非齐次微分方程的通解, 本文给出了在二阶变系数齐次微分方程的系数满足一定条件下的特解形式. 关键词: 线性微分方程; 特解; 通解 中图分类号: O 175.1 文献标识码: A 文章编号: 1008- 9020( 2007) 02- 014- 02 1 、引言对于方程( 2) 的特解的确定, 有以下结论: 2二阶变系数线性微分方程是指定理 1 若存在实数 a,使 a+ap(x)+q(x)=0, 则方程( 2) 有特 ax 解 y=e. 1y"+p(x)y'+q(x)y=f(x) ( 1) 2axax2ax 证明 : 设 a+ap(x)+q(x)=0, 将 y=e,y'=ae, y"=ae代入方 111y"+p(x)y'+q(x)y=0 ( 2) 2axaxaxax 2程( 2) 的左端得 : ae+aep (x)+eq (x)=e[a+ap (x)+q (x)]=0, 即其中 p( x) ,q(x),f(x)都是关于 x 的连续函数, 方程( 1) 称为 ax y=e是方程( 2) 的特解. 1二阶变系数非齐次线性微分方程, 方程( 2) 称为方程( 1) 对应 x推论1 若 q(x)+p(x)+1=0,则方程( 2) 有特解 y=e. 1的齐次微分方程. 在已知方程( 2) 的一个非零特解的条件下, - x推论 2 若 q(x)- p(x)+1=0,则方程( 2) 有 特解 y=e. 1文[1]给出了求方程( 2) 的通解的刘维尔公式, 文[2]、文[3]给出 推论 3 若 q(x)=0,则方程( 2) 有特解 y=1. 1了方程( 1) 的一个通解公式.这样将求解方程( 1) 和( 2) 的问题 2 定理 2 若 k?1 且 k(k- 1)+kxp(x)+xq(x)=0,则方程( 2) 有特就转化成了找出方程( 2) 的一个非零特解的问题 , 但求方程 k解 y=x. 1( 2) 的特解没有一般方法, 通常用观察法, 多数情况下难以操 2kk- 1证明 : 设 k (k- 1)+kxp (x)+xq (x)=0, 将 y=x,y'=kx,y"=k

变系数线性常微分方程的求解

变系数线性常微分方程的求解 张慧敏,数学计算机科学学院 摘要:众所周知,所有的常系数一阶、二阶微分方程都是可解的,而变系数 二阶线性微分方程却很难解,至今还没有一个普遍方法。幂级数解法是一个非常有效的方法,本文重点讨论二阶变系数线性常微分方程的解法,从幂级数解法、降阶法、特殊函数法等方面探究了二阶微分方程的解法,简单的介绍了几种高阶微分方程的解法,并讨论了悬链线方程等历史名题。 关键词:变系数线性常微分方程;特殊函数;悬链线方程;幂级数解法 Solving linear ordinary differential equations with variable coefficients Huimin Zhang , School of Mathematics and Computer Science Abstract:As we know, all of ordinary differential equations of first, second order differential equations with constant coefficients are solvable. However, the linear differential equations of second order with variable coefficients are very difficult to solve. So far there is not a universal method. The method of power-series solution is a very efficient method. This article focuses on solving linear ordinary differential equations of second order with variable coefficients, and exploring the solution of in terms of power-series solution, the method of reducing orders, the method of special functions. Also, this paper applies the above methods to solve several linear differential equations of higher order and especially discusses the famous catenary equation. Key words:Linear ordinary differential equations with variable coefficients; Special Functions; catenary equation; Power Series Solution.

一维抛物线偏微分方程数值解法(附图及matlab程序)

一维抛物线偏微分方程数值解法(4) 上一篇参看一维抛物线偏微分方程数值解法(3)(附图及matlab程序) 解一维抛物线型方程(理论书籍可以参看孙志忠:偏微分方程数值解法) Ut-Uxx=0, 00) U(x,0)=e^x, 0<=x<=1, U(0,t)=e^t,U(1,t)=e^(1+t), 0

维抛物线偏微分方程数值解法

一维抛物线偏微分方程数值解法(2) 上一篇文章请参看一维抛物线偏微分方程数值解法(1) 解一维抛物线型方程(理论书籍可以参看孙志忠:偏微分方程数值解法) Ut-Uxx=0, 00) U(x,0)=e^x, 0<=x<=1, U(0,t)=e^t,U(1,t)=e^(1+t), 0

最新二阶变系数线性微分方程的一些解法

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程的 一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1 +u 2 12dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(212dx y d +p(x) dx dy 1 +q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 212dx y d +p(x) dx dy 1 +q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1dz =-[1 y 2 +p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

二阶变系数齐次微分方程

毕业论文 题目二阶变系数齐次线性微分方程的若干解法 院系滨江学院 专业信息与计算科学 学生姓名xxx XX 学号xxxXX 指导教师XXX 职称教授 二O一二年五月二十日

目录 摘要 ...................................................................... 3 引言 . (3) 1、 用常数变易法求解二阶变系数齐次微分方程的解 (3) 1.1 已知方程的一个特解求通解 (3) 2、 化为恰当方程通过降阶法求解二阶变系数齐次微分方程的解 (5) 2.1求满足定理1的恰当方程的通解 ......................................... 5 2.2 求满足定理2的恰当方程的通解 (6) 3、 化为RICCAIT 方程求二阶变系数齐次线性微分方程的解 (6) 3.1若方程系数满足()'()p x q x =情况 ....................................... 8 3.2若方程系数满足()()1p x q x +=-情况 ................................... 9 3.3 若方程系数满足()()1p x q x -=情况 (10) 结束语 ................................................................... 11 参考文献 . (11)

二阶变系数齐次线性微分方程的若干解法 姓名 xx大学xx专业,南京 210044 摘要:二阶线性齐次微分方程无论是在微分方程理论上还是在应用上都占有重要位置。现在对于常系数的线性微分方程的解法研究已经比较完备。但对于变系数线性微分方程如何求解,却没有通用的方法,因此探求二阶变系数微分方程的解法就很有必要。本文主要讨论二阶变系数齐次线性微分方程的解法问题,通过利用常数变易法,和系数在满足特定条件下,化为恰当方程和riccati方程来求解二阶变系数齐次微分方程的解法,直接通过具体例题解决具有满足相同条件关系的二阶变系数齐次微分方程的解,从而进一步加深对二阶变系数齐次线性微分方程的解法的理解。 关键词:二阶变系数齐次线性微分方程;常数变易法;降阶法;恰当方程;riccati方程;通解; 引言:尽管由于计算数学和计算技术的迅猛发展,通过电子计算机可以迅速而且比较准确 地处理有关微分方程的求解问题。但是,在实际学习生活中对于一个常微分方程,不论从理论研究的角度,或从实际应用的角度看,都具有十分重要的地位。现在我们对于常系数线性微分方程的解法,已非常完备,但是对于理论比较完整的、有广泛应用的线性变系数微分方程至今却没有一般的求解方法,因此二阶变系数齐次微分方程的求解问题一直是人们感兴趣的研究课题。本文对系数满足特定条件的二阶变系数微分方程,通过观察其形式,巧妙利用常数变易法,化为恰当方程,和化为riccati方程来求解。主要针对不同类型的二阶变系数方程用不同的方法实现解决部分满足一定条件下的方程的解的目的。诣在通过具体例题的解法,解决系数满足特定条件下的二阶变系数齐次线性微分方程求解的问题,从而使我们能更进一步加深对二阶变系数齐次微分方程解法的理解,以便适应在工程技术的实际领域或学生在学习相关专业中的需要。 本文主要通过把方程转化为我们所熟悉形式,来讨论二阶变系数齐次微分方程 y p x y q x y ++= ''()'()0 (1)p x q x是关于x的连续函数。 的解,其中(),() 1、用常数变易法求解二阶变系数齐次微分方程的通解 1.1 已知方程一个特解求方程通解 在我们课本上所学的关于求解二阶常系数齐次线性微分方程,我们可以通过特征方程法求其线性无关的特解, 然后再利用微分方程解的相关性质从而求得其通解,对于这个方法我们已经很熟悉了。那对于二阶变系数齐次线性微分方程求解怎么进行?因为二阶变系数齐

几类二阶变系数常微分方程解法论文

几类二阶变系数常微分方程解法论文

二阶变系数常微分方程几种解法的探讨 胡博(111114109) (湖北工程学院数学与统计学院湖北孝感 432000) 摘要:常系数微分方程是我们目前可以完全解决的一类方程,而求变系数常微分方程的通解是比较困难的,一般的变系数常微分方程目前是还没有通用解法的。本文主要对二阶变系数常微分方程求解进行了探究,利用特解、常数变易法、变量变换等方法求出了某些二阶变系数线性微分方程的通解,并初步归纳了二阶变系数线性方程的求解基本方法及步骤。 关键词:二阶变系数线性微分方程;变换;通解;特解 To explore the solution of some ordinary differential equations of two order variable coefficient Zhang jun(111114128) (School of Mathematics and Statistics Hubei Engineering University Hubei Xiaogan 432000) Abstract:Differential equation with constant coefficients is a class of equations we can completely solve the present general solution, and change coefficient differential equations is difficult, the variable coefficient ordinary differential equation is at present there

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程 的一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1 +u 2 12dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(212dx y d +p(x) dx dy 1 +q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 212dx y d +p(x) dx dy 1 +q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1 dz =-[1y 2+p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

变系数常微分方程的解法探讨

目录 1 引言 (1) 2 一阶变系数常微分方程的解法探讨 (1) 2.1 变系数一阶微分方程的几个可积类型 (1) 2.2 应用举例 (4) 3二阶变系数线性微分方程的解法探讨 (5) 3.1用求特解的方法求二阶变系数线性微分方程的解 (6) 3.1.1对变系数线性二阶微分方程特解的探索 (6) 3.1.2 确定的通解 (7) 3.1.3用常数变易法确定的特解 (8) 3.1.4应用举例 (8) 3.2二阶变系数线性微分方程的积分因子解法 (9) 3.2.1关于二阶变系数线性微分方程的积分因子的一些结论 (9) 3.2.2讨论如何求出, (10) 3.2.3应用举例 (10) 3.3二阶线性变系数常微分方程的常系数化解法 (11) 3.3.1利用自变量的变换实现常系数化 (11) 3.3.2利用未知函数的齐次线性变换实现常系数化 (12) 3.3.3 应用举例 (13) 4 三阶变系数线性微分方程的解法探讨 (14) 4.1 方程(4.1)化为常系数方程的一种充要条件 (14) 4.2 应用举例 (16) 结束语 (17) 参考文献 (17) 致谢 (17)

数学计算机学院数学与应用数学专业2013届余小艳 摘要:求变系数常微分方程的解,迄今为止没有一种确定的方法. 本文通过寻找特解和变量代换等方法得到了一些新的求解一类二阶变系数线性微分方程通解的方法,并讨论了一阶变系数线性微分方程和三阶变系数线性微分方程化为常系数方程的几个充要条件. 又举例说明了这些方法的可行性,有效扩充了变系数微分方程可解范围. 关键词:变系数常微分方程;二阶变系数微分方程;通解;变量变换 中图分类号:O175.1 Discussion on the Solution of Ordinary Differential Equation with Variable Coefficient Abstract: So far, there hasn’t been an established method on how to solve Ordinary Differential Equation (ODE) with Variable Coefficients. This paper presents some methods of solving the second order linear ODE with variable coefficients by means of searching special solution and variable transformation, etc. This paper also gives an introduction to the necessary and sufficient conditions of first order linear ODE and 3 rd order linear ODE with variable coefficient that can be translated into constant coefficients. Moreover, we give some examples to illustrate the feasibility of these methods. Hence, the results effectively extend the solvable for the variable coefficient differential equations. Key words: variable coefficients ordinary differential equations;second order differential equations with variable coefficients;general solutions;variable transformation

变系数_非线性微分方程的求解

变系数/非线性微分方程的求解:Example1: van der Pol equation Rewrite the van der Pol equation (second-order) The resulting system of first-order ODEs is 见:vdp_solve.m及vdp.mdl vdp_solve.m vdp.mdl

Example2: 2 with x(0) = 4 x (0)=0 5(5)5sin()5 +-+= x t x t x 见:exam2_solve.m及exam2.mdl exam2_solve.m exam2.mdl

Example3: ODEs 函数实现及封装说明[以一阶微分方程为例] 510 w i t h (0)4 dx x x dt +==- 引言: 一步Euler 法求解[相当于Taylor 展开略去高阶项]: 11()k k k k k k k k k k k x x x Ax bu t x x t x x t Ax bu ++-==+??=+??=+??+ 补充说明1:对于任意方程/方程组可化为如下一阶形式[方程组]: x Ax Bu =+ 或者(,)(,)M t x x f t x = 补充说明2:ODEs 的解法不同之处在于 1、时间步长的选取(及导数的求解?):有无误差控制 变步长; 2、积分方法:选用哪几个时间状态信息。 见:my_ode_rough.m[直接求解] / test_my_ode.m[按Matlab/ODEs 方式封装] my_ode_rough.m

热传导方程抛物型偏微分方程和基本知识

1. 热传导的基本概念 1.1温度场 一物体或系统内部,只要各点存在温度差,热就可以从高温点向低温点传导, 即产生热流。因此物体或系统内的温度分布情况决定着由热传导方式引起的传热速率(导热速率)。 温度场:在任一瞬间,物体或系统内各点的温度分布总和。 因此,温度场内任一点的温度为该点位置和时间的函数。 〖说明〗 若温度场内各点的温度随时间变化,此温度场为非稳态温度场,对应于非稳 态的导热状态。 若温度场内各点的温度不随时间变化,此温度场为稳态温度场,对应于稳态 的导热状态。 若物体内的温度仅沿一个坐标方向发生变化,且不随时间变化,此温度场为 一维稳态温度场。 1.2 等温面 在同一时刻,具有相同温度的各点组成的面称为等温面。因为在空间同一点不可能同时有两个不同的温度,所以温度不同的等温面不会相交。 1.3 温度梯度 从任一点起沿等温面移动,温度无变化,故无热量传递;而沿和等温面相交 的任一方向移动,温度发生变化,即有热量传递。温度随距离的变化程度沿法向最大。 温度梯度:相邻两等温面间温差△t与其距离△n之比的极限。 〖说明〗 温度梯度为向量,其正方向为温度增加的方向,与传热方向相反。 稳定的一维温度场,温度梯度可表示为:grad t = dt/dx

2. 热传导的基本定律——傅立叶定律 物体或系统内导热速率的产生,是由于存在温度梯度的结果,且热流方向和 温度降低的方向一致,即与负的温度梯度方向一致,后者称为温度降度。 傅立叶定律是用以确定在物体各点存在温度差时,因热传导而产生的导热速率大小的定律。 定义:通过等温面导热速率,与其等温面的面积及温度梯度成正比: q = dQ/ds = -λ·dT/dX 式中:q 是热通量(热流密度),W/m2 dQ是导热速率,W dS是等温表面的面积,m2 λ是比例系数,称为导热系数,W/m·℃ dT / dX 为垂直与等温面方向的温度梯度 “-”表示热流方向与温度梯度方向相反 3. 导热系数 将傅立叶定律整理,得导热系数定义式: λ= q/(dT/dX) 物理意义:导热系数在数值上等于单位温度梯度下的热通量。因此,导热系 数表征物体导热能力的大小,是物质的物性常数之一。其大小取决于物质的组成结构、状态、温度和压强等。 导热系数大小由实验测定,其数值随状态变化很大。 3.1 固体的导热系数 金属:35~420W/(m·℃),非金属:0.2~3.0W/ (m·℃) 〖说明〗

用显式格式求解二维抛物型偏微分方程

用显式格式求解二维抛物型偏微分方程 2010-05-14 10:41 function varargout=liu(varargin) T=1;a=1;h=1/32;dt=1/200; [X,T,Z]=chfenmethed(h,dt,a,T); mesh(X,T,Z(:,:,3)); shading flat; % xlabel('X','FontSize',14); % ylabel('t','FontSize',14); % zlabel('error','FontSize',14); % title('误差图'); function [X,Y,Z]=chfenmethed(h,dt,a,T); %求解下问题 %u_t-a*(u_xx+u_yy)=f(x,y,t) 0

r=a*dt/h^2; [X,Y]=meshgrid(x,y); Z=zeros(m,m,n); U=zeros(m,m,n); for i=1:m for j=1:m U(i,j,1)=d(x(i),y(j)); end end for j=2:n for k=1:m U(1,k,j)=g0(y(k),t(j)); U(m,k,j)=g1(y(k),t(j)); U(k,1,j)=h0(x(k),t(j)); U(k,m,j)=h1(x(k),t(j)); end end for k=2:n for i=2:m-1 for j=2:m-1 U(i,j,k)=U(i,j,k-1)+r*a*(U(i+1,j,k-1)+U(i-1,j,k-1)+U(i,j+1,k-1)... +U(i,j-1,k-1)-4*U(i,j,k-1))+f(x(i),y(j),t(k-1));

1、变系数线性微分方程的求解

本科毕业论文 题目:变系数线性微分方程的求解问题院(部):理学院 专业:信息与计算科学 班级:信计081 姓名:张倩 学号:2008121191 指导教师:庞常词 完成日期:2012年6月1日

目录 摘要 (Ⅱ) ABSTRACT (Ⅲ) 1前言 1.1微分方程的发展和应用 (1) 1.2二阶变系数线性常微分方程的重要性 (2) 1.3本文的研究内容及意义 (2) 2二阶变系数线性微分方程特、通解与系数的关系 2.1基本概念 (3) 2.2二阶变系数线性微分方程的求解定理 (3) 2.3二阶变系数线性微分方程特、通解与系数的关系 (5) 3 微分方程的恰当方程解法 3.1恰当方程的概念 (8) 3.2恰当微分方程解法 (10) 4 微分方程的积分因子解法 4.1积分因子的概念 (14) 4.2积分因子解法 (14) 5二阶变系数微分方程可积的条件 结论 (22) 谢辞 (23) 参考文献 (24)

摘要 微分方程在数学理论中占有重要位置,在科学研究、工程技术中有着广泛的应用。在微分方程理论中,一些特殊的微分方程的性质及解法也已经有了深入的研究,它们总是可解的,但是变系数微分方程的解法比较麻烦的。 如果能够确定某一类型的二阶变系数线性微分方程的积分因子或恰当方程,则该二阶变系数线性微分方程就可以求解,问题在于如何确定积分因子和恰当方程及该类方程在何种情况下可积。 本文通过对微分方程的理论研究,用不同的方法探讨这类问题,扩展了变系数线性微分方程的可积类型,借助积分因子和恰当方程的方法求解方程。 关键词:变系数;二阶微分方程;积分因子;恰当因子

S olve For Varied Coefficient Second Order Liner Differential Equation ABSTRACT Second order liner homogeneous differential equation plays an important role in mathematics theory, and use extensively in science research and technology. In differential equation theory, some special differential equation’s solve ways have already been researched. So they can be seemed as could be solved sort of equation. But varied coefficient equation, however, this solve for this sort of equation is hard. If we can make integrating factor or exact equation of some types of second order liner different equation, and this types of second order liner different equation can be solved. The problem is how to make integrating factor and exact equation, and this type equation can be integral in which condition. This article utilizes different ways to research this problem in different equation theories, which expand could be solved type of varied coefficient second order liner differential equation. By integrating factor and exact equation make varied coefficient second order liner differential equation. Key Words: varied coefficient; second order liner differential equation; integrating factor; exact equation

一类二维抛物型方程的ADI格式

一类二维抛物型方程的ADI格式 【摘要】本文针对一类二维抛物型方程,建立了一个在空间和时间方向上均具有二阶精度的ADI格式,并分析其稳定性. 比较以往算法,此格式具有精度较高,无条件稳定等优点,同时,该方法通过求解两个线性代数方程得到原问题的解,避免了非线性迭代运算,提高了计算效率. 【关键词】二维抛物型方程;ADI格式;稳定性;截断误差 1.引言 抛物型偏微分方程在研究热传导过程、一些扩散现象及电磁场传播等许多问题中都有广泛的应用,对这一类方程数值解法的研究一直是科研工作者关注的热点问题之一,其中高精度的有限差分方法更是受到了越来越多的重视. 考虑如下的初边值问题[1]: 其中,为常数. 在文献[1]中对问题(1)建立了差分格式,格式的截断误差阶为.本文将在文献[1]的基础上进一步研究问题(1)的高效差分格式,建立了一个高精度的交替方向隐式差分格式(即ADI格式),提高了时间方向上的精度,并给出相应的稳定性分析。 2.差分格式的建立 为了得到问题(1)的有限差分格式,首先将求解区域进行网格剖分,结点为. 选取正整数L和N,并令为方向上的网格步长,为方向上的网格步长,记 假定第层的已知,则由第(Ⅰ)步,通过解一个三对角线性代数方程组求出,再由第(Ⅱ)步,再解一个三对角线性代数方程组即可求出. 所以,只要利用追赶法求解两个三对角线性代数方程组即可,此时计算量与储存量都较小. 另外,在处理边界条件时,为了提高精度,采取中心差分,这样会出现虚拟值,此时,只要再与格式中的方程联立,即可消去虚拟值[2]. 3. 稳定性分析 下面采用von Newmann方法[3]对上述D格式进行稳定性分析. 一般地,低阶项不影响差分格式的稳定性,所以不妨略去项,并对(3)、(5)式消去中间变量得: 利用Taylor展开式求误差,可知此处建立的D格式的截断误差阶为. 参考文献:

扩散问题的偏微分方程模型,数学建模

第七节 扩散问题的偏微分方程模型 物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决. MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程. 本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程. §1 抛物型方程的导出 设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +?时刻这段时间内,通过S 流入Ω的质量为 2 221(cos cos cos )dSd t t t S u u u M a b c t x y z αβγ+????=++???? ??. 由高斯公式得 2222 221222()d d d d t t t u u u M a b c x y z t x y z +?Ω ???=++???? ???. (1) 其中,222,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为 2 2d d d d t t t M k u x y z t +?Ω =? ???, (2) 其中2 k 是衰减系数. 由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -. 换一种角度看,Ω内由于深度之变化引起的质量增加为 3[(,,,)(,,,)]d d d d d d d . (3)t t t M u x y z t t u x y z t x y z u x y z t t Ω +?Ω =+?-?=????? ??? 显然312M M M =-,即

常微分方程论文,变系数线性微分方程的解法

变系数线性微分方程的解法 ... 摘 要:文章通过对一些变系数线性微分方程的经典题目总结一下解决这类问题的基本方法。 关键词:变系数线性微分方程,基本解法。 1 引 言 整体回顾了一下第三章,我想感慨一下现在数学发展得真是完备。我们学的95%以上的知识数学书上都给出了一般的解。比如说可降阶的高阶方程,我们用一个变量代换最低阶的自变量那项就可以解出所有的这类题目了;又比如说线性常系数微分方程,使用常数变易法和待定系数法也可以解决所有的题目,特别是待定系数法,实在是解决线性非齐次常系数微分方程的利器!在这几块,我觉得实在是难以补充什么了。当下我觉得最需要我们去探索和挖掘的应该是那些目前不能够有普适解法的题目,比如说接下来要讲的变系数线性微分方程。下面,我们通过几个例题来总结一下解决这类问题的基本方法。 2 几个变系数线性微分方程的基本方法 2.1 化为常系数法 2.1.1形如0222 =++x dt dx bt dt x d at 的常微分方程。 这类题目是书上明确告诉我们的解法的,其实这类方程叫欧拉方程,虽然书上讲过了,但是也是这部分很重要的一类题,这边放在第一类。 因为这类题目的形式统一,所以直接求解带未知数的微分方程了。 解:作变换u e t =,即t u ln =,则: du dx t dt du du dx dt dx 1==,)(122222du dx du x d t dt x d -= 用上式带入原方程,得0)(22=++-x du dx b du dx du x d a 这样的话我们得到了一个自变量为u,应变量为x 的一个常系数线性齐次微分方程,显

一类二维抛物型方程的ADI格式

【摘要】本文针对一类二维抛物型方程,建立了一个在空间和时间方向上均具有二阶精度的adi格式,并分析其稳定性. 比较以往算法,此格式具有精度较高,无条件稳定等优点,同时,该方法通过求解两个线性代数方程得到原问题的解,避免了非线性迭代运算,提高了计算效率. 【关键词】二维抛物型方程;adi格式;稳定性;截断误差 1.引言 抛物型偏微分方程在研究热传导过程、一些扩散现象及电磁场传播等许多问题中都有广泛的应用,对这一类方程数值解法的研究一直是科研工作者关注的热点问题之一,其中高精度的有限差分方法更是受到了越来越多的重视. 考虑如下的初边值问题[1]:其中,为常数. 在文献[1]中对问题(1)建立了差分格式,格式的截断误差阶为.本文将在文献[1]的基础上进一步研究问题(1)的高效差分格式,建立了一个高精度的交替方向隐式差分格式(即adi格式),提高了时间方向上的精度,并给出相应的稳定性分析。 2.差分格式的建立 为了得到问题(1)的有限差分格式,首先将求解区域进行网格剖分,结点为. 选取正整数l和n,并令为方向上的网格步长,为方向上的网格步长,记 假定第层的已知,则由第(ⅰ)步,通过解一个三对角线性代数方程组求出,再由第(ⅱ)步,再解一个三对角线性代数方程组即可求出. 所以,只要利用追赶法求解两个三对角线性代数方程组即可,此时计算量与储存量都较小. 另外,在处理边界条件时,为了提高精度,采取中心差分,这样会出现虚拟值,此时,只要再与格式中的方程联立,即可消去虚拟值[2]. 3. 稳定性分析 利用taylor展开式求误差,可知此处建立的d格式的截断误差阶为. 参考文献: [1]管秋琴.一类二维抛物型方程的有限差分格式[j]. 赤峰学院学报(自然科学版). 2010,26(1):7. [3]戴嘉尊,邱建贤. 微分方程数值解法[m]. 南京:东南大学出版社 .2002. 作者简介: 舒阿秀(1977―),女,安徽旌德人,硕士,安庆师范学院数学与计算科学学院副教授,主要从事偏微分方程数值解的研究。

相关主题
文本预览
相关文档 最新文档