当前位置:文档之家› 固相萃取基本原理与应用

固相萃取基本原理与应用

固相萃取基本原理与应用
固相萃取基本原理与应用

一、固相萃取基本原理与操作

1、固相萃取吸附剂与目标化合物之间的作用机理

固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的

1)疏水作用力:如C18、C8、Silica、苯基柱等

2)离子交换作用:SAX, SCX,COOH、NH2等

3)物理吸附:Florsil、Alumina等

2、pH值对固相萃取的影响

pH值可以改变目标物/吸附剂的离子化或质子化程度。对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。而目标物的离子化程度则与pH值有关。如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH值必须大于其pKa值两个单位才能保证其完全离子化。对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。

3、固相萃取操作步骤及注意事项

针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。1)填料保留目标化合物

固相萃取操作一般有四步(见图1):

? 活化---- 除去小柱内的杂质并创造一定的溶剂环境。(注意整个过程不要使小柱干涸)

? 上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。(注意流速不要过快,以1ml/min为宜,最大不超过5ml/min)

? 淋洗---- 最大程度除去干扰物。(建议此过程结束后把小柱完全抽干)? 洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。(注意流速不要过快,以1ml/min为宜)

如下图1:

2)填料保留杂质

固相萃取操作一般有三步(见图2):

? 活化--除去柱子内的杂质并创造一定的溶剂环境。(注意整个过程不要使小柱干涸)

? 上样--将样品转移入柱,此时大部分目标化合物会随样品基液流出,杂质被保留在柱上,故此步骤要开始收集(注意流速不要过快)

? 洗脱---用小体积的溶剂将组分淋洗下来并收集,合并收集液。(注意流速不要过快)

此种情况多用于食品或农残分析中去除色素。

如下图2:

二、固相萃取方法的建立与优化

固相萃取技术使用起来虽然比液液萃取简单,但建立一个固相萃取的方法并无快捷方式可走。建立固相萃取方法必须考虑与萃取过程相关的多种因素,归纳起来可通过下图来了解:

方法建立如下图片1.jpg:

方法建立如下图片2.jpg:

1、初步固相萃取方法的建立

建立初步的萃取方法要考虑:

·选择合适的SPE柱

·选择合适的固相萃取方法

·方法的优化

2、固相萃取柱的选择<

1)柱填料的选择

首选根据目标化合物与干扰物的差异,如极性,分子量,pka值等,选择合适的填料。

固相萃取柱的选择如下图片.jpg:

2)固相萃取柱规格的选择

对于反相、正相和吸附型固相萃取柱来说,被萃取样品的质量不超SPE柱填料的5%(参考值,同一种SPE柱对不同的目标物选择性不同,吸附容量不同);而离子交换型的固相萃取柱,必须考虑离子交换的容量。不同厂家的小柱离子交换容量稍有差异。下表附SPE小柱的容量和洗脱参数

SPE柱上样容量和洗脱体积的选择

规格最大上样量最小洗脱体积100mg/1mL5mg250μL

200mg/3mL10mg500μL

500mg/6mL25mg 1.2mL

1g/6mL50mg 2.4mL

3、选择合适的固相萃取方法

固相萃取的保留机制可分为两种:

·吸附剂(填料)保留目标化合物:绝大多数化合物应用此机制,填料保留其目标组分及少量杂质,通过淋洗步骤去除吸附在柱上的少量杂质,最后选择合适的(洗脱)溶剂把目标组分洗脱下来。

根据吸附剂的保留机理可进一步分为:

(1)反相(C18,C8,CN,Phenyl,C4,C1)

·分析物:非极性至中等极性基质:水溶性

·方法:

a.活化:通常用水溶性有机溶剂如甲醇活化,然后用水平衡

b.淋洗:含0-50%极性溶剂的缓冲溶液淋洗杂质

c.洗脱:极性或非极性溶剂洗脱目标物

(2)正相(Silica, Florisil,Diol,NH2)

·分析物:中等极性到强极性

·基质:非极性至中等极性

·方法:

a.活化:非极性有机溶剂

b.洗脱:非极性有机溶剂

如下图片:

(3)阳离子交换(SCX,PRS,COOH)

u 分析物:阳离子(碱性)化合物

u 方法:

1.活化:用于非极性有机溶剂中的样品时,可用样品溶剂来活化;在用于极性溶剂中的样品时,可用水溶性有机溶剂过柱后,然后用水平衡,最后再用适当pH 值的缓冲溶液进行平衡。

2.上样:样品溶液pH值要小于其pKa两个单位(以保证其带电荷)

3.洗脱:洗脱溶液pH值要大于其pKa两个单位(中和分析物的电荷)

(4)阴离子交换(SAX,PSA,NH2,PAX/MAX )

u 分析物:阴离子(酸性)化合物

u 方法:

1.活化:用于非极性有机溶剂中的样品时,可用样品溶剂来活化;在用于极性溶剂中的样品时,可用水溶性有机溶剂活化后,然后用水平衡,最后再用适当pH 值的缓冲溶液进行平衡。

2.上样:样品溶液pH值要大于其pKa两个单位(以保证其带电荷)。

3.洗脱:洗脱溶液pH值要小于其pKa两个单位(中和分析物的电荷)。

u 吸附剂(填料)保留杂质:

食品中色素等杂质的去除多用此机制。填料保留杂质而不保留或只保留极少量的

目标组分,所以上样后即开始收集目标组分,最后用目标物所在的溶剂进一步洗脱。合并两部分收集液。

(1)活化:以样品所在的有机溶剂进化活化,1-2柱管体积

(2)上样:提取液转移至柱内,并收集流出液

(3)洗脱:用样品所在的有机溶剂进一步洗脱,收集流出液。合并上样和洗脱流出液。

4、固相萃取方法的优化

1)影响萃取效率的因素

(1)填料(固定相)----- 核心

选择合适的SPE柱是保证理想结果的前提。

(2)洗脱溶剂的强度:

? 采用正相固定相时,溶剂强度随其极性增强而增加;

? 采用反相固定相时,溶剂强度随极性减弱而增强。

(3)pH值:

离子交换固定相、被分析物和干扰物质的pKa各不相同。通过调节pH大小,可以使固定相带电荷,被分析物带相反电荷,而使干扰物质不带电荷;或者反过来,使固定相带电荷,干扰物质带相反电荷,而使被分析物不带电荷。

(4)操作:控制合适的流速、活化的时不要让柱干涸等

2)常见问题及解决方法

·分析物回收率低

·萃取重现性差

·洗脱馏分中含有干扰物

·SPE柱流速降低或阻塞

具体解决方案如下:

A. 分析物回收率低

?未保留?

?被淋洗?

?未被洗脱或部分洗脱?

首先要把上样液、淋洗液、洗脱液均收集,进样分析,确定问题来源

回收率差如下图片:

重现性差如下图片:

相关图片如下:

相关图片如下:

举例说明

1. 参考文献方法用C18柱做相关药物的净化,过柱方法如下:分别用乙酸乙酯、甲醇和水活化小柱,然后把处理过的样品过柱(溶剂为具一定pH值的缓

冲溶液),水淋洗小柱后,用乙酸乙酯洗脱目标物。

结果:接受液混浊状,回收率和重现性都不理想,可能是什么原因呢?

答案:正确的做法是要在淋洗过程结束后把小柱完全抽干。原因有二,其一因为淋洗溶剂(水)与洗脱溶剂(乙酸乙酯)不互溶,如果不抽干洗脱溶剂与目标物不能充分作用,所以造成回收率和重现性都没有保证,同时从外观上看接受液是液混浊液;其二如果淋洗过程不抽干小柱,洗脱溶剂里会引入水(淋洗剂),对下一步浓缩造成很大的困难。

相关图片如下:

2、水中的灭草松前处理方法

取500ml水样过滤,待过Cleanert PEP柱(相当于Waters HLB)净化

1)用5mL四氢呋喃洗柱子,除掉杂质

2)用5mL甲醇1mL/min活化柱子

3)用5mL纯水1mL/min活化柱

4) 500mL的水样以5mL/min的速度过柱

5) 5mL纯水2mL/min淋洗

6)小柱真空抽干20min

7) 0.9mL的甲醇1mL/min淋洗,弃去淋洗液

8) 3mL四氢呋喃1mL/min的速度洗脱柱子,收集洗脱液浓缩定容至3mL液相检测。

结果:回收率不理想,请问此方法有何问题?

答案:因为目标物灭草松呈酸性,pKa=3.3,而选择的小柱PEP是极性的。所以正确的做法是样品在过柱之前一定要调节水样的pH值小于等于3,使目标物分子化,以保证目标物能被小柱充分保留,否则在上柱的过程中容易造成“漏”的现象,从而造成回收率差。

三、固相技术应用实例解析

1、食品领域应用

1)动物组织中盐酸克仑特罗等4种β-激动剂药物残留检测(Cleanert PCX, P/N: CX1506)

1.实验材料

1.1 固相萃取小柱:PCX(150mg/6mL)

1.2 四种β-激动剂药物:盐酸克仑特罗、沙丁胺醇、西马特罗、莱克多巴胺等4种β-激动剂药物。

2. 试样的制备

取猪肝空白样品,经过液液萃取初步处理后,添加适宜浓度的标准溶液作为空白

添加试样。

3. 净化

依次用甲醇5mL、水5mL和30mmol/L盐酸5mL润洗固相萃取小柱,将上述备用液过柱,依次用水5mL、甲醇5mL淋洗,真空抽干,用4%氨化甲醇5mL 洗脱PCX小柱,收集洗脱液于具塞玻璃试管中,50℃下氮气吹干。在样液过柱和洗脱过程中流速控制在1mL/min左右。

4. 衍生化及检测

将上述盛有残渣的具塞玻璃试管放入50℃烘箱中加热片刻,除去水分后,加入甲苯100mL和双三甲基硅基三氟乙酰胺(BSTFA)100mL,涡旋振荡20s,密封玻璃塞,置于80℃恒温烘箱中加热1小时,冷却后加入300mL甲苯,作为试样溶液,供气相色谱-质谱分析(色谱柱:DA-5MS, 30m×0.25mm×0.25μm,P /N:1525-3002)。

5. 结果

5.1 回收率实验(精密度和准确度)

将猪肝空白样品经过液液萃取初步处理后,分别添加一定量的标准溶液,配制1μg/L、2μg/L、5μg/L、10μg/L和100μg/L五个浓度的试样溶液,每批次内同一浓度做5次平行实验,共4个批次(样品典型回收率色谱图见附图)。

猪肝中实验结果列表如下

添加浓度(μg/L)回收浓度

(μg/L)

平均回收值

(μg/L)

平均回收率

(%)

相对标准偏差

(%)

1 0.75

0.72 72.40 5.93 0.67

0.72

0.70

0.78

2 1.62

1.63 81.30 1.23 1.66

1.60

1.61

1.64

5 4.02

4.24 84.80 4.16 4.10

4.27

4.38

4.43

10 8.24

8.45 84.45 2.81 8.35

8.77

8.62

8.25 100

90.24 9.12

91.15

2.86

87.15

91.77 92.62 93.95

5.2重复性实验(批间误差实验): 猪肝中实验结果列表如下

批间 添加浓度(μg/L )

1

2

5

10 100

平均 回收率% RSD% 平均 回收率% RSD% 平均 回收率% RSD% 平均 回收率% RSD% 平均

回收率% RSD% 1 72.40 5.93 81.30 3.49 84.80 6.16 84.45 3.59 91.15 2.86 2 75.37 6.12 80.47 5.37 84.74 7.55 87.46 4.68 90.05 3.86 3 70.09 7.85 80.80 6.57 83.10 8.17 83.21 5.39 89.53 4.16 4 76.73 4.90 78.50 8.35 82.90 5.11 85.95 5.72 88.27

5.93 平均值 73.65

6.20 80.25 5.95 83.88 6.75 85.27 4.84 89.75

4.20

RSD%

12.95

10.79

9.43

7.00

5.75

附图:猪肝中0.5μg/L 、1μg/L 、2μg/L 、5μg/L 、10μg/L 和100μg/L 六个浓度检

测结果总离子流图(TIC )代表图谱: 猪肝+1ppb(PCX) 相关图片如下

2)鸡蛋中三聚氰胺的检测(Cleanert PCX, P/N: CX0603) 1 材料和方法

1.1 主要仪器和试剂,

色谱柱(Venusil ASB C8,4.6*250mm ,5μm ,艾杰尔科技),混合型阳离子

交换固相萃取柱(Cleanert PCX,60mg/3mL,艾杰尔科技),12位固相萃取装置(艾杰尔科技),高效液相色谱仪;高速离心机;超声波震荡仪;涡旋混合器;分析天平(万分之一);溶剂过滤器(带0.45μm有机、水系过滤膜和真空泵);乙腈(HPLC级);三聚氰胺标准品(≥99.0%);柠檬酸(分析纯);庚烷磺酸钠(色谱级);水(二次蒸馏水以上)。

1.2 色谱条件:

色谱柱:Venusil ASB C8,4.6*250mm,5μm;

流动相:乙腈∶10mM/L柠檬酸+10mM/L庚烷磺酸钠缓冲液=7∶93(pH=3.0)检测波长:240nm;流速:1mL/min;进样20μL。

2 实验部分

2.1 三聚氰胺标准溶液配制:

称取三聚氰胺标样10.0mg,加流动相溶解定容至100mL,即得浓度为100mg/ L的三聚氰胺标样溶液。将浓度为100mg/L的三聚氰胺标准溶液分别用水稀释成浓度为1mg/L 、5mg/L 、10mg/L 、15mg/L 、20mg/L的标准品溶液,用0. 45μm滤膜过滤后进液相色谱检测。

2.2 1%三氯乙酸溶液溶液的配制

称取三氯乙酸1.00g,加水溶解定容至1000mL即得。

2.3 5%氨化甲醇的配制

准确量取5mL氨水和95mL甲醇,混匀后备用。

2.4 5%醋酸铅溶液的配制

称取5.0g醋酸铅,加水溶解定容至100mL即得。

2.5 混合型阳离子交换固相萃取柱(Cleanert PCX 60mg/3mL)的活化

取Cleanert PCX 固相萃取柱,以3mL甲醇,3mL水依次过柱活化,弃去流出液,备用。

2.5 加标样本处理

将鸡蛋打开搅匀,分别称取1.00g鸡蛋样本置于10mL具塞离心管中,分别加入100mg/L三聚氰胺标样溶液10μl、20μl、100μl,分别得到添加浓度为1.0mg/k g、2.0mg/kg、10.0mg/kg的样本。

往装有上述样本的具塞离心管中分别加入10mL 1%三氯乙酸溶液,2mL 5%醋酸铅溶液,摇匀,超声20分钟,8000rpm离心10分钟,全部上清液转入活化好的混合型阳离子交换固相萃取柱(Cleanert PCX,60mg/3mL),依次使用3 mL水,3mL甲醇淋洗,抽干,弃去淋洗液。最后用5mL 5%的氨化甲醇洗脱(V /V),接收洗脱液,50℃氮气吹干,用1mL流动相定容,0.45μm滤膜过滤后进液相色谱检测。

另取空白鸡蛋样本1.00g,不添加三聚氰胺照上述方法处理,作为空白对照样品。3实验结果:

3.1 峰型与分离度

图片如下

由图1可见,用该方法处理,三聚氰胺峰型对称尖锐,且与杂质分离良好

3.2 精密度

分别移取浓度为1.0mg/L、5.0mg/L的三聚氰胺标准溶液,分别连续进样6次,结果如表1所示。

表1 保留时间与峰面积的稳定性数据

浓度

mg/mL

指标1# 2# 3# 4# 5# 6# 平均值RSD%

1.0

保留时

间(min)

18.830 18.829 18.829 18.838 18.840 18.834 18.833 0.026 峰面积89 81 84 88 84 80 84 4.286

5.0

保留时

间(min)

18.949 18.952 18.947 18.949 18.950 18.946 18.949 0.011 峰面积423 440 438 439 437 438 436 1.461

由表1结果可见,本方法具有很好的精密度和重现性。

3.3 标准校正曲线

表2 标准校正曲线实验数据

浓度mg/kg

峰面积

第1次进样

峰面积

第2次进样

峰面积

均值

1.0 89 79 84

5.0 423 440 431

10.0 832 844 838

15.0 1265 1299 1282

20.0 1689 1823 1756

根据以上数据计算线性方程为:y = 87.43x - 13.67,R2= 0.999 ,相关曲线见图2。

3.4 添加回收率

表3 添加浓度与回收率数据

添加浓度(mg/kg) 峰面积计算含量回收率(%)

1.0 19.9 1.158892 115.89

1.0 21.0 1.214532 121.45

2.0 41.7 2.261587 11

3.08

2.0 40.8 2.216062 110.80

10.0 188.8 9.702247 97.02

10.0 219.6 11.26018 112.60

由表3可见,本方法检测鸡蛋中三聚氰胺回收率较好。

4 结论

通过上述实验可见,运用本方法测定鸡蛋中三聚氰胺,基质净化效果好,杂质干扰小,色谱峰型良好对称度高,操作简单方便,和准确度高等优点,非常适用于鸡蛋中三聚氰胺的检测。

[2010-9-15 12:53:21 Last edit by pjs123]

仪器专场展示:离子色谱色谱柱离子色谱柱

关键词:固相萃取原理及应用萃取技术

2、环境检测应用

1)水中酚类检测(Cleanert PEP, P/N: PE0603)

1 实验材料:

1.1 SPE小柱:Cleanert PEP 500mg/6mL

1.2 7种酚类:苯酚,4-硝基酚,间甲酚,2-氯酚,2,4-二氯酚,2,4,6-三氯酚,五氯酚

2 实验过程

2.1.样品前处理方法

1)活化:依次用5mL甲基叔丁基醚(10:90,V/V)、5mL甲醇活化富集柱、5mL去离子水活化Cleanert PEP柱,5mL/min

2)上样:1L的水样过柱,<5mL/min

3)淋洗:10mL去离子水淋洗小柱,5mL/min,然后真空抽干20min

4)洗脱:2mL甲醇/甲基叔丁基醚(10:90,V/V)分两步洗脱,收集洗脱液至尖嘴瓶中

5)浓缩:将收集的2mL洗脱液,氮气浓缩至1mL

2.2.色谱条件

色谱柱:Venusil MP C18(4.6*150,5μm)

流动相:A:1%乙酸B:1%乙酸甲醇检测器:UV检测器

梯度洗脱程序:

时间流动相比例流速(mL/min)检测波长(nm)

0-15min A:B=50:50 1 275

15-30min A:B=15:85 1.8 295

图片如下:

3.实验结果

七种酚在水中的添加回收率见表1.

表1. 七种酚类在水中的添加回收率结果

加标

平均值标准偏

平均回收

率(%)

1 2 3

苯酚 1.367 1.541 1.524 1.477 0.096 100.3

4-硝基

1.229 1.308 1.430 1.322 0.101 90.0

间甲酚 1.294 1.540 1.548 1.461 0.144 106.3

2-氯酚0.527 0.684 0.641 0.617 0.081 100.6

2,4-二氯

1.305 1.613 1.621 1.513 0.180 9

2.8

2,4,6-三

氯酚

1.365 1.609 1.511 1.495 0.123 90.3

五氯酚 1.259 1.487 1.472 1.406 0.128 95.6

2)水中的多环芳烃固相萃取方法(Cleanert PEP, P/N: PE0603)

1. 材料

1.1 目标物成分

萘,苊,苊烯,芴,菲,蒽,荧蒽,芘,屈,苯并(a)蒽,苯并(k)荧蒽,苯并(a,

h)荧蒽,苯并(a)芘,苯并(g,h,i)芘,茚并(1,2,3-cd)芘

1.2.SPE柱:Cleanert PEP(60g/3mL)

2. 样品处理:1L 水中加入20mL10%的硝酸

3. SPE方法

1)活化:5mL异丙醇和5mL水分别依次活化PEP柱

2)上样:把处理好的水样过PEP柱

3)淋洗:用5mL淋洗液(300mL水+700mL甲醇+2.1 g Na2HPO4+2.04 g KH2PO4)淋洗

4)抽干:抽真空干燥柱管30min

5)洗脱:用4mL洗脱液(90mL异丙醇+10mL冰醋酸+200mL甲苯,加入到1 L石油醚中),混合均匀洗脱,收集洗脱液

6)浓缩,定容

4. 色谱条件:

色谱柱:Venusil PAH专用柱(4.6×250mm,5μm,200?)

样品:溶于MeOH:CH2Cl2(1:1)16PAHs标品, 用MeOH:CH2Cl2(1:1)稀释10倍

流速:1.2mL/min

进样量:10μL

柱温:30℃

波长:254nm

甲醇/水线性梯度洗脱,梯度表如下

T(min)MeOH(%)H2O(%)

0 85 15

2 85 15

7 95 5

40 95 5

图片如下:

3)水中硝基苯的固相萃取方法(Cleanert PEP, P/N: PE0603)

1.SPE柱:Cleanert PEP(500mg/6mL)

2.样品制备:分析前应先调节水样pH值为中性,向每份水样中加人甲醇使甲醇浓度为0.5%。混匀。

3.SPE方法:

3.1 PEP柱活化:将PEP柱置于固相萃取装置的针座圈上,用3mL正己烷预洗萃取柱,加人5mL甲醇,在甲醇完全流过萃取柱前加入10mL试剂水,使柱床处于湿润和活化状态。

3.2 样品的富集:根据水样浓度准确量取适量水样于分液漏斗中,开启固相萃取装置真空系统,使水样连续通过活化过的萃取柱保持流速不超过5mL/min进行萃取,在萃取过程中要始终保持柱床上至少有1cm高水样。当所有样品都通过萃取柱后,用10mL超纯水冲洗分液漏斗内壁,继续真空抽吸20min。

3.3 干燥柱预处理:向带筛板的干燥管中加入5g处理过无水硫酸钠,使用前分别用10mL丙酮和正己烷,再以10mL丙酮洗以净化干燥柱

3.4 萃取柱的洗脱:保持管线的连接,在真空多管装置的萃取缸中放人试管架及接收管,在针座圈和萃取柱之间连接干燥柱用于脱水,用1mL丙酮过渡,弃去过柱液(该步骤不要吹干,让丙酮和柱内填料平衡2min),10mL正己烷/丙酮(9

0:10,V/V)洗脱萃取柱,洗脱经过干燥柱(与PEP柱串联),收集流出液至接受管中,用氮吹仪在40℃下浓缩至1.0mL,进样分析(需要观察有无分层,水会引起分层,影响氮吹)。

3、药物分析中的应用

1)血浆中油酸及其代谢物LC-MS分析中的应用(Cleanert PAX, P/N: AX06 03)

图片如下:

2.提取及净化方法:见下图

3.检测条件:

仪器:API Qtrap 3200, 美国Applied Biosystem公司;LC-20A高效液相色谱,日本岛津公司

质谱条件:电离子喷雾源;负离子模式检测;扫描方式为选择反应监测(MRM)方式

用于定量分析的离子反应分别为:m/z 281.2? m/z 281.2 (油酸);m/z

315.2

? m/z 315.2(油酸代谢物);m/z 269.2? m/z 269.2 (内标C17)

流动相为:ACN: 3mmol/L ammoniμm acetate=85:

15

4.实验结果

浓度

10ng/mL(n=3)100ng/mL(n=3)2500ng/mL(n=3)油酸回收率(%)77 87 91

RSD 2.9 0.9 0.2

图片如下:

2)血浆中伪麻黄碱的LC-MS快速分析(Cleanert PCX, P/N: CX0603)1.伪麻黄碱结构式

图片如下:

2.前处理步骤(Cleanert PCX 30mg/1mL)

固相萃取柱知识点

1、使用阳离子固相萃取柱前为什么要用甲醇和水活化 要是使用的是高聚物基质的阳离子柱,可直接上样,不用活化,要是使用的是硅胶基质的阳离子柱,活化是为了打开键合在硅胶上的碳基团链,使之充分发生作用,甲醇是为了与碳链互溶,用水过度是为了能和样品溶液相溶。 2、固相萃取技术原理及应用 一、固相萃取基本原理与操作 1、固相萃取吸附剂与目标化合物之间的作用机理 固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的 1)疏水作用力:如C18、C8、Silica、苯基柱等 2)离子交换作用:SAX, SCX,COOH、NH2等 3)物理吸附:Florsil、Alumina等 2、p H值对固相萃取的影响 pH值可以改变目标物/吸附剂的离子化或质子化程度。对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。而目标物的离子化程度则与pH值有关。如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH值必须大于其pKa值两个单位才能保证其完全离子化。对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。

3、固相萃取操作步骤及注意事项 针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。 1)填料保留目标化合物 固相萃取操作一般有四步(见图1): ? 活化---- 除去小柱内的杂质并创造一定的溶剂环境。(注意整个过程不要使小柱干涸) ? 上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。(注意流速不要过快,以1ml/min为宜,最大不超过5ml/min)? 淋洗---- 最大程度除去干扰物。(建议此过程结束后把小柱完全抽干) ? 洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。(注意流速不要过快,以1ml/min为宜) 如下图1:

在线固相萃取初步设计

固相萃取-HPLC联用(在线)初步设计 在线固相萃取仪将萃取净化和HPLC 和LC/MS 分析结合进行, 可用于样品的直接分析。采用离线萃取, 样品只有约1-2%可以注入HPLC。而采用在线萃取, 样品可灵活注入HPLC。因此在线萃取可以达到高灵敏度级别。另外, 通过减少人为干预, 分析数据的质量也会显著提高。 仪器工作原理示意图 在线固相萃取仪通过自动进样器将样品引入萃取柱, 通过循环泵配合切换阀执行活化、淋洗操作,洗脱步骤中利用计量泵完成收集步骤,推入固定体积样品进入HPLC 分析柱。在上述配置中, 只有液相泵和检测器为HPLC 的模块, 其它部件都来自在线固相萃取仪。 以下是在线固相萃取的常用工作步骤: 1) 活化和平衡萃取柱 2) 将样品引入萃取柱 3) 清洗萃取柱 4) 进样 5) 触发仪器分析 6) 开始处理下一个样品

产品特点: 平行进样 可以和色谱仪器并行工作。当色谱仪在分析样品时,在线固相萃取仪就可以萃取下一个样品。这样样品处理基本上不额外占用分析时间。 多种样品萃取 由于采用自动进样方式,可完全按照程序设定全自动操作完成。 容易和HPLC或LC-MS同步 大多数情况下可以使用自带的方法和序列运行, 不需要在电脑上安装软件。仪器通过遥控信号和色谱仪器同步。色谱仪器只要有遥控信号输入接口, 就可以和在线固相萃取仪同步。 项目离线固相萃取在线固相萃取分析时间每个样品需40分钟以上, 其中包括萃取500~1000 毫 升水样, 将样品浓缩后定 容至0.5~1 毫升,再进行仪 器分析 每个样品需10~15 分钟。通 过重叠进样, 样品前处理 不额外占用时间。 材料成本每个样品需要一个SPE 萃 取柱, 人民币15元; 30-50 毫升高纯度溶剂,人民币 10元。 一个SPE 萃取柱可处理 50~100 个样品, 每个样品 的成本为人民币0.5元。每 个样品需高纯度溶剂3~5 毫升, 人民币1.2元。 数据质量在ppb 级的误差通常大于 5% 通过简化步骤和自动控制, 甚至在ppt级的误差也可在 5%以下。 产品指标 样品数每批?个 样品体积1~?毫升

固相萃取与固相微萃取应用之原理

固相萃取与固相微萃取应用之原理 一固相萃取 固相萃取(Solid Phase Extraction,SPE)是一种基于液-固分离萃取的试样预处理技术,由柱液相色谱技术发展而来。SPE技术自70年代后期问世以来,由于其高效、可靠及耗用溶剂量少等优点,在环境等许多领域得到了快速发展。在国外已逐渐取代传统的液-液萃取而成为样品预处理的可靠而有效的方法。 SPE技术基于液相色谱的原理,可近似看作一个简单的色谱过程。吸附剂作为固定相,而流动相是萃取过程中的水样。当流动相与固定相接触时,其中的某些痕量物质(目标物)就保留在固定相中。这时用少量的选择性溶剂洗脱,即可得到富集和纯化的目标物。固相萃取可分为在线萃取线萃取前者萃取与色谱分析同步完成;而后者萃取与色谱分析分步完成,两者在原理上是一致的。 一般固相萃取的操作步骤包括固相萃取柱(即吸附剂)的选择、柱子预处理、上样、淋洗、洗脱。在实验过程中需要具体考虑的因素如下: 1)吸附剂的选择 a.传统吸附剂 在环境分析中最为常用的反相吸附剂较适用于水样中的非极性到中等极性的有机物的富集和纯化。其中有代表性的键合硅胶C18和键合硅胶C8等。该类吸附剂主要通过目标物的碳氢键同硅胶表面的官能团产生非极性的范德华力或色散力来保留目标物。 正相吸附剂包括硅酸镁、氨基、氰基、双醇基键合硅胶及氧化铝等,主要通过目标物的极性官能团与吸附剂表面的极性官能团的极性相互作用(氢键作用等)来保留溶于非极性介质的极性化合物。由于其特殊的作用原理,在环境分析中常用于与其它类型的吸附柱联用,吸附去除干扰物,实现样品纯化。 离子交换吸附剂则主要包括强阳离子和强阴离子交换树脂,这些树脂的骨架通常为苯乙烯-二乙烯基苯共聚物,主要是通过目标物的带电荷基团与键合硅胶上的带电荷基团相互静电吸引实现吸附的。 b.抗体键合吸附剂(Immunosorbents-IS) 这类新型吸附剂充分利用了生物免疫抗原-抗体之间的高灵敏性和高选择性,尤其适应于水中痕量有机物的富集与分离。其特点为,由于绝大多数有机污染物为低分子量物质,不能在动物体内引发免疫反应,所以需把待定污染物键合到牛血清白蛋白的生物大分子载体上,使其具有免疫抗原活性,再注入纯种动物体内(如兔或羊),产生抗体,经杂交瘤技术制得相应于该有机污染物的单克隆抗体。将抗体键合到反相吸附剂的硅胶表面或聚合物表面(如C18固定相),就制得了抗体键合吸附剂,可用于分离、富集特定污染物。研制开发能专门检测各种优先污染物的单克隆抗体或多克隆抗体已成为SPE技术的前沿研究领域。 抗体键合吸附剂洗脱时一般可采用20%~80%的甲醇-水溶液,该类吸附剂经冷藏保存可多次使用。进行SPE操作时应根据目标物的性质选择适合的吸附剂。表1- 1给除了常用的吸附剂类型及其相关的分离机理、洗脱剂性质和待测组分的性质。 吸附剂的用量与目标物性质(极性、挥发性)及其在水样中的浓度直接相关。通常,增加吸附剂用量可以增加对目标物的保留,可通过绘制吸附曲线确定吸附剂用量。 2)柱子预处理 活化的目的是创造一个与样品溶剂相容的环境并去除柱内所以杂质。通常需要两种溶剂来完成任务,第一个溶剂(初溶剂)用于净化固定相,另一个溶剂(终溶剂)用于建立一个适合的固定相环境使样品分析物得到适当的保留。每一活化溶剂用量约为1~2 mL/100 mg固定相。

固相萃取概述

固相萃取(SPE) 一、概述 固相萃取(Solid-Phase Extraction,简称SPE)是近年发展起来一种样品预处理技术,由液固萃取和液相色谱技术相结合发展而来,主要用于样品的分离、纯化和浓缩,与传统的液液萃取法相比较可以提高分析物的回收率,更有效的将分析物与干扰组分分离,减少样品预处理过程,操作简单、省时、省力。广泛的应用在医药、食品、环境、商检、化工等领域。 二、SPE的原理与分离模式 固相萃取是基于液-固相色谱理论,采用选择性吸附、选择性洗脱的方式对样品进行富集、分离、纯化,是一种包括液相和固相的物理萃取过程。SPE根据其相似相溶机理可分为四种:反相SPE、正相SPE、离子交换SPE、吸附SPE。 反相SPE中吸附剂(固定相)属于非极性或弱极性,如硅胶键合C18,C8, C4,C2,-苯基等。 正相SPE中吸附剂(固定相)属于极性键合相和极性吸附剂,如硅胶键合-NH2、-CN,-Diol(二醇基)、(A-,N-,B-)alumina、硅藻土等。 离子交换SPE中吸附剂(固定相)为带电荷的离子交换树脂,流动相为中等极性到非极性样品基质。用于萃取分离带有电荷的分析物 固相萃取的洗脱模式可以分为两种:一种是目标化合物比干扰物与吸附剂之间的亲和力更强,因而被保留,洗脱时采用对目标化合物亲和力更强的溶剂;另一种是干扰物比目标化合物与吸附剂之间的亲和力更强,则目标化合物被直接的洗脱。通常采用前一种洗脱方式。 三、SPE的主要步骤 一个完整的固相萃取步骤包括固相萃取柱的预处理、上样、淋洗、洗脱及收

集分析物四个步骤。 固相萃取柱的预处理的目的主要包括两个方面:清洗萃取柱中的固定相(填料)和活化固定相。通常用两种溶剂来完成,第一个溶剂(初溶剂)用于净化固定相,另一个溶剂(终溶剂)用于建立一个合适的固定相环境使样品分析物得到适当的保留。 上样是为了让分析物被固定相萃取:将样品倒入活化后的SPE 萃取柱,然后利用加压、抽真空或离心的方法使样品进入吸附剂(采取手动或泵以正压推动或负压抽吸方式),使液体样品以适当流速通过固相萃取柱,此时,样品中的目标萃取物被吸附在固相萃取柱填料上。 上样完成后需要对固定相进行淋洗以洗去不需要的成分,尽量的减少杂质的影响。一般选择中等强度的混合溶剂,尽可能除去基体中的干扰组分,又不会导致目标萃取物流失。 淋洗后选择适当的洗脱溶剂洗脱被分析物,收集洗脱液,挥干溶剂以备后用或直接进行在线分析。为了尽可能将分析物洗脱,使比分析物吸附更强的杂质留在SPE 柱上,需要选择强度合适的洗脱溶剂。 四、SPE 的应用 固相萃取(SPE )大多数用来处理液体样品,萃取、浓缩和净化其中的半挥发性和不挥发性化合物,也可用于固体样品,但必须先处理成液体。它是一种用途广泛的样品前处理技术,广泛的应用在医药、食品、环境、商检、化工等领域。主要典型的应用领域: 1、医药发面:血清、体液,固体、液体药物成分的检测分析 如:人体血清中的咖啡因、吴茱萸碱,吴茱萸次碱的SPE 净化及检测和血清中头孢拉定、头孢氨苄、舒必利、磺胺类等药物的检测。 2、食品、食物方面:蔬菜、水果中残留农药,肉制品中残留兽药的检测 如:猪肉中五种磺胺药物(磺胺二甲基嘧啶、磺胺间甲氧嘧啶、磺胺甲唑、预处理 (清洗、活化)上样(萃取)淋洗(去杂质)洗脱(采样分析)

常用固相萃取柱

常用固相萃取柱 HLB是英文"亲水-亲脂平衡"(hydrophilic-l;pophilicbalance)的缩写,它是. 一种新型的反相吸附剂,能同时表现出对亲水性化合物和亲脂性化合物的双重保留特性。 固相萃取柱产品和应用指南(SPE column)返回 提供VARIAN公司BondElut、Agilent公司AccuBond系列固相萃取柱,另可提供经济型国产萃取小柱及填料,并可根据用户需要订做 各种规格产品 1word格式支持编辑,如有帮助欢迎下载支持。

硅胶上键合乙基 500mg 500mg 1000mg 3ml 6ml 6ml 50 30 30 合物。500mg 500mg 1000mg 3ml 6ml 6ml 50 30 30 核酸碱,核苷,表面活化剂。容量:0.2毫当 量/克。 Phenyl 硅胶上键合苯基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 相对C18和C8,反相萃取,适合 于非极性到中等极性的化合物 Alumnia A (acidic) 酸性 PH ~5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物离子交换和吸附萃取,如维生 素. Silica 无键合硅胶 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物萃取,如乙醇,醛, 胺,药物,染料,锄草剂,农药, 酮,含氮类化合物,有机酸,苯 酚,类固醇 Alumnia B (basic) 碱性 PH~8.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 吸附萃取和阳离子交换。 Cyano(CN) 硅胶上键合丙氰基烷 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于中等极性的 化合物,正相萃取,适合于极性 化合物,比如,黄曲霉毒素,抗 菌素,染料,锄草剂,农药 ,苯 酚,类固醇。弱阳离子交换萃 取,适合于碳水化合物和阳离 子化合物。 Alumnia N (neutral) 中性 PH~6.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物吸附萃取。调节pH,阳和阴离。 子交换.适合于维生素,抗菌素,芳香油,酶, 糖苷,激素 Amino(NH2) 硅胶上键合丙氨基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 正相萃取,适合于极性化合物。 弱阴离子交换萃取,适合于碳 水化合物,弱性阴离子和有机 酸化合物。 Florisil 填料-硅酸 镁 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物的吸附萃取,如乙醇,醛,胺,药 物,染料,锄草剂,农药,PCBs,酣,含氮类化 合物,有机酸,苯酚,类固醇 固相萃取柱及填料(SPE column) 2word格式支持编辑,如有帮助欢迎下载支持。

固相萃取基本原理与操作

一、固相萃取基本原理与操作 1、固相萃取吸附剂与目标化合物之间的作用机理 固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的1)疏水作用力:如C18、C8、Silica、苯基柱等 2)离子交换作用:SAX, SCX,COOH、NH2等 3)物理吸附:Florsil、Alumina等 2、p H值对固相萃取的影响 pH值可以改变目标物/吸附剂的离子化或质子化程度。对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。而目标物的离子化程度则与pH值有关。如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH 值必须大于其pKa值两个单位才能保证其完全离子化。对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。

3、固相萃取操作步骤及注意事项 针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。 1)填料保留目标化合物 固相萃取操作一般有四步(见图1): ?活化---- 除去小柱的杂质并创造一定的溶剂环境。(注意整个过程不要使小柱干涸) ?上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。(注意流速不要过快,以1ml/min为宜,最大不超过5ml/m in) ?淋洗---- 最大程度除去干扰物。(建议此过程结束后把小柱完全抽干) ?洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。(注意流速不要过快,以1ml/min为宜)

固相萃取(SPE)装置应用及原理

固相萃取(SPE)装置应用及原理 装置:离线与在线SPE 离线SPE: 1.SPE与分析分别独立进行,SPE仅为以后的分析提供合适的试样。 2.为使试样溶液与填料有足够的接触,溶剂流量不能过高。 3.可由自动化仪器完成。自动SPE仪由柱架、柱塞泵、储液槽、管线和试样处理器组成。 在线SPE: 又称在线净化和富集技术,主要用于HLPC分析; 柱预处理: 目的: 1.除去填料中可能存在的杂质; 2.使填料溶剂化,提高固相萃取的重现性; 加样: 1.为防止分析物的流失,试样溶剂浓度不宜过高; 2.以反相机理萃取时,以水或缓冲剂作为溶剂,其中有机溶剂量不超过10%(V/V); 3.为克服加样过程中分析物流失,可采用弱溶剂稀释试样、减少试样体积、增加SPE柱中的填料量和选择对分析物有较强保留的吸附剂等手段。 SPE方法的建立: 分析物的洗脱和收集(另一种情况是杂质被保留而分析物通过柱) 1.对反相萃取柱,清洗溶剂是含适当浓度有机溶剂的水或缓冲液; 2.为决定清洗溶剂的浓度和体积,加试样于SPE柱上,用5~10倍SPE柱床体积的溶剂清洗,依次收集和分析流出液,得到清洗溶剂对分析物的洗脱廓形。依次增加清洗溶剂强度,根据不同不同强度下分析物的洗脱廓形,决定清洗溶剂合适的强度和体积; 3.洗脱和收集目的:将分析物洗脱并收集在小体积的级分中,同时使比分析物更强保留的杂质尽可能多的保留在SPE柱上; 4.为提高分析物的浓度或为以后分析调整溶剂性质,可以把收集到的分析物级分用氮气吹干,再溶于小体积的溶剂中。

产品说明: 川一系列固相萃取仪(Solid-Phase Extraction,简称SPE)是一种被广泛应用且备受欢迎的样品前处理技术,是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的(即样品的分离,净化和富集),目的在于降低样品基质干扰,提高检测灵敏度,其应用于各类食品安全检测、农产品残留监控、医药卫生、环境保护、商品检验、自来水及化工生产实验室。 主要特征: 固相萃取仪整机由透明有机玻璃制作,耐腐蚀性强。 防交叉污染,防雾化真空槽设计,操作简单快速。 无相分离操作易于收集分析物组件并可处理小体积试样。 固相萃取装置可配大容量采集容器,可批量处理样品也可单个处理样品。 真空槽采用特硬玻璃模具成形,其壁厚均匀故可承受-0.098Mpa以上的高负压。 萃取柱托盘采用特高分子材料制成,其美观耐腐蚀并且长期使用在高压力状态下不变形。 内部试管架由聚四氟制成故有很高的耐腐蚀。 各处受压均匀,气密性好,稳定性强。 萃取速度一致性好、控制调整方便。 多通道可独立控制,接头耐腐蚀。

萃取原理

第八章萃取 §1 概述 8-1 萃取概念及应用 我们以手工洗衣服为例,打完肥皂、揉搓后,如何将肥皂沫去除呢?用清水多次漂洗,这是人们熟知的过程。多次漂洗的过程即为化工中的液-固萃取过程。如图8-1所示,漂洗次数越多,衣服与肥皂沫分离越完全,衣服越干净。 图8-1的衣物漂洗过程为错流萃取过程。清水称作萃取剂,含沫水为萃取相,衣物和沫为萃余相。皂沫为溶质A。经验还告诉我们,每盆水揉搓的时间越长(即萃取越接近平衡),拧得越干(即萃取与萃余相相分离越彻底),所用漂洗次数越少(即错流级数越少)。 图8-1 错流萃取示意图 萃取——利用混合物各组分对某溶剂具有不同的溶解度,从而使混合物各组分得到分离与提纯的操作过程。 例如用醋酸乙酯萃取醋酸水溶液中的醋酸。如图8-2所示。 图8-2萃取示意图 萃取用于沸点非常接近、用一般蒸馏方法分离的液体混合物。主要用化工厂的废水处理。如染料厂、焦化厂废水中苯酚的回收。萃取也用于法冶金中,如从锌冶炼烟尘的酸浸出液中萃取铊、锗等。制药工业中,许多复杂有机液体混合物的分离都用到萃取。为使萃取操作得以进行,一方面溶剂S对稀释剂B、溶质A要具有不同的溶解度,另一方面S与B必须具有密度差,便于萃取相与萃余相的分离。当然,溶剂S具有化学性质稳定,回收容易等特点,则将为萃取操作带来更多的经济效益。 萃取过程计算,习惯上多求取达到指定分离要求所需的理论级数。若采用板式萃取塔,则用理论级数除以级效率,可得实际所需的萃取级数。若采用填料萃取塔,则用理论级数乘以等级高度,可得实际所需的萃取填料层高度。等级高度是指相当于一个理论级分离效果所需的填料层高度,等级高度的数据十分缺乏,多需由实验测得。

固相萃取技术

在2003版的“食品卫生检测方法”标准系列中,有一个较大的改动就是很多项目,尤其是农药项目的前处理普遍使用了固相萃取技术(详见表1 )。现针对这一技术的原理、使用和误区进行探讨。 一.固相萃取技术简介 固相萃取(Solid Phase Extraction,简称SPE)技术,发展于上世纪70年代,由于其具有高效、可靠、消耗试剂少等优点,在许多领域取代了传统的液-液萃取而成为样品前处理的有效手段。 一些传统的介绍SPE的书籍将其归于一个液相色谱的原理,这其实是引起使用不当的主要源由之一。把SPE小柱看作一根液相色谱柱,不如把它看成单纯的萃取剂更合适,因为:液相色谱的重点在于分离,而SPE的重点在于萃取。 固相萃取技术在样品处理中的作用分两种:一是净化,二是富集,这两种作用可能同时存在。 固体萃取和液-液萃取相比,其长处在于方便和消耗试剂少,短处在于批次间的重复性难以保证。出现这种情况的原因在于:液体试剂的重复性好,只要其纯度可靠,不同年代的产品的物理化学性质都是可靠的。而固体萃取剂就算保证了纯度外,还存在着颗粒度的差异,外形的差异等液体试剂不存在的且难以衡量的因素,不同年代不同批号的萃取性质可能会有较大的区别。 从理论上和厂家宣传来看,固相萃取应该在色谱分析的前处理上得到很好的应用:有机溶剂用得很少,可批量处理样品,既可富集,又能除杂质,给人印象是前处理的革命性进步。然而现实情况,起码在国内,虽然推广了多年,实际应用还是相当有限。 SPE应用得不广,与我们的使用方式和期望有关,也与它本身的局限有关。对于供应商来说,从经济利益出发,向来都是忽略固相萃取的局限与不足。固相萃取可以作为前处理手段的一个很好补充,但是在使用时,一定要清醒知道到它的优点和缺点,注意因地制宜,扬长避短。 二、固相萃取的应用优势 在什么项目的前处理适合使用固相萃取技术,即用固相萃取会比普通的溶剂萃取更理想,个人认为有以下几种情况: (一)水中有机物的前处理。 此类常规处理基本上是用与水不相溶的有机溶剂振荡萃取,用固相萃取的优势在于 (1)可以定量地重复前处理过程。 溶剂振荡的操作一般只能要求到控制时间的程度,却无法控制振荡频率,强度,动作,我们

萃取的原理与应用

双水相萃取 利用物质在不相溶的,两水相间分配系数的差异进行萃取的方法。原理 某些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成双水相系统(aqueous two-phase system,ATPS)。利用亲水性高分子聚合物的水溶液可形成双水相的性质,Albertsson于20世纪50年代后期开发了双水相萃取法(aqueous two-phase extraction),又称双水相分配法。 双水相萃取的聚合物不相容性:根据热力学第二定律,混合是熵增过程可以自发进行,但分子间存在相互作用力,这种分子间作用力随相对分子质量增大而增大。当两种高分子聚合物之间存在相互排斥作用时,由于相对分子质量较大的分子间的排斥作用与混合熵相比占主导地位,即一种聚合物分子的周围将聚集同种分子而排斥异种分子,当达到平衡时,即形成分别富含不同聚合物的两相。这种含有聚合物分子的溶液发生分相的现象称为聚合物的不相溶性生物分子的分配系数取决与溶质于双水相系统间的各种相互作用,其中主要有静电作用、疏水作用和生物亲和作用。因此,分配系数是各种相互作用的和。 应用 双水相萃取自发现以来,无论在理论上还是实践上都有很大的发展。在最近几年中更为突出。双水相萃取技术已广泛应用于生物化学、细胞生物学、生物化工和食品化工等领域,并取得了许多成功的范例,在若干生物工艺过程中得到了应用,其中最重要的领域是蛋白质的分离和纯化,其应用举例如表所示。 双水相萃取技术可用于多种生活活性物质的分离和纯化,见下表:

注:PEG为聚乙二醇;dextran为葡聚糖。 此外双水相还可用于稀有金属/贵金属分离,传统的稀有金属/贵金属溶剂萃取方法存在着溶剂污染环境,对人体有害,运行成本高,工艺复杂等缺点。双水相技术萃取技术引入到该领域,无疑是金属分离的一种新技术。 液液萃取 原理 在欲分离的液体混合物中加入一种与其不溶或部分互溶的液体溶剂,经过充分混合,利用混合液中各组分在溶剂中溶解度的差异而实现分离的一种单元操作 液液萃取在工业上的应用 1、液液萃取在石油化工中的应用 ?分离轻油裂解和铂重整产生的芳烃和非芳烃混合物 ?用酯类溶剂萃取乙酸,用丙烷萃取润滑油中的石蜡 ?以HF-BF3作萃取剂,从C8馏分中分离二甲苯及其同分异构体 2、在生物化工和精细化工中的应用 ?以醋酸丁酯为溶剂萃取含青霉素的发酵液 ?香料工业中用正丙醇从亚硫酸纸浆废水中提取香兰素 ?食品工业中TBP从发酵液中萃取柠檬酸 3、湿法冶金中的应用 用溶剂LIX63-65等螯合萃取剂从铜的浸取液中提取铜

SPE固相萃取装置

SPE固相萃取装置 1、带有防交叉污染设计,在同一位置上处理新样品时,可以避免可能产生的交叉污染。 2、能同时处理12个样品 3、玻璃缸不会因溶剂的存在而溶解、雾化或褪色 4、盖上带有支脚,当需要将盖从固相萃取装置上移开时,可方便地放在工作台上 5、带有螺旋式抗溶剂真空减压表和阀提,可提供较好的密封性和真空控制,阀与1/4英寸的真空管线连结 6、带有聚丙烯收集管架,能用于自动进样小瓶,小的闪烁管,10和16mm试管和1,2,5,和10ml容量瓶的收集板。 8、配置: 8.1、12管防交叉污染SPE萃取装置 57044 8.2、大容量采样管2套。4管/套,用于3ml,6ml萃取管 R57275 8.3、固相萃取连接管(聚四氟乙烯) 100支/包 R57059 8.4、SPE转接头(小柱适配器)12只/包 001012 8.5、SPE流速调节阀(夸克,流量控制阀) M81213 8.6、1000ml 固相萃取缓冲瓶。(含聚丙烯瓶子一个,橡胶塞一个,10cm 长聚丙烯管子和1.5m长红橡胶真空管)M81217 8.﹡7、配进口GAST无油隔膜真空泵DOA-P504-BN; 8.﹡8. Supelco ENVI-18,LC-18,ENVI-Carb固相萃取小柱(500mg/6ml,30支/盒)各2盒,共6盒。 均质机 1、马达输入 / 输出功率: 800 / 500 W 2、* 处理量 (H2O): 1–2,000 ml 3、速度调整: 无级调速 4、* 速度范围: 3,000 – 25,000 rpm 5、* 速度显示: 数字 6、* 即使粘度改变时也能保证转速恒定,有效保证操作的可重复性 7、* 最大工作粘度:5000mPas 8、空载噪音: 75 dB (A) 9、* 过载保护: 是 10、*可选一次性分散刀具用于处理生物样品

固相萃取SPE技术

固相萃取SPE技术 一、固相萃取概念及基本原理: 固相萃取(Solid Phase Extraction,简称SPE)是从八十年代中期开始发展起来的一项样品前处理技术。由液固萃取和液相色谱技术相结合发展而来。主要通过固相填料对样品组分的择性吸咐及解吸过程,实现对样品的分离,纯化和富集。主要目的在于降低样品基质干扰,提高检测灵敏度。 固相萃取的基本原理和方法:SPE 技术基于液-固相色谱理论,采用选择性吸附、选择性洗脱的方式对样品进行富集、分离、纯化,是一种包括液相和固相的物理萃取过程;也可以将其近似的看作一种简单的色谱过程。固相萃取(SPE)是利用选择性吸附与选择性洗脱的液相色谱法分离原理。较常用的方法是使液体样品通过一吸附剂,保留其中被测物质,再选用适当强度溶剂冲去杂质,然后用少量良溶剂洗脱被测物质,从而达到快速分离净化与浓缩的目的。也可选择性吸附干扰杂质,而让被测物质流出;或同时吸附杂质和被测物质,再使用合适的溶剂选择性洗脱被测物质。 二、固相萃取方法的优点 相对于传统的液液萃取法和蛋白沉淀法,固相萃取具有无可比拟的优势: 1.无需特殊装置和材料,操作简单 2.集样品富集及净化与一身,提高检测灵敏度的最佳方法 3.比液液萃取更快,节省溶剂 4.可自动化批量处理 5.重现性好 三、固相萃取的分类 固相萃取填料按保留机理分为: 正相:Silica,NH2,CN,Diol,Florisil,Alumina 反相:C18,C8,Ph,C4,NH2,CN,PEP,PS等 离子交换:SCX,SAX,COOH,NH2等 混合型:PCX,PAX,C8/SCX等 按填料类型共分为4类: 1.键合硅胶:C18(封端),C18-N(未 端),C8,CN,NH2,PSA,SAX,COOH,PRS,SCX,Silica,Diol。 在SPE中最常用的吸附剂是硅胶或键合相的硅胶即在硅胶表面的硅醇基团上键合不同的官能团。其pH适用范围2-8。键合硅胶基质的填料种类较多,具有多选择性的优点。 2.高分子聚合物:PEP,PAX,PCX,PS,HXN。 3.吸附型填料:Florisil(硅酸镁),PestiCarb(石墨化碳),氧化铝(Alumina-N中性,Alumina-A 酸性,Alumina-B 碱性)。 4.混合型及专用柱系列:PestiCarb/NH2,SUL-5(磺胺专用柱),HXN(磺酰脲除草剂专用柱),DNPH-Silica(空气中醛酮类化合物检测专用柱) 三、固相萃取装置及基本操作步骤 关于固相萃取小柱: 常见的固相萃取柱分为三部分:医用聚丙烯柱管,多孔聚丙烯筛板(20μm)和 填料(多为40-60μm,80-100μm)。常用规格:100mg/1ml,200mg/3ml,500mg/3ml,1g/6ml等。以100mg/1ml为例,其中100mg为填料的质量,1ml是空柱管的体积。一次性使用:为避免交叉污染,保证检测可靠性,SPE柱通常是一次性使用的。针对填料保留机理的不同(填料保留

全自动固相萃取仪技术参数及应用(精)

仪器工作原理 以下是 SPE-03的工作原理示意图:

如上图所示,SPE-03的主要部件只是一个溶剂选择阀和一个通道分配模块。不再需要其他切换阀或电磁阀, 也没有密如蛛网的管线。因为仪器可以很方便的改变通道数,用户在购买仪器时,可以根据预算和样品处理量选择合适的通道配置。 产品特点

操作简便 过压报警和智能化处置 SPE-03具有过压报警和暂停功能, 当萃取柱发生堵塞时, 仪器会首先降低流速。如果问题仍然存在, 仪器会进入暂停, 待故障排除后再继续样品处理。 设计紧凑 , 不需电脑 通过采用管路集成技术, 仪器内部结构大为简化。一台八通道的 SPE-03外形尺寸为 34x 34x 45cm (宽 x 深 x 高 , 重量也只有 12公斤。由于不用电脑 , 而且溶剂瓶是放在仪器顶部 , 可以节省宝贵的实验室空间。可使用多种规格萃取柱和固相萃取膜 使用双柱串联 SPE-03的设计可以很方便的将两种萃取柱串联使用。而且 SPE-03使用的注射泵与其它固相萃取仪使用的无阀泵相比 , 具有更高的输出压力。因而在双柱串联的情况下仍可使用较高的流速而不影响泵送体积的准确性。兼顾其它样品的净化

一些用于水样净化的多通道固相萃取仪使用惰性较差的无阀泵或蠕动泵上样。这类泵对许多有机溶剂 (如丙酮和二氯甲烷的耐受程度较差。而许多环境样品 (如土壤和食品样品的提取液都是溶解性很强的有机溶剂 , 因此不适合用这种设计的仪器处理。 SPE-03的上样和淋洗都是使用高惰性的注射泵 , 与溶剂接触的材料是聚四氟乙烯和惰性玻璃 , 可以耐受绝大多数有机溶剂。因此 SPE-03也可以用于土壤和食品分析的样品净化。另外 , SPE-03配置两套取样管线和样品放置架。当样品体积较小时 , 可使用死体积较小的一套管线 , 从而提高上样的准确度。 样品管线自动清洗 为了防止样品的交叉污染 , 仪器设置了样品管的自动清洗功能。 SPE-03的清洗功能有三个特点 :1 用有机溶剂清洗后 , 再把管路中残存的溶剂吹走。这样可以节约溶剂的用量和避免溶剂对下一批样品的影响。 2 清洗的方向和上样的方向相反 , 可以有效去除进样口过滤头上的小颗粒。 3 清洗是作为方法中的一个步骤自动完成 , 不需要等到样品处理完成后再进行。 产品指标样品容量 4、 6或 8个 /批样品体积 1~4,000毫升与溶剂接触材料 不锈钢、聚四氟乙烯、和惰性玻璃废液分离 可将水性废液和有机废液分开收集淋洗溶剂选择 五种控制 单片机+键盘输入 , 不需电脑方法

萃取操作规程及流程

一、实验目的 了解萃取的原理及应用,掌握其操作方法。 二、实验原理 萃取也是分离和提纯有机化合物常用的操作之一。应用萃取可以从固体或液体混合物中提取出所需要的物质,也可以用来洗去混合物中的少量杂质。前者通常称为“抽提”或“萃取”,后者称为“洗涤”。 1.基本原理 萃取是利用物质在两种不互溶(或微溶)溶剂中溶解度或分配比的不同来达到分离、提取或纯化目的的一种操作。假如某溶液由有机化合物X 溶解于溶剂A 而成,如果要从其中萃取X ,可选择一种对X 溶解度很大而与溶剂A 不相混溶和不起化学反应的溶剂B 。把该溶液放入分液漏斗中,加入适量溶剂B ,充分振荡。静置后,由于A 与B 不相混溶,分成上下两层。此时X 在A 、B 两相间的浓度比,在一定温度下为一常数,叫做分配系数,以K 表示,这种关系称为分配定律。可用公式表示如下: ()分配系数度 中的B 在溶剂Χ度中的A 在溶剂ΧK =浓浓 在萃取中,用一定量的溶剂一次萃取好还是分几次萃取好呢?通过下面的推导来说明这个问题。设在V mL 溶液中,溶解有m 0 g 的溶质(X ),每次用S mL 溶剂B 重复萃取。假如,第一次萃取后剩留在溶剂A 中的溶质(X )量为m 1 g ,则在溶剂A 和溶剂B 中的浓度分别为m 1/V 和(m 0-m 1)/S 。根据分配定律: ()K S m m V m =-101 或 S KV KV m m +=01 设萃取两次后溶质(X )在溶剂A 中剩余量为m 2 g ,则有 ()K S m m V m =-212 或 2 012??? ??+=+=S KV KV m S KV KV m m 显然,萃取n 次后溶质在溶剂A 中的剩余量m n 应为: n n S KV KV m m ??? ??+=0 在用一定量溶剂进行萃取时,我们希望在A 溶剂中剩余量越少越好,在上

固相萃取

5.5固相萃取 5.5.1固相萃取的原理与类型 固相萃取(solid phase extraction,简称SPE)是利用被萃取物质在液-固两相间的分配作用进行样品前处理的一种分离技术。它结合了液-固萃取和柱液相色谱两种技术。SPE以固体填料填充于塑料小柱中作固定相,样品溶液中被测物或干扰物吸附到固定相中,使被测物与样品基体或干扰组分得以分离。SPE基本上只用于样品前处理,其操作与柱色谱类似,在被测物基体或干扰物质得以分离的同时,往往也使被测物得到了富集。 与溶剂萃取相比,固相萃取局有很多优势。如被测物的回收率很高;被测物与基体或干扰物质的分离选择性和分离效率更高;操作简单、快速、易于自动化;不会出现溶剂萃取中的乳化现象;可同时处理大批量样品;使用的有机溶剂量少;能处理小体积样品。正是因为SPE的这些优点,这一技术的发展速度之快是其他前样品处理技术所不及的。目前,其应用对象十分广泛,特别是在生物、医药、环境、食品等样品的前处理中成为最有效和最受欢迎的技术之一。 SPE是发生在固定相和流动相之间的物理过程,其实质就是柱液相色谱的分离过程,其分离机制、固定相和溶剂选择等都与液相色谱有很多相似之处。只不过用于样品前处理的SPE 分离要求不是很高,只需将大量基体物质或其他干扰组分与被测物分离,即对柱效的要求不高,也不需要特别好的峰形。同液相色谱中分离柱的原理一样,固相萃取也是基于待测组分与样品基体在固定相上吸附和分配性质的不同来进行分离的。 固相萃取的目标要么将待测组分比较牢固的吸附在固定相上,从复杂基体中将待测组分分离富集出来;要么使待测组分在固定相上没有保留或保留很弱,而干扰组分或基体物质在固定相中具有较强保留,从而使样品中的基体物质或干扰物质得以除去。采用SPE样品前处理技术除了主要用于消除干扰物质和大量样品中富集痕量组分外,还可以将被测物吸附到固定相中后用于原来不同的溶剂洗脱,达到变换样品溶剂,使之与后续分析方法相匹配的目的;可以用来脱去样品中的无机盐类,方便后续的色谱分析,特别是LC-MS分析。 固相萃取的主要萃取模式与LC的分离模式相同,可以分为正相固相萃取、反相固相萃取、离子交换固相萃取和吸附固相萃取等。不同的萃取模式所使用的固定相不同。固定相选择原则也与HPLC相同,主要依据被测物和基体物质的性质,被测物极性与固定相极性越相似,则被测物在固定相中的保留就越强。固相萃取所用的固定相也与HPLC常用的固定相相同,只是粒度稍大一些(约30~50mm)。 正相固相萃取采用极性固定相,可从非极性溶剂样品中萃取有机酸、碳水化合物和弱阴离子等极性物质。被萃取的极性化合物在固定相上保留的强弱取决于其极性基团与固定相表面极性基团之间的相互作用(氢键、π-π键、偶极间相互作用等)。使用的固定相主要是以硅胶为载体的二醇基、丙氨基小柱。 反相固相萃取采用非极性或弱极性固定相,适用于萃取非极性至中等极性的化合物,应用对象最广泛,是样品前处理中使用最多的一种固相萃取模式。被萃取物与固定相之间主要是基于范德华力和疏水相互作用。使用的固定相主要是硅胶载体表面键合疏水性烷烃,如十八烷、辛烷、二甲基丁烷。 离子交换固相萃取采用离子交换剂固定相,用来萃取有机和无机离子性化合物,如有机碱、氨基酸、核酸、离子性表面活性剂等。被萃取离子因与固定相表面的离子交换基团之间存在静电相互作用而保留。所用离子交换剂通常是在硅胶载体表面接上季铵基、磺酸基、碳酸基等。 吸附固相萃取是以吸附剂(如氧化铝、硅胶、石墨碳材料、大孔吸附树脂等)作固定相。除石墨碳材料和大孔吸附树脂也可以萃取非极性物质外,吸附固相萃取主要用于极性化合物的萃取。吸附固相萃取在样品前处理中的应用也相当广泛。

常用固相萃取柱

常用固相萃取柱

常用固相萃取柱 HLB是英文"亲水-亲脂平衡"(hydrophilic-l;pophilicbalance)的缩写,它是. 一种新型的反相吸附剂,能同时表现出对亲水性化合物和亲脂性化合物的双重保留特性。 固相萃取柱产品和应用指南(SPE column)返回 提供VARIAN公司BondElut、Agilent公司AccuBond系列固相萃取柱,另可提供经济型国产萃取小柱及填料,并可根据用户需要订做 各种规格产品 填料含量容量包装应用范围填料含量容量包装应用范围 ODS(C18) 硅胶上键合十八烷基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于非极性到中等 极性的化合物,比如,抗菌素, 巴比妥酸盐,酞嗪,咖啡因,药 物,染料,芳香油,脂溶性维生 素,杀真菌剂,锄草剂,农药,碳 水化合物,对羟基甲苯酸取代酯, 苯酚, 邻苯二甲酸酯,类固醇, 表面活化剂,茶碱,水溶性维生 素。 EVIDEXII 辛烷和阳 离子交换 树脂 200mg 400mg 3ml 6ml 50 30 Amphetamina/Methamphetamine、 PCP、 Benzoylecgonine、 Codeine/Morphine、 THC- COOH(Marijuana) Cctyl(C8) 硅胶上键合辛烷 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于非极性到中等 极性的化合物,比如,抗菌素, 巴比妥酸盐,酞嗪,咖啡因,药 物,染料,芳香油,脂溶性维生 素,杀真菌剂,锄草剂,农药,碳 水化合物,对羟基甲基酸取代酯, 苯酚,邻苯二甲酸酯,类固醇,表 SAX 硅胶上键 合卤化季 氨盐 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 强阴离子交换萃取,适合于阴离子,有机酸,核酸, 核苷酸, 表面活化剂。容量:0.2毫当量/克。

样品前处理--固相微萃取技术综述

固相微萃取(SPME)技术综述 2010级分析化学专业杜亚辉 作为一种较新的样品前处理技术,固相微萃取技术(SPME)具有操作简单、快速,集采样、萃取、浓缩和进样于一体等诸多优点,目前已被广泛应用。下面详细阐述了SPME的技术原理、操作流程、影响因素、应用领域和新的进展。 固相微萃取(Solid-phase microextraction,SPME)是一项新型的无溶剂化样品前处理技术。固相微萃取以特定的固体(一般为纤维状萃取材料)作为固相提取器将其浸入样品溶液或顶空提取,然后直接进行GC、HPLC等分析。SPME由Pawliszyn在1989年首次报道,近10年来固相微萃取技术已成功应用于气体,液体及固体样品的前处理[2]。 1.1 固相微萃取技术及原理 固相微萃取法是以固相萃取为基础发展起来的方法,固相微萃取利用了固相萃取吸附的几何效应,其装置结构的超微化决定了它能避开经典固相萃取的许多弱点。固相微萃取技术多在一根纤细的熔融石英纤维表面涂布一层聚合物并将其作为萃取介质(萃取头),再将萃取头直接浸入样品溶液(直接浸没-固相微萃取方法,简称DI-SPME)或采用顶空-固相微萃取方法(HS-SPME)采样[8]。由于聚合物涂层的种类很多,因而可对样品组分进行选择性富集和采集,固相微萃取的原理是一个基于待测物质在样品及萃取涂层中分配平衡的萃取过程[3]。固相微萃取利用表面未涂渍或涂渍吸附剂的熔融石英纤维或其它纤维材料作为固定相,当涂渍纤维暴露于样品时,根据“相似相溶”原理,水中或溶液中的有机物以及挥发性物质,从试样基质中扩散吸附在萃取纤维上逐渐浓缩富集。萃取时,被测物的分布受其在样品基质和萃取介质中的分配平衡所控制,被萃取量(n)与其他因素的关系可以用下式描述: n=kV f C0V s/(kV f+ V s) 式中:k为被测物在基质和涂层间的分配系数,V f和V s分别为涂层和样品的体积,C0为被测物在样品中的浓度。如果样品体积很大时(VskV f)上式可以简化成: n=kV f C0 萃取的被测物量与样品的体积无关,而与其浓度呈线性关系,因而从分析结果中得到的萃取纤维表面的吸附量,就能算出被萃取物在样品中的含量,可方便地进行定量分析[1]。 1.2 固相微萃取操作条件的选择 萃取头的构成应由萃取组分的分配系数、极性、沸点等参数来确定,在同一个样品中,因萃取头的不同可使其中一个组分得到最佳萃取而使其他组分受到抑制。平衡时间往往由众多因素所决定,如分配系数、物质扩散速度、样品基质等。此外,温度、离子浓度、样品的

相关主题
文本预览
相关文档 最新文档