当前位置:文档之家› 电站锅炉空气预热器性能计算及编程

电站锅炉空气预热器性能计算及编程

电站锅炉空气预热器性能计算及编程
电站锅炉空气预热器性能计算及编程

电站锅炉空气预热器性能计算及编程

0 引言

我国以煤炭为主的能源结构短期内难以根本改变。火力发电是我国煤炭消费大户,因此,火电能源消耗基数较大,即使有百分之零点几的改进,都可以为节能减排作出重大贡献。空气预热器是锅炉尾部烟道中重要的受热面,用于提高锅炉的热交换性能,降低能量消耗。它是整个锅炉沿烟气流程的最后一个热交换设备,其排烟温度的高低反映了整个锅炉的热效率的高低,而空气预热器的出口风量、风温直接影响炉膛的燃烧和制粉系统的运行,所以空气预热器在整个锅炉设备中的作用是十分重要的。截至1996 年年底已投产的大容量锅炉机组,无论是进口还是国产设备,几乎全部采用回转式空气预热器。作者根据ASME PTC 4.3-1968 标准对空预器的性能进行计算,并编写了空气预热器热力性能计算程序。

1实验模型

本文以某电厂的300MV机组为研究对象,分析计算了空气预热器的热力学运行性能并编制了计算程序。电站锅炉为哈尔滨锅炉厂生产的HG1025/540型亚临界、一次中间再热自然循环汽包炉,单炉膛n型,燃烧器布置于炉膛四角,切园燃烧,尾部双烟道结构,采用挡板调节再热汽温,固态排渣,全钢架悬吊结构,平衡通风,半露天岛式布置。锅炉主要额定参数如下:主蒸汽流

量:1025t/h;过热蒸汽出口温度:540C ;过热蒸汽出口压力:

17.35MPa;机组额定发电功率:300MW给水温度:280C。

电站锅炉燃煤的煤质将直接影响锅炉空预器中烟气的组成成分,从而影响空预器的换热以及空预器出口热空气的温度,并且最终会影响机组的运行性能。本文选用的煤种为义马烟煤,关于义马烟煤的相关运行参数可以从一些设计手册中查出。

2空气预热器漏风性能计算

2.1漏风率的定义

由于回转式空气预热器自身的特点,空气预热器的烟气侧与空气侧并不是绝对隔离的,二者之间存在缝隙,由于这个缝隙的存在,难免就会造成空气预热器中空气侧的空气漏入压力较低的烟气侧。为了分析空预器的这个特点,我们定义了一个空气漏风率的概念。空气漏风率是指在空气预热器中由空气侧漏入烟气侧的空气质量占空气预热器入口烟气质量百分比。即:

=100?(1)

式中:AL――空气预热器的漏风率,%;MrFgE 进入空气

预热器的烟气量,kg/h;MrFgLv ――离开空气预热器的烟气量,

kg/h 。

2.2漏风率修正

空气预热器的漏风最主要的原因是一次风、二次风侧的烟气压力远大于烟气侧压力所致的直接漏风。这些参数对于空气预热器漏风的影响非常大,且远大于对锅炉的影响。由于存在这么大的影响,如果空气预热器运行的条件发生严重改变,对空气预热器漏风率的修正就显得

十分重要。

修正的计算公式可按相对量与绝对量分为两类,两类计算公式分别从漏风的绝对量和相对量的角度修正了一二次风等对漏风量大的影响,具体公式可以参看锅炉设计手册。

3空气预热器热力计算

3.1 主要计算参数对于空气预热器来说有很多的参数可以反映空气预热器的运行性能,这些指标往往可以从不同的方面反映空气预热器的运行效果和设计的合理性。首先就是空气预热器的烟气侧的传热效率,烟气侧传热效率可以反映烟气侧热量的利用程度,它可以很好的反映空气预热器烟气侧设计的合理性。然后就是无漏风下空气预热器出口烟气温度,显然出口烟气的温度越低,说明空气预热器的效果越好,锅炉的热利用率比较高,合理的设计空气预热器降低排烟温度可以从一定程度上实现锅炉排烟的余热利用。最后需要考虑的就是通过空气预热器的空气热容量与通过空气预热器的烟气热容量的比值,这个参数可以直接体现空气预热器烟气侧与空气侧换热的换热效果。

3.2 计算结果修正基于实际工况下空气预热器的性能试验,至少考虑漏风、入口空气温度、入口烟气流量、入口烟温等参数改变造成的影响。所以本文考虑到对以上计算结果进行如下几方面的修正:1)入口空气温度的修正;2 )空气预热器入口烟气温度为设计值,且存在漏风的情况下,需要考虑漏风影响进行修正。

4阻力特性修正烟气与空气在流过空气预热器的过程中都会存在压降,这部分压降是由于空气预热器中流过烟气和空气时存在阻力造成

的,而以前的文献在分析过程中未考虑这不分压力和换热过程中的阻

力,这会对计算结果的准确性造成一定的影响,本文通过一定的计算方案对烟气侧以及空气侧的阻力进行了修正。

5空预器热力计算软件设计根据上述理论分析及计算准则,采用面向对象语言BCB (Borland C++ Builder 6.0 )以窗体为分隔对象,编写合适的空气预热器性能计算程序来实现。

C++ Builder 是由Borland 公司推出的一款可视化集成开发工具。该软件具有快速的可视化开发环境,只要简单地把控件(Componen)拖到窗体(Form)上,定义一下它的属性,设置一下它的外观,就可以快速地建立应用程序界面,与我们用的比较多的编程软件Visual Basic 有很大的相似点,正是由于该软件的易用性,该软件在工程领域得到了很多的应用;C++ Builder 内置了100多个完全圭寸装了Windows公用特性且具有完全可扩展性(包括全面支持ActiveX 控件)的可重用控件;C++ Builder 具有一个专业C++开发环境所能提供的全部功能:快速、高效、灵活的编译器优化,逐步连接,

CPU透视,命令行工具等。它实

现了可视化的编程环境和功能强大的编程语言(C++)的完美结合。本文就是在该软件的基础上实现的空预器热力计算

软件的设计的,利用软件的可视化功能建立了空气预热器热力计算的整个过程,通过该软件只要输入一些工程中已知的参数变量就可以得到空气预热器一些热力学参数,如烟气侧传热效率、排烟温度以及烟气侧与空气侧热容量的比值等,将一些复杂的计算交给计算机来完成的缩短

了空气预热器热力计算周期,减少了热力计算的工作量,具有很大的应用价值。本文利用该软件对某锅炉的一个空气预热器进行了理论计算研究,并且与实际锅炉空气预热器的一些参数进行了对比,计算值与实际值相差极小,具有一定的计算精度,验证该软件对空气预热器的热力计算是正确的,可以应用于其他空气预热器的热力计算。(下转第304 页)(上接第272 页)6 结论

本文基于ASME PTC 4.3-1968中的算法,建立了三分仓回转式空气预热器运行性能计算模型,提出了关于空气预热器运行中的一些主要的计算参数,并且从主要影响因素角度对这些计算参数的计算结果进行了修正,使其达到实际应用的需求。根据所确立的空气预热器的热力计算方法,基于可视化编程语言Borland C++ Builder 6.0 编写空气预热器热力性能计算软件。现将本文的主要成果和结论总结如下:

1 )本文编制的空气预热器热力性能计算软件可以实现以下

功能:

(1)根据电厂提供的相关数据,对空气预热器的漏风率、热力性能、阻力特性进行了计算及修正,尤其是对于空气预热器的漏风程度、排烟温度的异常可以进行实时判断;

(2)对空气预热器的漏风率进行监测,及时发现是否存在漏风严重的现象;

(3)实现空气预热器的变工况热力计算分析和多变量综合计算分析,定量分析各个运行参数(包括煤质分析、系统漏风率、烟气侧空气侧阻力、排烟温度等)对空气预热器性能的影响。

空气预热器工作原理及分类

空气预热器 空气预热器是利用锅炉尾部烟气的热量加热燃料燃烧所需空气以提高锅炉热效率的热交换器。 工作原理是:受热面的一次通过烟气,另一面通过空气,进行热交换,使空气得到加热,提高空气温度,同时使烟气温度下降,提高烟气的余热利用程度。 作用 1、改善并强化燃烧 经过余热器后的空气进入炉内,加速了燃料的干燥、着火和燃烧过程,保证了锅炉内的稳定燃烧,提高了燃烧效率。 2、强化传热 由于炉内燃烧得到了改善和强化,加上进入炉内的热风温度提高,炉内平均温度水平也有提高,从而可强化炉内辐射传热。 3、减小炉内损失,降低排烟温度,提高锅炉热效率 由于炉内燃烧稳定,辐射热交换的强化,可以降低化学不完全燃烧损失;另一方面空气预热器利用烟气余热,进一步降低了排烟损失,因此提高了锅炉热效率。根据经验,当空气在预热器中升高1.5℃,排烟温度可以降低1℃.在锅炉烟道中安装空气预热器后,如果能把空气余热150-160℃,就可以降低排烟温度110-120℃,可将锅炉热效率提高7%-7.5%。可以节约燃料11%-12%。 4、热空气可以作燃料干燥剂 对于层燃炉,有热空气可以使用水分和灰分较高的燃料,对于电站锅炉,热空气是脂粉系统的重要干燥剂和煤粉输送介质。 二、空气预热器分类 空气预热器一般分为板式、回转式和管式三种。 1、板式空气预热器 这种空气预热器多用1.5-4mm的薄钢板制成。将钢板焊接成成长方形的盒子,将若干盒子拼成一组,整个空气预热器由2-4个盒子组成。烟气由上向下通过,经过盒子外侧,空气则横向通过盒子的内部,在下部转弯向上,两次与烟气交互传递能量,使烟气与空气形成逆向流动,获得较好的传热效率。 板式空气预热器由于耗用刚才较多,结构不紧凑;焊缝多且易渗漏,现在很少采用。

空气预热器方案说明

10吨蒸汽锅炉空气预热器方案 (节煤率5%以上;提高锅炉岀功10%以上) 一、热管式空气预热器的工作原理及优点 热管式空气预热器的主要传热元件为重力式热管,重力式热管的基本结构如图1所示。热管由管壳、外部扩展受热面、端盖等部分组成,其内部被抽成1.3×(10-1—10-4)Pa的真空后,充入了适量的工作液体。 图1 热管传热原理简图 热管的传热机理是:当热流体流经热管的蒸发段时热量经由扩展受热面和管壁传递给工质,由于管内的真空度较高,工质在较低温度下开始沸腾,沸腾产生的蒸汽流向冷凝段冷凝放出热量,热量再经管壁和扩展受热面传递给冷流体,冷凝后的工质在重力的作用下流回蒸发段,如此循环不已,热量就不断的由热流体传递给了冷流体。 热管的传热机理决定着热管有以下基本特性:①极高的轴向导热性:因在热管内部主要靠工作液体的汽、液相变传热,热阻趋于零,所以热管具有很高的轴向导热能力。与银、铜、铝等金属相比,其导

热能力要高出几个数量级。②优良的等温性:热管内腔中的工质蒸汽处于饱和状态,蒸汽在从蒸发段流向冷凝段时阻损很小,在整个热管长度上,蒸汽的压力变化不大,从而也就决定着在整个热管长度上温度变化不大,所以说热管具有优良的等温性。 由热管组成的热管式空气预热器具有以下的优点:①由热管的等温性决定着在预热器中每排热管都工作在一个较窄的温度范围内,这样就可以通过结构调整使每排热管的壁温高于露点温度,从而避免发生结露、腐蚀和堵灰的现象,从而保证了锅炉不会因为空气预热器的堵灰、引风机出力不足,影响锅炉的正常运行的情况。而管式预热器由于烟气在管内流动时烟温逐渐降低,所以每根管子的壁温都是沿烟气的流动方向逐渐降低的,在每根管子的烟气出口部位,由于烟温和空气温度均较低,很容易发生结露、黏灰、堵灰的现象,影响引风机的抽力,从而影响锅炉的正常运行。②一般管式空气预热器设计和烟气流速较高(11—14m/S),且换热管用壁厚较小(约1.5mm)的焊接管,所以管子很容易磨穿,产生漏风,引起鼓、引风机的电耗增加。而热管式空气预热器,管子为无缝钢管,强化换热主要靠扩展受热面,烟气流速设计较低(6—8m/S),磨损较轻。另外热管式空预器中通过中隔板使冷热流体完全分开,在运行过程中即使单根热管因为磨损、腐蚀、超温等原因发生泄露,也只是单根热管失效,而不会发生漏风现象。③在热管式空气预热器中烟气和空气均横向冲刷管子外侧,烟气横向冲刷管子外侧要比纵向冲刷管子内侧传热系数高出20%--30%。在热管式空气预热器中可以比较容易的实现冷、热流体的完全逆流换热,获得最大的对数温差。另外在保证管壁温度不太低的情况下,烟气侧和空气侧的受热面均可获得充分的扩展。这样空气预热器可以做的非常紧凑,一般在相同的换热量的情况下,热管式空预器比管式空预器体积减少1/3,烟气总流阻减少1/2。④在相同的

回转式空预器漏风的计算与测定

★ 回转式空气预热器漏风率的计算与测定 ▲定义和公式 回转式空气预热器漏风率,为漏入空气预热器烟气侧的空气质量与进入该烟道的烟气质量之比率。 漏风率的计算公式: '''''100y y k y y m m m L m m A -?==?……………………………………… K 1 式K 1可改写式K 2 '''''100k k k y y m m m L m m A ?-==?…………………………………K 2 式中:L A -漏风率,% 'm y 和''y m 分别为烟道的进、出口烟气质量 mg/m 3, mg/kg 'K m 和''K m 分别为空气预热器进、出口空气质量 mg/m 3, mg/kg k m ?漏入空气预热器烟气侧的空气质量 mg/m 3, mg/kg ▲ 漏风率的测定: 同时测定相应烟道进、出口的三原子气体(RO 2)体质含量百分率,并按经验K 3公式计算:2 22''''' 90RO RO L RO A -=?……………………………K 3 式中:2'RO 和2''RO 分别表示烟道进、出口烟气三原子气体(RO 2)体质含量百分率,%。 ▲ 漏风率和漏风系数的换算: 漏风率和漏风系数按下式进行换算:''' '90L A ααα-=?……K 4 式中:'α和'α分别为烟道进、出口处烟气过量空气系数。其数值可分别用下式计算:221'α=……………………………………… K 5 2 2121''''O α-= ……………………………………… K 6

O分别为烟道进、出口处的氧量mg/m3, mg/kg。 式中2'O和2'' ★回转式空气预热器漏风控制在2~4%以下 ★回转式空气预热器漏风的原因 ▲回转式空气预热器的漏风主要是由于密封付之间有间隙,这种间隙就是漏风的主要渠道。空气预热器同时处于锅炉烟风系统的进口和出口,空气侧和烟气侧之间存在较高压力差,这是漏风的动力。回转式空预器的漏风分为两部分:直接漏风和结构漏风(或称携带漏风)。直接漏风是由差压引起的,且占主要部分;结构漏风是由自身构造引起的。结构漏风量的计算公式为: △V=πn(D-d)H(1-y)/240 (1) 式中:△V为结构漏风量m3/s;D为转子直径m;d为中心轴直径m;n为转子旋转速度rpm;y为转子内金属蓄热板所占容积份额:H为转子高度m。结构漏风是回转式空气预热器的固有特点.是不可避免的。而且这部分漏风占预热器总漏风量的份额较少,不到5%。回转式空气预热器的漏风主要是直接漏风.直接漏风量的 计算公式如下:G K =? (2) 这是空气预热器漏风量的基本计算公式.适用于回转式空气预热器的径向密封,轴向密封,静密封和周向密封。式中△P为空气侧与烟气侧的压力差,公式中气体密度ρ是基本不变的,因此,影响漏风的主要因素是:泄漏系数K;间隙面积F:空气侧与烟气侧之间的压力差△P。由式(2)可以看出,漏风量与泄漏系数K、间隙面积F、空气与烟气的压力差△P的平方根成正比,要降低漏风量,就必须减小K,F,△P值。下面分别论述降低K.F.△P 值的有关措施。 ?回转式空气预热器漏风的控制 1. 降低泄漏系数K的措施--双密封技术。 双密封在原设计的基础上再加一道密封。即将转子的12分仓改为24分仓或48分仓,扇形仓角度由30℃改为15℃或7.5℃。,使得两个密封片同时起到密封作用。并用逐级降压的方法来减小差压,达到减小直接漏风的目的。双密封技术一般是分为双径向密封和双轴向密封,双径向密封就是指在任何时候都有两条密封片与密封板相接触,形成两个密封仓。双轴向密封就是每块轴向密封板在转子转

电站锅炉空气预热器性能计算及编程

电站锅炉空气预热器性能计算及编程 0 引言 我国以煤炭为主的能源结构短期内难以根本改变。火力发电是我国煤炭消费大户,因此,火电能源消耗基数较大,即使有百分之零点几的改进,都可以为节能减排作出重大贡献。空气预热器是锅炉尾部烟道中重要的受热面,用于提高锅炉的热交换性能,降低能量消耗。它是整个锅炉沿烟气流程的最后一个热交换设备,其排烟温度的高低反映了整个锅炉的热效率的高低,而空气预热器的出口风量、风温直接影响炉膛的燃烧和制粉系统的运行,所以空气预热器在整个锅炉设备中的作用是十分重要的。截至1996 年年底已投产的大容量锅炉机组,无论是进口还是国产设备,几乎全部采用回转式空气预热器。作者根据ASME PTC 4.3-1968 标准对空预器的性能进行计算,并编写了空气预热器热力性能计算程序。 1实验模型 本文以某电厂的300MV机组为研究对象,分析计算了空气预热器的热力学运行性能并编制了计算程序。电站锅炉为哈尔滨锅炉厂生产的HG1025/540型亚临界、一次中间再热自然循环汽包炉,单炉膛n型,燃烧器布置于炉膛四角,切园燃烧,尾部双烟道结构,采用挡板调节再热汽温,固态排渣,全钢架悬吊结构,平衡通风,半露天岛式布置。锅炉主要额定参数如下:主蒸汽流 量:1025t/h;过热蒸汽出口温度:540C ;过热蒸汽出口压力:

17.35MPa;机组额定发电功率:300MW给水温度:280C。 电站锅炉燃煤的煤质将直接影响锅炉空预器中烟气的组成成分,从而影响空预器的换热以及空预器出口热空气的温度,并且最终会影响机组的运行性能。本文选用的煤种为义马烟煤,关于义马烟煤的相关运行参数可以从一些设计手册中查出。 2空气预热器漏风性能计算 2.1漏风率的定义 由于回转式空气预热器自身的特点,空气预热器的烟气侧与空气侧并不是绝对隔离的,二者之间存在缝隙,由于这个缝隙的存在,难免就会造成空气预热器中空气侧的空气漏入压力较低的烟气侧。为了分析空预器的这个特点,我们定义了一个空气漏风率的概念。空气漏风率是指在空气预热器中由空气侧漏入烟气侧的空气质量占空气预热器入口烟气质量百分比。即: =100?(1) 式中:AL――空气预热器的漏风率,%;MrFgE 进入空气 预热器的烟气量,kg/h;MrFgLv ――离开空气预热器的烟气量, kg/h 。 2.2漏风率修正 空气预热器的漏风最主要的原因是一次风、二次风侧的烟气压力远大于烟气侧压力所致的直接漏风。这些参数对于空气预热器漏风的影响非常大,且远大于对锅炉的影响。由于存在这么大的影响,如果空气预热器运行的条件发生严重改变,对空气预热器漏风率的修正就显得

回转式空气预热器漏风率的计算与测定

回转式空气预热器漏风率的计算与测定

★ 回转式空气预热器漏风率的计算与测定 ▲定义和公式 回转式空气预热器漏风率,为漏入空气预热器烟气侧的空气质量与进入该烟道的烟气质量之比率。 漏风率的计算公式: '''''100y y k y y m m m L m m A -?==?……………………………………… K 1 式K 1可改写式K 2 '''''100k k k y y m m m L m m A ?-==?…………………………………K 2 式中:L A -漏风率,% 'm y 和''y m 分别为烟道的进、出口烟气质量 mg/m 3, mg/kg 'K m 和''K m 分别为空气预热器进、出口空气质量 mg/m 3, mg/kg k m ?漏入空气预热器烟气侧的空气质量 mg/m 3, mg/kg ▲ 漏风率的测定: 同时测定相应烟道进、出口的三原子气体(RO 2)体质含量百分率,并按经验K 3公式计算:2 22''''' 90RO RO L RO A -=?……………………………K 3 式中:2'RO 和2''RO 分别表示烟道进、出口烟气三原子气体(RO 2)体质含量百分率,%。 ▲ 漏风率和漏风系数的换算: 漏风率和漏风系数按下式进行换算:''' '90L A ααα-=?……K 4 式中:'α和''α分别为烟道进、出口处烟气过量空气系数。其数值可分别用下式计算:22121''O α-=……………………………………… K 5

2 2121''''O α-= ……………………………………… K 6 式中2'O 和2''O 分别为烟道进、出口处的氧量mg/m 3, mg/kg 。 ★ 回转式空气预热器漏风控制在2~4%以下 ★ 回转式空气预热器漏风的原因 ▲ 回转式空气预热器的漏风主要是由于密封付之间有间隙,这种间隙就是漏风的主要渠道。空气预热器同时处于锅炉烟风系统的进口和出口,空气侧和烟气侧之间存在较高压力差,这是漏风的动力。回转式空预器的漏风分为两部分:直接漏风和结构漏风(或称携带漏风)。直接漏风是由差压引起的,且占主要部分;结构漏风是由自身构造引起的。结构漏风量的计算公式为: △V=πn(D-d)H(1-y)/240 (1) 式中:△V 为结构漏风量m 3/s ;D 为转子直径m ;d 为中心轴直径m ;n 为转子旋转速度rpm ;y 为转子内金属蓄热板所占容积份额:H 为转子高度m 。结构漏风是回转式空气预热器的固有特点.是不可避免的。而且这部分漏风占预热器总漏风量的份额较少,不到5%。回转式空气预热器的漏风主要是直接漏风.直接漏风量的计算公式如下:G K p ρ=??? (2) 这是空气预热器漏风量的基本计算公式.适用于回转式空气预热器的径向密封,轴向密封,静密封和周向密封。式中△P 为空气侧与烟气侧的压力差,公式中气体密度ρ是基本不变的,因此,影响漏风的主要因素是:泄漏系数K ;间隙面积F :空气侧与烟气侧之间的压力差△P 。由式(2)可以看出,漏风量与泄漏系数K 、间隙面积F 、空气与烟气的压力差△P 的平方根成正比,要降低漏风量,就必须减小K ,F ,△P 值。下面分别论述降低K .F .△P 值的有关措施。 ◆ 回转式空气预热器漏风的控制 1. 降低泄漏系数K 的措施--双密封技术。 双密封在原设计的基础上再加一道密封。即将转子的12分仓改为24分仓或48分仓,扇形仓角度由30℃改为15℃或7.5℃。,使得两个密封片同时起到密封作用。并用逐级降压的方法来减小差压,达到减小直接漏风的目的。双密封技术一般是分为双径向密封和双轴向密封,双径向密封就是指在任何时候都有两条

回转式空气预热器漏风率的计算与测定

回转式空气预热器漏风率的计算与测定 定义和公式: 回转式空气预热器漏风率,为漏入空气预热器烟气侧的空气质量与进入该烟道的烟气质量之比率。漏风率的计算公式: …………………………………………K1 式K1可改写式K2 …………………………………K2 式中:-漏风率,% 和分别为烟道的进、出口烟气质量 mg/m3, mg/kg 和分别为空气预热器进、出口空气质量 mg/m3, mg/kg 漏入空气预热器烟气侧的空气质量 mg/m3, mg/kg 漏风率的测定: 同时测定相应烟道进、出口的三原子气体(RO2)体质含量百分率,并按经验K3公式计算: ……………………………………………………K3 式中:和分别表示烟道进、出口烟气三原子气体(RO2)体质含量百分率,%。 漏风率和漏风系数的换算: 漏风率和漏风系数按下式进行换算:……K4 式中:和分别为烟道进、出口处烟气过量空气系数。其数值可分别用下式计算: …………………………………………………………K5 ……………………………………………………… K6 式中和分别为烟道进、出口处的氧量mg/m3, mg/kg。

回转式空气预热器的漏风控制 回转式空气预热器的漏风主要是由于密封付之间有间隙,这种间隙就是漏风的主要渠道。空气预热器同时处于锅炉烟风系统的进口和出口,空气侧和烟气侧之间存在较高压力差,这是漏风的动力。回转式空预器的漏风分为两部分:直接漏风和结构漏风(或称携带漏风)。直接漏风是由差压引起的,且占主要部分;结构漏风是由自身构造引起的。结构漏风量的计算公式为: △V=πn(D-d)H(1-y)/240 (1) 式中:△V为结构漏风量m3/s;D为转子直径m;d为中心轴直径m;n为转子旋转速度rpm;y为转子内金属蓄热板所占容积份额:H为转子高度m。结构漏风是回转式空气预热器的固有特点.是不可避免的。而且这部分漏风占预热器总漏风量的份额较少,不到5%。回转式空气预热器的漏风主要是直接漏风.直接漏风量的计算公式如下: (2) 这是空气预热器漏风量的基本计算公式.适用于回转式空气预热器的径向密封,轴向密封,静密封和周向密封。式中△P为空气侧与烟气侧的压力差,公式中气体密度ρ是基本不变的,因此,影响漏风的主要因素是:泄漏系数K;间隙面积F:空气侧与烟气侧之间的压力差△P。由式(2)可以看出,漏风量与泄漏系数K、间隙面积F、空气与烟气的压力差△P的平方根成正比,要降低漏风量,就必须减小K,F,△P值。下面分别论述降低K.F.△P 值的有关措施。 1.降低泄漏系数K的措施--双密封技术。 双密封在原设计的基础上再加一道密封。即将转子的12分仓改为24分仓或48分仓,扇形仓 角度由30℃改为15℃或7.5℃。,使得两个密封片同时起到密封作用。并用逐级降压的方法来减小差压,达到减小直接漏风的目的。双密封技术一般是分为双径向密封和双轴向密封,双径向密封就是指在任何时候都有两条密封片与密封板相接触,形成两个密封仓。双轴向密封就是每块轴向密封板在转子转动时与两条轴向密封片配合。采用单密封时,烟气与空气只有一壁之隔:采用双密封时,烟气与空气被过渡区域隔开,在工况相同间隙相同的情况下,采用双密封结构漏风量降低30%。推导如下: 双密封前的漏风量为: (3) 改双密封后由于压差减少一半,所以双密封后漏风量为: (4) 从式(4)中可以看出,双密封技术可以直接漏风降低30%。如采用多重密封漏风量将继续降 低。见下式: (5) 从式(5)中不难看出,密封数越多,对泄漏系数K的影响越大。但是.由于操作空间的限制 和制造成本的提高。不可能采用多重密封,一般取n=2效果就很好了。 2.降低烟风两侧压力差△P的措施 在回转式空气预热器中,空气侧与烟气侧的压力差是由锅炉系统的阻力决定的。因此,要控制预热器的烟风压差,就要在锅炉总体设计时选择合适的磨煤机型号、燃烧器型式和受热面布置,降低锅炉系统的阻力,并防止尾部结露。在预热器设计时,装设吹灰器、水冲洗装置以及风压测量管道,在运行过程中,进行正常有效的吹灰。否则,随着运行时间的延长,因积灰堵塞而造成阻力增加和冷端压差增加,预热器漏风率升高。在停炉维修时,进行水冲洗,保持受热面清洁。清洗后一定要烘干后再投入使用。蒸汽吹灰时一定要保证吹灰蒸汽压力和过热度,否则

空气预热器

大庆乙烯裂解炉空气预热器 投用情况及分析 程广伟 (大庆石化公司化工一厂163714) 内容摘要本文从大庆乙烯装置老区8台裂解炉底部火嘴增设的空气预热器设计、投用、维护等多方面的情况进行了系统总结和详细分析,并讨论和计算了该预热器投用后对于乙烯装置的节能降耗情况的进步和企业效益增加的情况。指出了该种设备的适合条件及推广前景。 关键词节能降耗预热器泵阱热值计算 1概述 在石化行业,燃料消耗是生产装置最主要的能源消耗,占整个化工厂的60%左右。据国家能源部统计,我国单位产品的能耗比欧美发达国家要多出60~100%,甚至2~3倍。随着中国加入WTO,外国石化产品正在和即将大量进入中国市场,中国石化产品正面临空前挑战,内部挖潜增效、节能降耗成为国内石化企业能否在今后激烈的竞争中立于不败之地的关键。 目前大庆石化公司化工一厂有两套乙烯装置,一套为1986年投产的采用STONE &.WEBERST公司(以下简称S. W 公司)工艺技术老区部分,采用的是的UCS-16W型裂解炉,顺序分离流程。另一套为1999年投产的新区部分,裂解炉采用的是S.W公司的UCS-80U裂解炉和BROWN &ROOT公司的前脱丙烷前加氢工艺流程。 其中老区裂解炉自投产以来,装置的能耗一直较高,其中主要原因有以下两方面:一是公用工程能耗高,二是乙烯收率设计值比较低,产品产量低。导致乙烯单耗自原始开工以来超出设计值较多,无法达标。如何将装置的运行能耗降下来,实现装置达标,提高产品的竞争能力成为分厂和公司的主要任务。 通过公司领导和有关技术人员对装置运行情况和设计标准进行对照和分析,认为大庆乙烯装置节能降耗的重点是降低裂解炉能耗,而重中之重则是通过装置内的系统优化,预热裂解炉助燃空气,达到减少裂解炉燃料消耗的目的。通过对国内外有关乙烯装置进行了大量考察和研究,认为目前乙烯裂解炉节能挖潜、降低燃料消耗有两大途径:一是利用装置再生式的余热,如利用裂解炉烟气预热助燃空气等,但该条节能路径需要增加大量额外能耗(比如增设烟气鼓风机等),而且裂解炉烟气在温度低于100℃时还存在对设备和管线的露点腐蚀等一系列问题,实施难度较大。另一条路径是利用厂区多余的低压废热蒸汽,预热进入裂解炉炉膛的助燃空气,这一办法工艺简单,实施方便,又不需要增设过多的其余设备和能耗元件。 基于上述情况,结合2000年大庆乙烯装置新区裂解炉底部火嘴增设的急冷水预热器的成功投用,由大庆石化公司工程技术人员联合航空航天部11研究所的设计人员,大庆石化公司于2001年3月正式提出将大庆乙烯装置裂解车间老区8台裂解炉(EF-111A~H)底部燃烧器增设空气预热器,加热介质为装置的多余低压蒸汽S3。

相关主题
文本预览
相关文档 最新文档