当前位置:文档之家› 流体的P-V-T关系和状态方程

流体的P-V-T关系和状态方程

流体的P-V-T关系和状态方程
流体的P-V-T关系和状态方程

流体的P-V-T关系和状态方程

教学目的要求

能熟练掌握流体(特别是气体)的各种类型的P、V、T 关系(包括状态方程法和对应状态法)及其应用、优缺点和应用范围。

?定性认识流体P-V-T 行为;

?掌握描述流体P-V-T 关系的模型化方法,了解几种常见的状态方程;

?掌握对比态原理和普遍化状态方程

?掌握计算真实气体混合物P-V-T 关系的方法,并会进行计算。

?了解液体的P-V-T关系

教学内容

在化工过程的分析、研究与设计中,流体的压力p、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。而许多其它的热力学性质如内能U、熵S、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算。因此,流体的p –V –T 关系的研究是一项重要的基础工作。

2.1 纯流体的P-V-T关系

2.2 气体的状态方程

2.3 对应态原理和普遍化关联式

2.4 真实气体混合物的P-V-T关系

2.5 液体的P-V-T关系

2.6 状态方程的比较、选用和应用

2.1纯流体的P-V-T关系

◆纯物质在平衡态下的p –V –T 关系,可以表示为三维曲面,如图2-1。

曲面上分单相区及两相共存区。曲线AC 和BC 代表汽液共存的边界线,它们相交于点C,C 点是纯物质的临界点,它所对应的温度、压力和摩尔体积分别称为临界温度T c、临界压力p c 和临界体积V c。

◆将p –V –T 曲面投影到平面上,则可以得到二维图形。图2-2 和2-3 分别为图2

-1投影出的p –T 图和p –V 图。

图 2-2 纯物质的p –T 图 图 2-3 纯物质的p –V 图 图 2-2 中的三条相平衡曲线:升华线、熔化线和汽化线,三线的交点是三相点。高于临界温度和压力的流体称为超临界流体,简称流体。如图2-2,从A 点到B 点,即从液体到汽体,没有穿过相界面,即是渐变的过程,不存在突发的相变。超临界流体的性质非常特殊,既不同于液体,又不同于气体,可作为特殊的萃取溶剂和反应介质。近些年来,利用超临界流体特殊性质开发的超临界分离技术和反应技术成为引人注目的热点。

图 2-3 是以温度T 为参变量的p –V 图。图中包含了若干条等温线,高于临界温度的

等温线曲线平滑并且不与相界面相交。小于临界温度的等温线由三个部分组成,中间水平段为汽液平衡共存区,每个等温线对应一个确定的压力,即为该纯物质在此温度下的饱和蒸气压。曲线AC 和BC 分别为饱和液相线和饱和气相线,曲线ACB 包含的区域为汽液共存区,其左右分别为液相区和气相区。

等温线在两相区的水平段随着温度的升高而逐渐变短,到临界温度时最后缩成一点 C 。从图2-3 中可以看出,临界等温线在临界点上是一个水平拐点,其斜率和曲率都等于零,在数学上表示为:

0)(0)(

22=??=??Tc Tc V P V P 式(2-1)和(2-2)对于不同物质都成立,它们对状态方程等的研究意义重大。

纯物质PVT 关系的应用:超临界技术和液化气体成分的选择

2.2气体的状态方程

纯物质的状态方程(Equation of State, EOS) 是描述流体p-V-T 性质的关系式,即:

f( p, T, V ) = 0

状态方程类型:立方型、多常数型、理论型;

混合物的状态方程从纯物质出发,通过引入混合规则,来计算混合物的热力学性质。

2.2.1 理想气体状态方程

假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。在极低的压力下,真实气体可以当作理想气体处理,以简化问题。理想气体状态方程是最简单的状态方程:

RT PV =

理想气体状态方程的用途:1)在工程设计中,可以用理想气体状态方程进行近似的估算,低压下的气体(特别是难液化的N2,H2,CO ,CH4,…);2)可以作为衡量真实气体状态方程是否正确的标准之一,当p →0或者V →∞时,任何真实气体状态方程都应还原为理想气体方程。3)理想气体状态常被作为真实流体的参考态或初值。

2.2.2 立方型状态方程

立方型状态方程是指方程可展开为体积(或密度)的三次方形式。这类方程能够解析求根,有较高精度,又不太复杂,很受工程界欢迎。

(1) van der Waals 状态方程

2V

a b V RT p --= 该方程是第一个适用于实际气体的状态方程,与理想气体状态方程相比,它加入了参数a 和b ,它们分别表征分子间的引力和分子本身体积的影响,可以从流体的 p-V-T 实验数据拟合得到,也可以由纯物质的临界数据计算得到。

(2)Redlich-Kwong (RK) 方程

RK 方程的计算准确度比 van der Waals 方程有较大的提高,可以比较准确地用于非极性和弱极性化合物,但对于强极性及含有氢键的化合物仍会产生较大的偏差。RK 方程能较成功地用于气相P-V-T 的计算,但计算液相体积的准确性不够,不能同时用于汽、液两相。

为了进一步提高 RK 方程的精度,扩大其使用范围,便提出了更多的立方型状态方程。对RK 方程进行修正,但同时降低了RK 的简便性和易算性。成功的有Soave 的修正式(SRK )。

(3) Soave-Redlish-Kwang 方程( 1972年)

为了提高 RK 方程对极性物质及饱和液体 p –V –T 计算的准确度。Soave 对 RK 方程进行了改进,称为 RKS (或 SRK ,或 Soave )方程。方程形式为:

)

176.0574.148.0()]1(1[)(08664.0)(42748.0)()(22

5.022ωωααα-+=-+====m T m T p RT b T p T R T a T a r r c c

r c

c r c

与RK 方程相比,SRK 方程可计算极性物质,更主要的是可计算饱和液体密度,使之能用于混合物的汽液平衡计算,故在工业上获得了广泛应用。

(4) Peng -Robinson 方程

RK 方程和 RKS 方程在计算临界压缩因子 Z c 和液体密度时都会出现较大的偏差,为了弥补这一明显的不足,Peng -Robinson 于 1976年提出了他们的方程,简称 PR 方程。

)

()()(b V b b V V T a b V RT p -++--= )

26992.054226.137464.0()]1(1[)(07780.0)(45724.0)()(22

5.022ωωααα-+=-+====m T m T p RT b T p T R T a T a r r c c

r c

c r c

PR 方程预测液体摩尔体积的准确度较SRK 方程有明显改善,而且也可用于极性物质。能同时适用于汽、液两相,在工程相平衡计算中广泛应用。

立方型状态方程根的求取

当T > Tc 时,立方型状态方程有一个实根,它是气体容积。

当T

压存在三个不同实根,最大的V 值是蒸气容积,最小的V 值是液体容

积,中间的根无物理意义

求解方法:直接迭代法和牛顿迭代法

三种问题类型:

1)已知T ,V ,求P ;

显压型,直接计算

2)已知P ,T ,求V ;

工程中常见情况,迭代求解。

3)已知P ,V ,求T 。

迭代求解

2.2.3 Virial (维里)方程

维里方程该方程利用统计力学分析了分子间的作用力,具有较坚实的理论基础。方程的形式为:

维里系数的物理意义:B , B ':第二维里系数,它表示对一定量的真实气体,两个分子间的作用所引起的真实气体与理想气体的偏差。C ,C ':第三维里系数,它表示对一定量的真实气体,三个分子间的作用所引起的真实气体与理想气体的偏差。

维里系数= f (物质,温度)

当方程(2-5)~(2-7)取无穷级数时,不同形式的 virial 系数之间存在着下述关系:

Virial 截断式:

1.

2.

2.2.4 多参数状态方程

与简单的状态方程相比,多参数状态方程可以在更宽的 T 、p 范围内准确地描述不同物系的

p-V-T 关系;但其缺点是方程形式复杂,计算难度和工作量都较大。

(1) Benedict -Webb -Rubin 方程(1940年)该方程在计算和关联轻烃及其混合物的液体和气体热力学性质时极有价值。

式中, ρ为密度; A 0, B 0,C 0, a ,b ,c ,α和γ 等 8个常数由纯物质的 p-V-T 数据和蒸气压数据确定。在烃类热力学性质计算中,BWR 方程计算精度很高,但该方程不能用于含水体系。

以提高BWR方程在低温区域的计算精度为目的,Starling等人提出了11个常数的Starling式(或称BWRS式)

(2)Martin-Hou方程(1955年)

该方程是1955年Martin教授和我国学者候虞钧提出的,简称MH方程。(后又称为MH-55型方程)。为了提高该方程在高密度区的精确度,1981年候虞钧教授等又将该方程的适用范围扩展到液相区,称为MH-81型方程。

()

()

()()

()1

5

2

/

475

.5

exp

5

1

=

=

-

+

+

=

-

=∑

=

i

RT

T

f

i

T

T

C

T

B

A

T

f

b

V

T

f

p

MH

i

c

i

i

i

i

i

i

i

的通式为:

MH-81型状态方程能同时用于汽、液两相,方程准确度高,适用范围广,能用于包括非极性至强极性的物质(如NH3、H2O),对量子气体H2、He等也可应用,在合成氨等工程设计中得到广泛使用。

状态方程的选用:

2.3对应态原理和普遍化关联式

状态方程存在的问题:真实气体状态方程都涉及到物性常数,方程的通用性受到了限制。在实际工作中,当研究的物质其热力学性质既没有足够的实验数据,又没有状态方程中固有的参数时,计算便会产生困难,因此十分需要研究能用于真实气体的普遍化方法。

2.3.1对比态原理

对比态原理认为,在相同的对比状态下,所有的物质表现出相同的性质。van der Waals 提出的简单对比态原理方程是:

()()

r

r

r

r

T

V

V

P8

1

3

/32=

-

+

伯努利方程原理以及在实际生活中的运用

xx方程原理以及在实际生活中的运用 67陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。 xx方程 p+ρρv 2=c式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g 为重力加速度;c为常量。它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。伯努利方程的常量,对于不同的流管,其值不一定相同。 相关应用 (1)等高流管中的流速与压强的关系 根据xx方程在水平流管中有 ρv 2=常量故流速v大的地方压强p就小,反之流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。下面就是一些实例 伯努利方程揭示流体在重力场中流动时的能量守恒。由伯努利方程可以看出,流速高处压力低,流速低处压力高。三、伯努利方程的应用: 1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 2.喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。

3.汽油发动机的汽化器,与喷雾器的原理相同。汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。 4.球类比赛中的“旋转球”具有很大的威力。旋转球和不转球的飞行轨迹不同,是因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,转动轴通过球心且垂直于纸面,球逆时针旋转。球旋转时会带动周围得空气跟着它一起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。

一般状态方程多流体界面数值方法研究(Mie-Grüneisen状态方程)

中国科学技术大学 硕士学位论文 一般状态方程多流体界面数值方法研究 姓名:郑建国 申请学位级别:硕士 专业:流体力学 指导教师:孙德军;尹协远 20050501

中文摘要 摘要① 本文发展了一类一般状态方程可压缩多流体界面的数值模拟方法,并具体应用到三种不同的非理想气体状态方程,包括sti&nf刚性)气体状态方程,varlderWaals状态方程以及工程上广泛适用的更一般的Mie—Griineisen状态方程。此方法主要的特点是:f1).采用体积分数多流体数学模型,这是在假设多流体交界面两侧压力和速度平衡的基础上根据二相流理论建立的,并引入计算混合流体压力的“状态方程”使系统封闭。(2).将高精度、高分辨率的PiecewiseParabolicMethod(PPM)数值方法推广到多流体问题中,用膨胀激波代替稀琉波,采用双波近似的方法求解多流体Riemann问题。(3).使用Lagrangian-Remapping两步法求解模型方程组。 与以往的多流体方法相比,本文的方法具有一些优点。首先,体积分数多流体数学模型所采用的交界面两侧压力和速度平衡的假设与真实的物理情况比较接近,它消除了交界面上压力的振荡;特别是其模型简单,并且不因为具体的状态方程而改变,便于应用到复杂状态方程的多流体流动问题。其次,文中推广的多流体PPM方法处理交界面问题的效果非常好,它继承了原始PPM的高分辨率和能有效抑制间断上压力振荡的优点。最后,Lagrangian—Remapping形式的PPM方法具有Lagrange类方法的特点,它可以有效地处理多流体界面, 为了验证方法是否合理有效,进行了大量的数值实验。一维和二维算例表明本文的方法可以有效地处理一般状态方程的接触间断、激波、激波和接触间断的相互作用以及多维滑移线等物理问题。从数值结果中可以很明显地看出交界面附近压力无振荡,并能够比其它一般多流体数值方法更糟细地模拟多流体交界面。本文还研究了柱坐标下内聚激波诱导的Pdchtmyer—MeshkovInstability(RMt)e从模拟的结果来看,演化过程中出现的钉状(spike)和泡状(bubble)结构以及后期的蘑菇状交界面都很清晰。可以看到二次加速对于RMI有很大的影响,无论激波是从重流体进入轻流体还是从轻流体进入重流体界面都会发生反向,这和平面激波情况很不相同。文中同时分析了扰动波长、初始振幅和激波强度对于RMI的影响。 综上所述,本文的方法能有效地模拟可压缩多流体界面问题,特别是可以方便地处理较一般的状态方程,对于解决许多工程问题有重要价值。 —万西西五i百疆霸蠢甄西甭季囊丕虿霸再}中国工程物理研究院联合基金资助硬日(i∞7跚印

流体力学-伯努利方程实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:2014.12.11成绩: 班级:石工12-09学号:12021409姓名:陈相君教师:李成华 同组者:魏晓彤,刘海飞 实验二、能量方程(伯诺利方程)实验 一、实验目的 1.验证实际流体稳定流的能量方程; 2.通过对诸多动水水力现象的实验分析,理解能量转换特性; 3.掌握流速、流量、压强等水力要素的实验量测技能。 二、实验装置 本实验的装置如图2-1所示。 图2-1 自循环伯诺利方程实验装置 1.自循环供水器; 2.实验台; 3.可控硅无极调速器;4溢流板;5.稳水孔板; 6.恒压水箱; 7.测压机;8滑动测量尺;9.测压管;10.试验管道; 11.测压点;12皮托管;13.试验流量调节阀 说明 本仪器测压管有两种: (1)皮托管测压管(表2-1中标﹡的测压管),用以测读皮托管探头对准点的总水头; (2)普通测压管(表2-1未标﹡者),用以定量量测测压管水头。 实验流量用阀13调节,流量由调节阀13测量。

三、实验原理 在实验管路中沿管内水流方向取n 个过水断面。可以列出进口断面(1)至另一断面(i )的能量方程式(i =2,3,…,n ) i w i i i i h g v p z g p z -++ + =+ + 1222 2 111 1αγυαγ 取12n 1a a a ==???==,选好基准面,从已设置的各断面的测压管中读出 z+p/r 值,测 出透过管路的流量,即可计算出断面平均流速,从而即可得到各断面测压管水头和总水头。 四、实验要求 1.记录有关常数实验装置编号 No._4____ 均匀段1d = 1.40-210m ?;缩管段2d =1.01-210m ?;扩管段3d =2.00-2 10m ?; 水箱液面高程0?= 47.6-2 10m ?;上管道轴线高程z ?=19 -2 10m ? (基准面选在标尺的零点上) 2.量测(p z γ + )并记入表2-2。 注:i i i p h z γ =+ 为测压管水头,单位:-2 10m ,i 为测点编号。 3.计算流速水头和总水头。

流体的PVT关系和状态方程

流体的P-V-T关系和状态方程 教学目的要求 能熟练掌握流体(特别是气体)的各种类型的P、V、T 关系(包括状态方程法和对应状态法)及其应用、优缺点和应用范围。 定性认识流体P-V-T 行为; 掌握描述流体P-V-T 关系的模型化方法,了解几种常见的状态方程; 掌握对比态原理和普遍化状态方程 掌握计算真实气体混合物P-V-T 关系的方法,并会进行计算。 了解液体的P-V-T关系 教学内容 在化工过程的分析、研究与设计中,流体的压力p、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。而许多其它的热力学性质如内能U、熵S、Gibbs自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算。因此,流体的p –V –T 关系的研究是一项重要的基础工作。 纯流体的P-V-T关系 气体的状态方程 对应态原理和普遍化关联式 真实气体混合物的P-V-T关系 液体的P-V-T关系 状态方程的比较、选用和应用 纯流体的P-V-T关系 纯物质在平衡态下的p –V –T 关系,可以表示为三维曲面,如 图2-1。

曲面上分单相区及两相共存区。曲线AC 和BC 代表汽液共存的边界线,它们相交于点C,C 点是纯物质的临界点,它所对应的温度、压力和摩尔体积分别称为临界温度Tc、临界压力pc 和临界体积Vc。 将p –V –T 曲面投影到平面上,则可以得到二维图形。图2-2 和 2-3 分别为图2-1投影出的p –T 图和p –V 图。 图2-2 纯物质的p –T 图图2-3 纯物质的p –V 图 图 2-2 中的三条相平衡曲线:升华线、熔化线和汽化线,三线的交点是三相点。高于临界温度和压力的流体称为超临界流体,简称流体。如图2-2,从A 点到B 点,即从液体到汽体,没有穿过相界面,即是渐变的过程,不存在突发的相变。超临界流体的性质非常特殊,既不同于液体,又不同于气体,可作为特殊的萃取溶剂和反应介质。近些年来,利用超临界流体特殊性质开发的超临界分离技术和反应技术成为引人注目的热点。 图 2-3 是以温度T 为参变量的p –V 图。图中包含了若干条等温线,高于临界温度的等温线曲线平滑并且不与相界面相交。小于临界温度的等温线由三个部分组成,中间水平段为汽液平衡共存区,每个等温线对应一个确定的压力,即为该纯物质在此温度下的饱和蒸气压。曲线AC 和BC 分

流体力学三大方程的推导(优选.)

微分形式的连续性方程

连续方程是流体力学的基本方程之一,流体运动的连续方程,反映流体运动和流体质量分布的关系,它是在质量守恒定律在流体力学中的应用。 重点讨论不同表现形式的流体连续方程。

用一个微六面体元控制体建立微分形式的连续性方程。 设在流场中取一固定不动的微平行六面体(控制体),在直角坐标系oxyz 中,六面体的边长取为dx ,dy ,dz 。 先看x 轴方向的流动,流体从ABCD 面流入六面体,从EFGH 面流出。 在x 轴方向流出与流入质量之差 ()()[]x x x x u u u dx dydzdt u dydzdt dxdydzdt x x ρρρρ??+-=??

用同样的方法,可得在y 轴方向和z 轴方向的流出与流入 质量之差分别为 ()y u dxdydzdt y ρ??() z u dxdydzdt z ρ??这样,在dt 时间内通过六面体的全部六个面净流出的质量为: ()()()[]y x z u u u dxdydzdt x x x ρρρ???++???

在dt 的时间内,六面体内的质量减少了 , 根据质量守恒定律,净流出六面体的质量必等于六面体内所减少的质量 ()dxdydzdt t ρ?-?()()()[]y x z u u u dxdydzdt dxdydzdt x y z t ρρρρ ????++=-????()()()0y x z u u u x y z t ρρρρ ????+++=????这就是直角坐标系中流体运动的微分形式的连续性方程。 这就是直角坐标系中流体运动的微分形式的连续性方程。 代表单位时间内,单位体积的质量变化 代表单位时间内,单位体积内质量的净流出

流体主要计算公式

主要的流体力学事件有: 1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。 1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。 1781年拉格朗日首先引进了流函数的概念。 1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。 1876年雷诺发现了流体流动的两种流态:层流和紊流。 1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。 19世纪末,相似理论提出,实验和理论分析相结合。 1904年普朗特提出了边界层理论。 20世纪60年代以后,计算流体力学得到了迅速的发展。流体力学内涵不断地得到了充实与提高。 理想势流伯努利方程 (3-14) 或(3-15) 物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。 (应用条件:“”所示) 符号说明 物理意义几何意义 单位重流体的位能(比位能)位置水头 单位重流体的压能(比压能)压强水头 单位重流体的动能(比动能)流速水头 单位重流体总势能(比势能)测压管水头

总比能总水头 二、沿流线的积分 1.只有重力作用的不可压缩恒定流,有 2.恒定流中流线与迹线重合: 沿流线(或元流)的能量方程: (3-16) 注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。一般不同流线各不相同(有旋流)。(应用条件:“”所示,可以是有旋流) 流速势函数(势函数)观看录像>> ?存在条件:不可压缩无旋流,即或 必要条件存在全微分d 直角坐标

第二节流体流动的基本方程式

第二节 流体流动的基本方程式 化工厂中流体大多是沿密闭的管道流动,液体从低位流到高位或从低压流到高压,需要输送设备对液体提供能量;从高位槽向设备输送一定量的料液时,高位槽所需的安装高度等问题,都是在流体输送过程中经常遇到的。要解决这些问题,必须找出流体在管内的流动规律。反映流体流动规律的有连续性方程式与柏努利方程式。 1-2-1 流量与流速 一、流量 单位时间内流过管道任一截面的流体量称为流量。若流体量用体积来计量,称为体积流量,以V s 表示,其单位为m 3/s ;若流体量用质量来计量,则称为质量流量,以w s 表示,其单位为kg/s 。 体积流量与质量流量的关系为: w s =V s ·ρ (1-16) 式中 ρ——流体的密度,kg/m 3。 二、流速 单位时间内流体在流动方向上所流经的距离称为流速。以u 表示,其单位为m/s 。 实验表明,流体流经管道任一截面上各点的流速沿管径而变化,即在管截面中心处为最大,越靠近管壁流速将越小,在管壁处的流速为零。流体在管截面上的速度分布规律较为复杂,在工程计算中为简便起见,流体的流速通常指整个管截面上的平均流速,其表达式为: A V u s = (1-17) 式中 A ——与流动方向相垂直的管道截面积,m 2。 流量与流速的关系为: w s =V s ρ=uA ρ (1-18) 由于气体的体积流量随温度和压强而变化,因而气体的流速亦随之而变。因此采用质量流速就较为方便。 质量流速,单位时间内流体流过管路截面积的质量,以G 表示,其表达式为: ρρu A V A w G s s === (1-19) 式中 G ——质量流速,亦称质量通量;kg/(m 2·s )。 必须指出,任何一个平均值都不能全面代表一个物理量的分布。式1-17所表示的平均流速在流量方面与实际的速度分布是等效的,但在其它方面则并不等效。 一般管道的截面均为圆形,若以d 表示管道内径,则 2 4d V u s π= 于是 u V d s π4= (1-20) 流体输送管路的直径可根据流量及流速进行计算。流量一般为生产任务所决定,而合理

第一章 气体的pVT关系主要公式及其适用条件

第一章 气体的pVT 关系 主要公式及使用条件 1. 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 2. 气体混合物 (1) (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) (2) 摩尔质量 ∑∑∑= == B B B B B B B mix //n M n m M y M 式中 ∑= B B m m 为混合气体的总质量,∑= B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 3. 道尔顿定律

p B = y B p ,∑ = B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 5. 范德华方程 RT b V V a p =-+))(/(m 2 m nRT nb V V an p =-+))(/(2 2 式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。 此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。 6. 6. 维里方程 ......) ///1(3 m 2 m m m ++++=V D V C V B RT pV 及 ...... 1(3'2''m ++++=p D p C p B RT pV 上式中的B ,C ,D,…..及B’,C’,D’….分别称为第二、第三、第四…维里系数,它们皆是与气体种类、温度有关的物理量。 适用的最高压力为1MPa 至2MPa ,高压下仍不能使用。 7. 7. 压缩因子的定义 )/()/(m RT pV nRT pV Z == Z 的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。

第一章 1[1].1流体流动静力学基本方程分析

第一章流体流动 1-0 概述 一学习本章的意义: 1.流体存在的广泛性。在化工厂中,管道和设备中绝大多数物质都是流体(包括气体、液体或气液混合物)。只是到最后,有些产品才是固体。 2 .通过研究流体流动规律,可以正确设计管路和合理选择泵、压缩机、风机等流体输送设备,并且计算其所需的功率。 3 .流体流动是化工原理各种单元操作的基础,对强化传热、传质具有重要的实践意义。因为热量传递,质量传递,以及化学反应都在流动状态下进行,与流体流动密切相关。 所以大家要认真学习这一章,充分打好基础。 二流体流动的研究范畴 1 流体定义:具有流动性的液体和气体统称为流体。 2 连续性介质假定:流体是由大量的单个分子组成,而每个分子之间彼此有一定的间隙,它们将随时都在作无规则随机的运动。所以,若把流体分子作为研究对象,则流体将是一种不连续介质,这将使研究非常困难。好在在化工生产过程中,我们对流体流动规律的研究感兴趣的并非是单个分子的微观运动,而是流体宏观的机械运动。所以我们不取单个分子作为考察对象,而取比分子平均自

由程大得多,比设备尺寸小得多的这样一个流体质点作为最小考察对象,质点是由大量分子组成的微团,它可以代表流体的性质。流体可以看成是由大量微团组成的,质点间无空隙,而是充满所占空间的连续介质,从而可以使用连续函数的数学工具对流体的性质加以描述。 提高:连续性介质假定 如图1所示,考虑一个微元体积内流体平均密度的变化情况:取包含P(x,y,z)点在内的微元体积⊿V,其中包含流体的质量为⊿m,则微元流体的平均密度为⊿m/⊿V,微元流体的平均密度随体积的变化如图2所示。当微元体积⊿V从非常小逐渐增大,趋向一个特定的微元体积V时,流体的平均密度逐渐趋向一个极限值,且不再随微元体积的继续增大而发生变化。当微元体积⊿V比δV小时,这时微元体积内所包含的流体分子数目是那样少,以致流体分子由于其无规则的热运动,进入或离开微元体积的流体分子数目已足以引起该微元体积内流体平均密度的随机波动。只有当微元体积大于δV后,其中

气体的PVT关系主要公式及使用条件

气体的PVT 关系主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑= == B B B B B B B mix //n M n m M y M 式中 ∑= B B m m 为混合气体的总质量,∑= B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑ = B B p p

上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2 m nRT nb V V an p =-+))(/(2 2 式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。 此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。 6. 维里方程 ......) ///1(3 m 2 m m m ++++=V D V C V B RT pV 及 ...... 1(3'2''m ++++=p D p C p B RT pV 上式中的B ,C ,D,…..及B’,C’,D’….分别称为第二、第三、第四…维里系数,它们皆是与气体种类、温度有关的物理量。 适用的最高压力为1MPa 至2MPa ,高压下仍不能使用。 7. 压缩因子的定义 )/()/(m RT pV nRT pV Z == Z 的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。

流体主要计算公式

1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。 1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。 1781年拉格朗日首先引进了流函数的概念。 1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。 1876年雷诺发现了流体流动的两种流态:层流和紊流。 1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。 19世纪末,相似理论提出,实验和理论分析相结合。 1904年普朗特提出了边界层理论。 20世纪60年代以后,计算流体力学得到了迅速的发展。流体力学内涵不断地得到了充实与提高。 理想势流伯努利方程 (3-14) 或(3-15) 物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。 (应用条件:“”所示) 符号说明 二、沿流线的积分

1.只有重力作用的不可压缩恒定流,有 2.恒定流中流线与迹线重合: 沿流线(或元流)的能量方程: (3-16) 注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。一般不同流线各不相同(有旋流)。 (应用条件:“”所示,可以是有旋流) 流速势函数(势函数)观看录像>> ?存在条件:不可压缩无旋流,即或 必要条件存在全微分d 直角坐标 (3-19) 式中:——无旋运动的流速势函数,简称势函数。 ?势函数的拉普拉斯方程形式 对于不可压缩的平面流体流动中,将(3-19)式代入连续性微分方程(3-18),有: 或(3-20) 适用条件:不可压缩流体的有势流动。 点击这里练习一下 极坐标 (3-21) 流函数

实际流体恒定总流的伯努利方程

实际流体恒定总流的伯努利方程 一、生活实际 船吸现象 案例:1912年秋季的某一天,当时世界上最大的远洋轮船——“奥林匹克号”正航行在大海上,在离“奥林匹克号”100m的地方,有一比它小得多的铁甲巡洋舰“豪克号”与它平行疾驶着,这时却发生了一件意外的事情:小船好像被大船吸过去似的,完全失控,一个劲地向“奥林匹克号”冲去,最后,“豪克号”的船撞在“奥林匹克号”的船舷上,把“奥林匹克撞了个大洞。是什么原因造成这次事故呢? 小实验 小实验:如果两手各拿一张薄纸,使它们之间的距离大约4-6厘米,然后用嘴向着两张纸中间吹气,如图所示,纸张是向内靠还是向外飘动?想一想,动手试试看 二、恒定总流能量方程式的推导 恒定元流能量方程 2 ~ 1 2 2 2 2 2 1 1 1 ' 2g z 2l h u g p g u g p z+ + + = + + ρ ρ 方程两端乘以重量流量 dQ γ,得单位时间内通过元流两过流断面的能量关系:

dQ h dQ g u g p z dQ g u g p z l γγργρ?+?++=?++-'2122222111)2()2( 积分,得单位时间内通过总流两过流断面的能量关系: dQ h dQ g u g p z dQ g u g p z Q l Q Q γγργρ?+?++=?++???-'2122222111)2()2( 1.势能积分: dQ p z Q γρ?+?)(g 物理含义:表示单位时间内通过断面的流体势能 如果断面是渐变流,服从静压强分布规律 C g p z =+ρ Q p z dQ p z dQ p z Q Q ?+?+?+??γργργρ)=()=()(g g g 2.动能积分: dA 2g dQ 2A 32???u g u Q γγ= 物理含义:表示单位时间内通过断面的流体动能。 引入一个动能修正系数α (α是实际动能与按断面平均流速计算的动能之比) A v dA dA v 2g dA 2g 3A 3A 3A 3??? ==u u γγα Q 2g v A v 2g dA 2g dQ 22 3A 32γααγγγ?????===u g u Q 3.水头损失积分: dQ h Q l γ??-'21 物理含义:表示单位时间内流体克服1-2流段的摩擦阻力作功所损失的机械能 为了计算方便,设 w h 为单位重量流体在两过流断面上的平均能量损失。 Q h dQ h w Q l γγ?=??-'21 w h v g p g v g p z +++=++2g z 22222221111αραρ

流体的PVT关系和状态方程

流体的P-V-T关系和状态方程 教学目的要求 能熟练掌握流体(特别是气体)的各种类型的P、V、T 关系(包括状态方程法和对应状态法)及其应用、优缺点和应用范围。 ?定性认识流体P-V-T 行为; ?掌握描述流体P-V-T关系的模型化方法,了解几种常见的状态方程; ?掌握对比态原理和普遍化状态方程 ?掌握计算真实气体混合物P-V-T 关系的方法,并会进行计算。 ?了解液体的P-V-T关系 教学内容 在化工过程的分析、研究与设计中,流体的压力p、体积V 和温度T是流体最基本的性质之一,并且是可以通过实验直接测量的。而许多其它的热力学性质如内能U、熵S、Gi bbs自由能G 等都不方便直接测量,它们需要利用流体的p–V–T 数据和热力学基本关系式进行推算。因此,流体的p –V–T 关系的研究是一项重要的基础工作。 2.1 纯流体的P-V-T关系 2.2 气体的状态方程 2.3对应态原理和普遍化关联式 2.4 真实气体混合物的P-V-T关系 2.5 液体的P-V-T关系 2.6 状态方程的比较、选用和应用 2.1纯流体的P-V-T关系 ◆纯物质在平衡态下的p–V–T 关系,可以表示为三维曲面,如图2-1。 曲面上分单相区及两相共存区。曲线AC 和BC 代表汽液共存的边界线,它们相交于点C,C 点是纯物质的临界点,它所对应的温度、压力和摩尔体积分别称为临界温度T c、临界压力p c 和临界体积Vc。 ◆将p –V–T 曲面投影到平面上,则可以得到二维图形。图2-2 和2-3分 别为图2-1投影出的p –T图和p –V 图。

图 2-2 纯物质的p –T 图 图 2-3 纯物质的 p –V 图 图 2-2 中的三条相平衡曲线:升华线、熔化线和汽化线,三线的交点是三相点。高于临界温度和压力的流体称为超临界流体,简称流体。如图2-2,从A 点到B 点,即从液体到汽体,没有穿过相界面,即是渐变的过程,不存在突发的相变。超临界流体的性质非常特殊,既不同于液体,又不同于气体,可作为特殊的萃取溶剂和反应介质。近些年来,利用超临界流体特殊性质开发的超临界分离技术和反应技术成为引人注目的热点。 图 2-3 是以温度T 为参变量的p –V 图。图中包含了若干条等温线,高于临界温度的等温线曲线平滑并且不与相界面相交。小于临界温度的等温线由三个部分组成,中间水平段为汽液平衡共存区,每个等温线对应一个确定的压力,即为该纯物质在此温度下的饱和蒸气压。曲线AC 和BC 分别为饱和液相线和饱和气相线,曲线ACB 包含的区域为汽液共存区,其左右分别为液相区和气相区。 等温线在两相区的水平段随着温度的升高而逐渐变短,到临界温度时最后缩成一点 C。从图2-3 中可以看出,临界等温线在临界点上是一个水平拐点,其斜率和曲率都等于零,在数学上表示为: 0)(0)( 22=??=??Tc Tc V P V P 式(2-1)和(2-2)对于不同物质都成立,它们对状态方程等的研究意义重大。 纯物质P VT 关系的应用:超临界技术和液化气体成分的选择 2.2气体的状态方程 纯物质的状态方程(E quation of St ate, EOS) 是描述流体p-V-T 性质的关系式,即: f ( p , T, V ) = 0 状态方程类型:立方型、多常数型、理论型; 混合物的状态方程从纯物质出发,通过引入混合规则,来计算混合物的热力学性质。 2.2.1 理想气体状态方程 假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体

状态方程的应用

状态方程的应用 化工热力学 学校:安阳工学院 院系:化学与环境工程学院班级:化学工程与工艺-2班学号:200905020048 姓名:蔡广夺 日期:2012/4/2

状态方程的应用 摘要:为了对热力学状态方程能有更进一步的认识,本文试图从热力学的基本处着手对状态方程以及状态方程的应用进行基本的表述。分别摘取了最基本的几个热力学状态方程,并从用状态方程计算特殊凝析油气体系的相态特性、用MH方程计算气体混合物的恒压热容、粘度和导热系数、用状态方程计算高温、高压和高密度流体的热力学性质和(界面)状态方程在表面活性剂体系中的应用四个方面简要介绍了热力学状态方程的应用,从而表达出热力学状态方程的重要性。关键词:热力学;状态方程;状态方程的应用 一、引言 流体的PVTx性质是流体热力学性质计算的基础,因而在物理、化学、地球与宇宙科学等领域中具有非常重要的作用。然而,迄今为止,由于人力、物力和实验方法等客观条件的限制,流体PVTx的实验数据仍然局限于极为有限的体系或温度-压力-组成范围内,远远满足不了实际需要。近些年来由于计算机科学与技术的飞速发展,通过分子动力学模拟和Monte Carlo 模拟获取PVTx数据已经成为一种严格而又现实的理论方法。此法已得到了比较普遍的应用,并已提供了大量精确的PVTx数据。但是,仍然不能满足需要。为了由有限的PVTx 性质获得数量更多、范围更广的PVTx性质,同时也是为了简化热力学计算,最为方便而又可靠的方法就是借助于PVTx关系的解析方程式—状态方程。 二、状态方程

状态方程(Equation of State,EOS)是物质P-V-T关系的解析式。从19世纪的理想气体方程开始,状态方程一直在发展和完善之中。状态方程可以分为以下三类。 第一类是立方形状态方程,如van der Waals,RK,SRK,PR等; 第二类是多常数状态方程,如virial,BwR,MH等; 第三类是理论性状态方程。 第一类和第二类状态方程直接以工业应用为目标,从简单性、准确性和所需要的输入数据诸多方面考查,目前,第一、第二类的经验型状态方程一般较第三类方程更具优势。 几个重要的第一类状态方程 1、vdw方程 vdw方程是一个著名的立方型状态方程,形式为P=RT V?b ?a V2 [1]。 vdw方程能同时表达气液两相和计算出临界点。vdw方程虽然形式简单,并将a,b转化成常数,但准确度有限,实际中较少引用。 2、RK方程 RK方程形式为P=RT V?b ? a T V V+b [2]。RK方程能较成功地用于气相 P-V-T的计算,但液相的效果较差,也不能预测纯流体的蒸汽压。 3、SRK方程 SRK方程形式为P=RT V?b ?a V V+b ,a=a cα T r、ω [3]。SRK方程大 大提高了表达纯物质汽液平衡的能力,使之能用于混合物的汽液平衡计算,故在工业上获得了广泛的应用。 4、PR方程

《化工热力学》第2章 pvt关系和状态方程课后习题答案

习题解答 一、是否题 1.纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临 界流体区。) 2.当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温 度时,则是超临界流体。) 3.由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的 理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。(错。如温度大于Boyle温度时,Z>1。) 4.纯物质的三相点随着所处的压力或温度的不同而改变。(错。纯物质的三相 平衡时,体系自由度是零,体系的状态已经确定。) 5.在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。(对。这是 纯物质的汽液平衡准则。) 6.纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大 于零。(错。只有吉氏函数的变化是零。) 7.气体混合物的virial系数,如B,C…,是温度和组成的函数。(对。) 二、选择题 指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C。参考P-V图上的亚临界等温线。) A.饱和蒸汽 B.超临界流体

C. 过热蒸汽 2.T 温度下的过冷纯液体的压力P (A 。参考P -V 图上的亚临界等温线。) A. >()T P s B. <()T P s C. =()T P s 3.能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到(A 。要表示出等温线在临界点的拐点特征,要求关于V 的立方型方程) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 4.当0→P 时,纯气体的()[]P T V P RT ,-的值为(D 。因 ()[]0lim lim ,lim 000=??? ??????? ????=-=→→→B T T P T P P P Z P Z RT P T V P RT ,又) A. 0 B. 很高的T 时为0 C. 与第三virial 系数有关 D. 在Boyle 温度时为0

第三章 流体流动的基本概念与基本方程

第三章 流体流动的基本概念与方程 质量守恒定律、牛顿第二定律、能量守恒定律等是物质运动的普遍原理,流体作为一类物质也应该遵循这些原理。这些原理刚体运动的方程式在物理学和理论力学中大家已经学习过,适用于流体运动的方程式将在本章讨论。本章首先介绍描述流体流动的一些基本概念,然后推导出流体流动的基本方程,即连续方程、动量方程、能量方程等。这些基本概念与方程在流体运动学中的研究中是十分重要的。 3.1 描述流体流动的方法 在流体力学的研究中,描述流体的运动一般有两种方法,即拉格朗日法与欧拉法。 3.1.1 拉格朗日法 拉格朗日法着眼于单个流体质点是怎样运动的,以及流体质点的特性是如何随时间变化的。为了区别流体质点,使用某特定质点在某瞬时的坐标(a, b, c)是比较方便的,坐标(a, b, c)描述的只是某一特定的质点。 在任何瞬时质点的位置可表示为 (3.1) 对于一给点的坐标(a, b, c),上述方程组代表的是一特定流体质点的轨迹。 此时,质点是速度可以通过将质点是位置矢量对时间求导数得到。在笛卡尔坐标系中,质点的速度可表示为 (3.2) 加速度为

(3.3) 3.1.2欧拉法 流体是由无数流体质点组成的连续介质,充满流动流体的空间称为流场。 表示流体速度的一种方法就是着眼于空间的某一点,观察流经该点的流体质点随时间的运动。这种研究流体质点运动的方法称为欧拉法。在更一般的意义上,欧拉法可以通过以下方面描述整个流场: (1)在空间某一点流动参数,如速度、压强等,随时间的变化; (2)这些参数相对于空间邻近点的变化。 此时,流动参数是空间点的坐标与时间的函数: (3.4) 或 (3.4a) (3.5) 流体质点随时间将从一点运动到另一点,这意味着流体质点的位置也是时间的函数。 利用多元函数的微分连锁律,可将流体质点在x方向的加速度表示为: (3.6a) 同样 (3.6b) (3.6c) 或写成矢量的形式

流体的PVT关系和状态方程

流体的P-V-T关系与状态方程 教学目的要求 能熟练掌握流体(特别就是气体)的各种类型的P、V、T 关系(包括状态方程法与对应状态法)及其应用、优缺点与应用范围。 ?定性认识流体P-V-T 行为; ?掌握描述流体P-V-T 关系的模型化方法,了解几种常见的状态方程; ?掌握对比态原理与普遍化状态方程 ?掌握计算真实气体混合物P-V-T 关系的方法,并会进行计算。 ?了解液体的P-V-T关系 教学内容 在化工过程的分析、研究与设计中,流体的压力p、体积V 与温度T 就是流体最基本的性质之一,并且就是可以通过实验直接测量的。而许多其它的热力学性质如内能U、熵S、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据与热力学基本关系式进行推算。因此,流体的p –V –T 关系的研究就是一项重要的基础工作。 2、1 纯流体的P-V-T关系 2、2 气体的状态方程 2、3 对应态原理与普遍化关联式 2、4 真实气体混合物的P-V-T关系 2、5 液体的P-V-T关系 2、6 状态方程的比较、选用与应用 2、1纯流体的P-V-T关系 ◆纯物质在平衡态下的p –V –T 关系,可以表示为三维曲面,如图2-1。 曲面上分单相区及两相共存区。曲线AC 与BC 代表汽液共存的边界线,它们相交于点C,C 点就是纯物质的临界点,它所对应的温度、压力与摩尔体积分别称为临界温度T c、临界压力p c 与临界体积V c。 ◆将p –V –T 曲面投影到平面上,则可以得到二维图形。图2-2 与2-3 分别为图2 -1投影出的p –T 图与p –V 图。

图 2-2 纯物质的p –T 图 图 2-3 纯物质的p –V 图 图 2-2 中的三条相平衡曲线:升华线、熔化线与汽化线,三线的交点就是三相点。高于临界温度与压力的流体称为超临界流体,简称流体。如图2-2,从A 点到B 点,即从液体到汽体,没有穿过相界面,即就是渐变的过程,不存在突发的相变。超临界流体的性质非常特殊,既不同于液体,又不同于气体,可作为特殊的萃取溶剂与反应介质。近些年来,利用超临界流体特殊性质开发的超临界分离技术与反应技术成为引人注目的热点。 图 2-3 就是以温度T 为参变量的p –V 图。图中包含了若干条等温线,高于临界温度的等温线曲线平滑并且不与相界面相交。小于临界温度的等温线由三个部分组成,中间水平段为汽液平衡共存区,每个等温线对应一个确定的压力,即为该纯物质在此温度下的饱与蒸气压。曲线AC 与BC 分别为饱与液相线与饱与气相线,曲线ACB 包含的区域为汽液共存区,其左右分别为液相区与气相区。 等温线在两相区的水平段随着温度的升高而逐渐变短,到临界温度时最后缩成一点 C 。从图2-3 中可以瞧出,临界等温线在临界点上就是一个水平拐点,其斜率与曲率都等于零,在数学上表示为: 0)(0)( 22=??=??Tc Tc V P V P 式(2-1)与(2-2)对于不同物质都成立,它们对状态方程等的研究意义重大。 纯物质PVT 关系的应用:超临界技术与液化气体成分的选择 2、2气体的状态方程 纯物质的状态方程(Equation of State, EOS) 就是描述流体p-V-T 性质的关系式,即: f( p, T, V ) = 0 状态方程类型:立方型、多常数型、理论型; 混合物的状态方程从纯物质出发,通过引入混合规则,来计算混合物的热力学性质。 2.2.1 理想气体状态方程 假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。在极低的压力下,真实气体可以当作理想气体处理,以简化问题。理想气体状态方程就是最简单的状态方程:

流体运动方程与能量方程

第一章流体力学基础——流体运动的微分方程 西安建筑科技大学 粉体工程研究所

质量传递——连续性方程动量传递——纳维-斯托克斯方程能量传递——能量方程状态方程 流体运 动微分方程组 所有流体运动传递过程的通解 质量守恒定律 动量定理能量守恒定律

1.3流体运动的微分方程 ?质量守恒定律——连续性方程?动量定理——纳维-斯托克斯方程?能量守恒定律——能量方程 ?定解条件

1.3.1 质量守恒定律——连续性方程 ?质量既不能产生,也不会消失,无论经历什么形式的运动,物质的总质量总是不变的。 ?质量守恒在易变形的流体中的体现——流动连续性。 18世纪,达朗贝尔推导不可压缩流体微分形式连续性方程 在控制体内不存在源的情况下,对于任意选定的控制体 单组分流体运动过程中质量守恒定律的数学描述:流入控制体的质量速率 流出控制体的质量速率 控制体内的质量累计速率 = A B

τ时刻A 点流体密度为,速度沿x ,y ,z 三坐标轴的分量为1.3.1 质量守恒定律——连续性方程 连续性方程的推导边长为dx ,dy ,dz 的控制体微元 )ρ(x,y,z, τ)(x,y,z,u τ z y x ,u ,u u 单位时间内通过左侧控制面流入微元控制体的质量(即质量流量) x 方向 dydz ρu x 通过右侧控制面流出微元控制体的质量速率 dydz dx x )(ρρu x x ?? ???? ??+u dxdydz x ) (ρx ??-u

A :流入与流出微元控制体的质量速率之差x 方向dxdydz x )(ρx ??-u y 方向z 方向 dxdydz y )(ρ??-y u dxdydz z )(ρ??-z u dxdydz z )(ρy )(ρx )(ρ????????+??+??-z y x u u u B :微元控制体内的质量累计速率 τ时刻 ρdxdydz ρ 密度 质量 τ+d τ时刻dxdydz d ρρ?? ? ?? ??+τττ τ d ρ ρ??+dxdydz ρd ρdxdydz dxdydz d ρρτ τ ττ??=-?? ? ?? ??+

相关主题
文本预览
相关文档 最新文档