当前位置:文档之家› 设备可靠性(1)

设备可靠性(1)

设备可靠性(1)
设备可靠性(1)

设备可靠性、有效性和可维护性的定义和测试规范

这个标准在技术上已被全球公制委员会核准,并由北美公制委员会直接负责。目前的版本在2001年3月1日被北美地区标准委员会核准通过。2001年6月将在国际半导体设备和材料协会试行,之后同月公布。其第一版公布于1986年,上一版公布于1999年6月。

1.目的

1.1 这份文献通过提供测试半导体制造设备在制造环境中的三性(可靠性、有效性、可维护性)的标准,为设备的使用者和供应商之间的沟通建立了一个通用基础。

2.范围

2.1 这份文献定义了设备的6种基本状态。它包括了设备的任何时间所有可能的状态。设备的状态由其功能状况决定,而不管操作者是谁。在这里所做的对设备可靠性的测试强调的是对正在使用中的设备的突然中断,而不是对设备的所有时间。

2.2 本文献第三节(设备状态)定义了如何对设备时间分类。第六节(三性测试)定义了测试设备状态的公式。第七节(不确定测试)另外给出方法用来评估所得数据的统计意义。

2.3 有效的应用这份规范需要设备的工作遵循它的周期及或时间。自动监测设备状态是标准SEMI E58中的内容,并不在本规范中。设备使用者与供应商之间清晰有效的沟通将持续提高设备的工作状况。

2.4 在这份规范中的三性的指数可以直接运用于整个设备的非成套工具和子系统水平级。三性指数可以适用于子系统水平(例如过程模块)的多路径组工具。

2.5 这份标准虽然有提到安全事宜,但目的并不旨在追求这个方面。它将是这个标准使用者的责任来建立合适的安全和健康条款,以及在使用前决定限制章程的运用。

3.参考标准

SEMI E58 —自动化的可靠性、有效性和可维护性的标准

注释1:本文列出的所有文献都使用其最新的适应版本。

4.术语

4.1 辅助—在一个设备周期中设备工作突然中断时发生,它有以下三种情况:

●通过外部干涉使中断的设备周期继续。(比如通过操作工和使用者的干涉,无论它是人或电

脑。)

●除了一些特殊的消耗品,零件不可替换。

●在设备操作规范方面没有进一步改变。

4.2 成组工具—由机械地连接在一起的集成过程模块组成的制造系统。(这些模块可能来自于同一或不同供应商)

4.2.1 单路径成组工具—只有一条流水线的成组工具。

4.2.2 多路径成组工具—超过一条独立流水线的成组工具。(比如,多负荷闸、同样型号的多流程单元室)

4.3 周期(设备周期)—一个设备系统或子系统的完全操作过程(包括装卸产品),有流程、制造、测试步骤。在一个单元流程系统中,周期数等于流经的单元数。在多批系统中,周期数等于批量数。

4.4 停工时间(设备停工时间)—设备不在工作状态或没有执行到它应有水平的时间,不包括任何不在计划安排上的时间。

4.5 故障(设备故障)—在没有外来干涉下发生的意外故障或偏离。

注释2:正确分类设备故障对于方便解决问题和提高设备能力是非常重要的。

4.6 宿主—联系设备的智能系统,作用相当于代表工厂领导下属的制造主任。(比如,一个非植入的计算机或单元控制器)

4.7 中断—任何干预和故障

注释3:中断=干预之和+故障之和

4.8 维修—保证设备在预定功能状态下工作。在本文献中,维修的目的是功能不是设备结构;不论是谁来维修,它都包括调整、材料变化、软件开放、修理、预定检测等等。

4.9 制造时间—所有生产产品的时间及相应停留等待时间。

4.10 非计划时间—计划中设备不在用于生产的时间。

4.11 生产时间—总时间减非计划时间。

4.12 操作工—在设备旁通过设备控制面板操作设备的人员。

4.13 产品—可以成为有功效的半导体装置的一个单元,包括功能的工程装置。

4.14 断工—为使设备能继续工作的一段维修时间,包括冲洗、冷却、加热、软件备份、储存、动态数据(包括参数、方法)、断工发生在计划内和计划外的停工时间内。

4.15 复工—在断工维修后,使设备恢复正常功能工作的一段维修时间。包括冲气、加热、标准化时间、初始化常数、载入软件、重贮数据(例参数、方法)、控制系统再建等等。但不包括设备及流水线检测时间。复工也发生在计划内外的停工时间内。

4.16 关机—当设备有计划外状态时,让设备回到安全状态的时间。它包括为了达到安全状态所做的任何过程。关机仅出现在计划外时间中。

4.17 规范(设备操作)—文献中所写的在使用者与供应商之间在设备操作的规定条件下的功能所达成的一致条款。

4.18 开始—设备从计划状态到达成预期功能所需的时间。包括冲气、加热、冷却、标准化时间、初始化常数、载入软件、重贮数据(例参数、方法)、控制系统再建等等,开始包括于计划外时间中。

4.19 辅助工具—不属于生产设备,但是在正常操作中必需的设备。(比如,密封盖、运载机、探测卡片、电脑控制器)

4.20 总时间—一周7天,1天24小时的所有检测时间。为了正确表达总时间,设备的所有6种基本状态必须正确记录。

4.21 培训(工作外)—在工作外时间对设备操作和维修进行的指导。它包括于计划外时间。

4.22 培训(线上)—在正常工作时对个人操作和维修进行的指导。线上培训一般不会打断正常的操作和维修活动,所以它可以不被区别的包括在任何设备状态中(除等待与计划外时间)

4.23 单元—任何晶片,模,成套设备或单位零件。

4.24 工作时间—设备处于正常功能状态的时间,包括有效生产的、等待的和策划时间,不包括任何计划外时间。

4.25 使用者—动作于设备的实体,无论是在设备旁的操作者或在远处遥控的自动界面。从设备的角度出发,操作者和宿主都是使用者。

4.26 校正运行—设备的一次循环(使用产品单元,非产品单元或不成单元的)以用来引导设备进入规范中的预定状态。

5.设备状态

5.1 为了清楚地检测设备地表现,本文献定义了所有设备状况和时期必须遵循地6种基本状态。5.2 设备状态是由功能决定而不是由设备结构决定。例如任何维护过程都是这样分类,而不论谁是操作者、操作工、技术人员或流程工程师。

5.3 图1是6种设备状态的框架图。关键的时间块在后文的等式中将会特别用到。这些基本的设备状态又可以分成许多子状态,以满足生产运转所需的追踪解决。SEMI E10并没有列出所有的子状态,

但是给出了许多例子用以指导。

图1 设备状态框架图

5.4 有效状态—设备按预定功能工作的时间。有效状态包括:

●常规生产(包括装卸产品)

●为第三方工作

●返工

●与生产结合的操纵。可能是或不是产品单元(比如,分批和新运用)。

5.5 等待状态—在这段时间内,设备是在正常功能状态下,基础设施和化学材料都准备好了,但是不在生产。它不是计划外的。等待状态包括:

●没有操作工(包括休息、午餐和会议)

●没有产品(包括由于缺乏辅助设备比如计量工具造成的缺少产品)

●没有辅助工具(例如密封盒、芯片传输器、探测卡)

●没有从自动系统来的输入信号(例宿主)

5.6 工程状态—设备处在正常功能状态下(没有设备和流程问题存在),但是用于工程实验的时间。包括:

●过程工程(过程塑造)

●设备过程(设备评估)

●软件工程(例限定软件)

5.7 计划内停工状态—设备按计划停止正常功能工作的一段时间。包括:

●维修推迟

●生产检测

●预防性维修

●改变化学材料或消耗品

●调整

●与基础设施相关的停工。

5.7.1 维修推迟—由于设备正等待使用者或供应人员或其他与维修有关的部分(化学材料、消耗品等)而使设备不能正常工作的时间。维修推迟有可能是因为管理员决定让设备停着推迟维修。

注释4:维修推迟会发生在维修过程的任何时段,它必须从维修时间中被独立出来。推迟时间包括在离线时间内,但不在修理时间内。(详见6.3节设备可维修性)

5.7.2 生产控制—有计划地打断产品有效生产来评估产品或非产品单元。按照设备操作的规范来证实设备是否处于规范中的正常功能状态。它并不包括可以平行于产品生产的检测,也不包括随着预防性维修、调整及修理过程产生的检测。

5.7.3 预防性维修—它由以下的几部分组成:

●预防性措施:按计划周期维护过程(包括设备断工、复工),以降低设备运转中故障的可能性。

间断周期可能基于设备时间、设备状态。

●设备检测:运转设备以证实设备的功能状态。(比如,系统达到基本压力,芯片传输没有异常、

气流正常、等离子区燃烧、来源达到特定压力。)

●校正运作:在预防性措施后为保证设备按规定正常运作而建立的单元流程和评估。

注释5:设备供应商有责任提出预防性措施计划以使设备达到预定水平。使用者如果希望供应商提高设备水平,他们有责任指出与原定计划的偏离之处。

5.7.4 改变化学材料及消耗品—指在补充半导体流程中的原材料时的故意打断。它包括改变气瓶、酸、目标、来源等等以及任何与改变相关的充、洗、清洁。但不包括在得到化学材料、消耗品补给之前的延误时间。

5.7.5 调整—它是以下几部分之和:

●变动:为了适应在流程、产品、包装结构上的改变而作出的设备变动所需的时间。(不包括装修、

重建、升级)

●设备测试:运行设备以证实它的功能。(比如,系统达到基本压力,芯片传输没有异常、气流正

常、等离子区燃烧、来源达到特定压力。)

●校正运行:在改变后为确认设备按规定正常运作而建立的单元流程和评估。

注释6:设备供应商有责任提供设备在预定条件下改变和测试的过程步骤。使用者如果希望在这些条件下供应商减少改变次数,那么他有责任给出偏离的过程步骤。

5.7.6 与基础设施相关的停工—由于缺乏辅助的基础设施而使设备不能按预定功能运行的一段时间。相关的基础设施有:

●环境(例温度、湿度、震动、微粒度)

●房屋的悬挂装置(例动力、冷却水、空气、废气、LN2)

●与其他设备或宿主计算机连接的管道

●与宿主相连的通信设备

5.7.

6.1 任何与上述项目相关的停工时间将包括在基础设施的停工时间内。例如,由于安排了15分钟的动力短缺使需要另外的制冷剂动力,这样让设备再恢复到预定功能状态所耗费的时间就是与基础设施相关的停工时间。

5.8 计划外停工时间—由于一些意外事件使设备不在预定功能状态的时间。

●维修推迟

●修理

●改变化学材料及消耗品

●不合规范的输入

●与基础设施相关的停工

5.8.1 维修推迟—由于设备正等待使用者或供应人员或其他与维修有关的部分(化学材料、消耗品等)而使设备不能正常工作的时间。维修推迟有可能是因为管理员决定让设备停着推迟维修。

注释7:维修推迟会发生在维修过程的任何时段,它必须从维修时间中被独立出来。推迟时间包括在离线时间内,但不在修理时间内。(详见6.4节设备可维修性)

5.8.2 修理时间—包括以下:

●诊断:识别设备故障的源由的过程。

●纠错行为:提出设备的故障处并使设备恢复到正常运作的维修过程。(包括设备断工、复工、重

建、重设置、再循环、再启动、回到前一个软件版本等等)

●设备测试:运行设备以证实它的功能。(比如,系统达到基本压力,芯片传输没有异常、气流正

常、等离子区燃烧、来源达到特定压力。)

●校正运行:在改变后为确认设备按规定正常运作而建立的单元流程和评估。

5.8.3 改变化学材料及消耗品—指计划外的为补充半导体流程中的原材料时打断生产运行。它包括改变气瓶、酸、目标、来源等等以及任何与改变相关的充、洗、清洁。但不包括在得到化学材料、消耗品补给之前的延误时间。

5.8.4 不合规范的输入—由于不合规范的输入或错误输入而造成一些问题使设备不能正常运行的时间。这些输入包括:

●辅助工具(例弯曲的密封盒或芯片运输器、错误的数据解释或输入)

●产品(例逆流的流程或产品问题,弯曲的芯片,受污染的芯片,弯曲的铅框)

●测试数据(例未经校正的计量工具,误读的图表,错误的数据解释或输入)

●消耗品及化学材料(例如受污染的酸,有渗漏的焊接,衰变的光阻,品质低劣的铸造物)

5.8.4.1 任何由于以上各项造成的停工时间包括在不含规范的输入之停工时间范围内。例如,由于间断的探测卡片短缺、探测系统要修理。由此而产生的停工时间分类在不合规范的输入的停工时间。

5.8.5 与基础设施相关的停工—由于缺乏辅助的基础设施而使设备不能按预定功能运行的一段时间。相关的基础设施有:

●环境(例温度、湿度、震动、微粒度)

●房屋的悬挂装置(例动力、冷却水、空气、废气、LN2)

●与其他设备或宿主计算机连接的管道

●与宿主相连的通信设备

5.8.5.1任何与上述项目相关的停工时间将包括在基础设施的停工时间内。例如,由于安排了15分钟的动力短缺使需要另外的制冷剂动力,这样让设备再恢复到预定功能状态所耗费的时间就是与基础设施相关的停工时间。

5.9 制度外状态—在这段时间内设备并没有安排用于生产。例如轮休、周末和假日(包括关机和开机)

5.9.1 如果设备因为离线培训或日常预防性维修不能解决的安装、修建、重建及软硬件升级而造成不在生产状态,这就属于制度外状态。制度外时间就是从这些状态恢复到正常生产所需的时间。5.9.2 设备维修时间不能计入制度外状态时间内,因为所有的维修时间必须计入计划内或计划外停工时间内(包括诸如计划的冷却泵更新这样的自动常规维修)。

5.9.3 同样,任何这个时期内生产或工程工作必须计入生产或工程时间。(包括将在几小时后自动关机的无人操纵的设备)

6. 三性测试

6.1 几十年来,可靠性、有效性和可维护性作为设备表现的衡量工具在工业领域中广泛运用。这一节中在半导体行业中定义的与已经存在的工业标准相符合。与三性的定义同时给出的还有用来衡量测试结果的指数。

6.2 设备可靠性—是指设备在一段时间内规定状况下按要求功能运行的可能性。

注释8:这里给出两种不同的测试方法:有效时间和设备周期

●有效时间仅考虑当生产产品时所发生的。(用于生产运作目的)

●设备周期考虑各个设备状态中由每台设备周期造成的疲惫和损坏。

6.2.1 MTBI P —平均中断间隔时间;是两次中断间的平均正常运行时间。在这段时间内,有效时间被多次中断打断,只有有效时间列入计算中,而计算中的中断是指从任何状态恢复到正常生产的次数。使用MTBI p不仅要正确捕捉故障和辅助信息,而且还要正确分类所有时间。

MTBI P=有效时间

有效时间中的中断次数

6.2.2 MTBF P—平均故障间隔时间;是两次故障间的平均正常运行时间。在这段时间内,有效时间被多次故障打断,只有有效时间列入计算中,而计算中的故障是指从任何状态恢复到正常生产的次数。使用MTBI p不仅要正确捕捉故障信息,而且还要正确分类所有时间。

MTBI P=有效时间

有效时间中的故障次数

6.2.3 MTBA P —平均辅助间隔时间;是两次辅助间的平均正常运行时间。在这段时间内,有效时间被多次辅助打断,只有有效时间列入计算中,而计算中的辅助是指从任何状态恢复到正常生产的次数。使用MTBI p不仅要正确捕捉辅助信息,而且还要正确分类所有时间。

MTBI P=有效时间

有效时间中的辅助次数

注释9:可靠性可以用不同的因素如设备时间、周期和状态来衡量。以下为使用周期的两个例子。

6.2.4 MCBI—平均中断间隔周期;是指设备在两次中断间隔间的平均周期次数。在这段周期内,总共的设备周期被多次中断打断(包括产品周期和非产品周期)。计算中超出了设备状态而将系统或子系统经历的所有循环包括在内。计算不需要考虑设备状态,只要设备周期与中断情况。

MCBI=总周期数

中断次数

6.2.5 MCBF—平均故障间隔周期;是指设备在两次故障间隔间的平均周期次数。在这段周期内,总共的设备周期被多次故障打断(包括产品周期和非产品周期)。计算中超出了设备状态而将系统或子系统经历的所有循环包括在内。计算不需要考虑设备状态,只要设备周期与故障情况。

MCBI=总周期数

故障次数

6.2.6 MCBAI—平均辅助间隔周期;是指设备在两次辅助间隔间的平均周期次数。在这段周期内,总共的设备周期被多次辅助打断(包括产品周期和非产品周期)。计算中超出了设备状态而将系统或子系统经历的所有循环包括在内。计算不需要考虑设备状态,只要设备周期与辅助情况。

MCBI=总周期数

辅助次数

6.3 设备有效性—当需要时设备可以按预定功能运行的可能性。

6.3.1 对设备的时间利用率—设备按预定功能运作的时间扣除所有的维修延迟、不合规范的输入造成的停工及与基础设施有关的停工的百分比利用率。这个计算用于仅在设备价值的角度上反映设备可靠性和可维护性。

对设备的时间利用率(%)=设备工作时间×100

生产时间-(所有维修时间+不合规范的输入停工+与基础设施有关的停工)

6.3.2 对供应商的时间利用率—设备按预定功能运作的时间扣除使用者的维修延迟、不合规范的输入造成的停工及与基础设施有关的停工的百分比利用率。这个计算只剪除使用者的维修推迟,所以只考虑了供应商的零件和服务的推迟。目的在于为供应商的交易服务提供一个有效的评判标准。

供应商的时间利用率(%)=设备工作时间×100

生产时间-(使用者维修时间+不合规范的输入停工+与基础设施有关的停工)

6.3.3 生产时间利用率—在生产时间内设备按预定功能运行的时间百分比。目的在于反映该设备的总体运行表现。

生产时间利用率(%)=设备工作时间×100

生产时间

6.4 设备可维修性—在一段时间内,设备可保留至或维修至正常预定功能状态的可能性。

6.4.1 MTTR f—平均修理时间;修理故障使设备回到正常运行的平均耗时。在一段时间期内(包括设备和流程测试时间,但不包括维修延时),被故障数断开的所有修理时间(不仅仅是所有流逝的人工时间)。

MTTR f =总修理时间

总故障数

6.4.2 MTTR i—平均修理时间;修理中断使设备回到正常运行的平均耗时。在一段时间期内(包括设备和流程测试时间,但不包括维修延时),被中断数断开的所有修理时间(不仅仅是所有流逝的人工时间)。

MTTR i =总修理时间

总中断数

6.4.3 MTOL—平均离线时间;当停工发生后,维修设备正常生产或恢复设备生产的平均耗时这段时间内被停工次数断开的所有停工(计划内或计划外的)时间。

MTOL =所有停工时间

停工次数

6.4.4 设备的计划停工率(%)=设备计划停工时间×100

生产时间-(所有维修时间+不合规范的输入停工+与基础设施有关的停工)

6.4.5 供应商的计划停工率(%)=设备计划停工时间×100

生产时间-(使用者维修时间+不合规范输入停工+与基础设施有关的停工)

6.5 设备利用率—在一段时间内设备按要求功能运行的时间比率。

6.5.1 生产时间利用率—生产时间中的有效时间。因为它不包括制度外时间,所以用于比较不同班次结构生产的设备利用率。

生产时间利用率(%)=设备工作时间×100

生产时间

6.5.2 总时间利用率—在全部时间内有效运行的比率。用于反映基本线上的设备利用率。

总时间利用率(%)=设备工作时间×100

总时间

●常规生产●没有操作工●与基础设备相关

●为第三方工作●没有产品

●返工●没有辅助工具

●工程运作

图2 SEMI E10 时间总结

设备可靠性管理制度

设备可靠性管理制度(试行) 1 主题内容及适用范围 1.1 本制度规定了设备可靠性管理在数据录入、汇总、分析、发布和考核、职责分工等方面的要求。 1.2 本制度适用于******* 公司对设备可靠工作的管理。 2 引用标准下列标准、规程、规范所包含的条文,通过在本制度中引用而构成本制度的条文。本制度出版时所示版本均为有效。下述所有规程、规范都会被修订,以最新有效版本为准。 国家电力监管委员会24 号令《电力可靠性监督管理办法》国家电力监管委员会《火力发电机组可靠性评价实施办法(试行)》电力行业标准DL/T793-2001 《发电设备可靠性评价规程》电力行业标准DL/T837-2003 《输变电设施可靠性评价规程》 3 管理内容和要求 3.1 职责分工 3.1.1 技术部是公司可靠性管理的归口部门,其职责是: (1)贯彻执行有关电力可靠性监督管理的国家规定、技术标准,制定公司电力可靠性管理工作标准及要求; (2)建立电力可靠性管理工作体系,落实电力可靠性管理岗位责任; (3)建立并维护电力可靠性信息管理系统,采集并分析电力可靠性信息; (4)按有关规定准确、及时、完整地报送电力可靠性信息; (5)开展电力可靠性成果应用,提高电力系统和电力设施可靠性水平; (6)开展电力可靠性技术培训。 (7)定期召开可靠性指标分析会,分析指标完成情况,研究原因、制定措施。 3.1.2 在技术部设置可靠性管理工程师,负责可靠性管理的日常工作,其职责是: (1)具体负责可靠性指标的制定,经部门经理审定, 报公司领导批准后下达,并

对可靠性指标的完成情况提出考核建议; (2)负责电力可靠性信息管理系统的维护,对可靠性的各项数据进行整理汇 总; (3)按规定负责设备可靠性数据的发布和上报; (4)负责对可靠性数据录入人员的业务指导和培训。 3.1.3设备注册数据的录入由技术部各专业负责,各专业指定1名专业工程师具体 负责。其分工如下: 3.1.3.1发电主机设备(指锅炉、汽轮机、发电机、主变)注册数据的录入由技术部可靠性管理工程师负责; 3.1.3.2发电辅机设备注册数据的录入由技术部各专业按分管范围分别负责; 3.1.3.3输变电设备(按本制度规定的统计范围,下同)注册数据的录入由技术部电气专业负责。 3.1.4发电主机设备运行事件的录入由发电市场部总值长负责,发电辅机设备运行事件的录入由发电市场部各专业工程师按分管范围分别负责,输变电设备运行事件的录入由发电市场部电气专工负责; 3.1.5技术部计算机专业协助可靠性管理工程师对可靠性管理系统数据库的维护,并负责系统网络软硬件系统的维护,确保可靠性管理系统的正常运行。 3.2 统计评价范围 3.2.1发电设备分发电主机设备(以下简称机组)和主要辅助设备,其统计评价范围 是: 3.2.1.1机组的统计范围包括锅炉、汽轮机、汽轮发电机和主变压器(包括高压出线 套管)及其相应的附属、辅助设备,公用系统和设施; 3.2.1.2 主要辅助设备为磨煤机、给水泵组、送风机、引风机、高压加热器、低压加热器、循环水泵、凝结水泵、一次风机、给煤机、空气压缩机、捞渣机、启动锅炉、除氧器、电除尘、脱硫系统等,其中: 32121 磨煤机(含电动机):磨煤机进出口门之间的所有部件及装置(含润滑油系统、减速装置、监测和保护装置等)。 32122 给水泵组(含前置泵、液力偶合器、电动机或辅助汽轮机):给水入口阀至出

可靠性评估方法(可靠性预计、审查准则、工程计算)

电子产品可靠性评估方法培训 课程介绍: 作为快速发展的制造企业,产品可靠性的量化评估是一个难题,尤其是机械、电子、软件一体化的产品。针对此需求,本公司开发了《电子产品可靠性评估方法》课程,以期在以基于应力计数法的可靠性预计和分配、基于寿命鉴定的试验评估法两个方面提供对电子产品的评价数据。并在日常管理实践中,通过质量评价的方式,通过设计规范审查、FMEA分析发现评估中的关键问题点,以便更好地改进。 课程收益: 通过本课程的学习,可以了解电子产品的可靠性评估方法以及导致产品可靠性问题的问题点,为后期的质量管理统计和技术部门的解决问题提供工作依据。 课程时间:1天 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 【培训对象】本课程适于质量工程师、质量管理、测试工程师、技术工程师、测试部门等岗位。 课程特点: 讲师是可靠性技术+可靠性管理、军工科研+民品开发管理的综合背景; 课程包括开展可靠性评估工作的技术措施、管理手段,内容和授课方法着重于企业实践技术和学员的消化吸收效果。 课程本着“从实践中来,到实践中去,用实践所检验”的思想,可靠性设计培训面向设计生产实际,针对具体问题,充分结合同类公司现状,提炼出经过验证的军工和民用产品的可靠性

设计实用方法,帮助客户实现低成本地系统可靠性的开展和提升。 课程大纲: 一、可靠性评估基础 可靠性串并联模型 软件、机械、硬件的失效率曲线 可靠性计算 二、基于应力计数法的可靠性预计与分配 依据的标准 基于用户需求的设计输入应力条件 可靠性分配的计算方法和过程 基于应力计数法的可靠性预计 三、寿命鉴定试验评估方法 试验依据标准要求 试验过程 判定方式 四、产品质量与可靠性审查准则 基于失效机理的可靠性预防措施 系统设计准则(热设计、系统电磁兼容设计、接口设计准则) 机械可靠性设计准则 电路可靠性设计准则(降额、电子工艺、电路板电磁兼容、器件选型方法)嵌入式软件可靠性设计准则(接口设计、代码设计、软件架构、变量定义)五、DFMEA与PFMEA过程的潜在缺陷模式及影响分析方法

设备可靠性管理实施细则

设备可靠性管理实施细则 1. 目的 为加强福建晋江天然气发电有限公司生产设备的可靠性管理工作,建立科学完善的可靠性管理网络和评价、分析、预测系统,提高公司设备安全、经济、可靠运行的水平,结合公司实际,特制定本实施细则。 2. 范围 本办法适用于福建晋江天然气发电有限公司计划经营部、发电部、检修部的可靠性管理工作。 3. 引用标准 3.1引用标准 3.1.1国家经济贸易委员会国经贸电力[2000]970号“电力可靠性管理暂行办法” 3.1.2 中国电力企业联合会联电可[2003]81号“关于印发《电力可靠性管理暂行办法》实施细则的通知” 3.1.3《燃气轮机发电设备可靠性评价规程》2004年9月试行 3.1.4《输变电设施可靠性评价规程》(DL/T837-2003) 3.1.5《电力可靠性管理代码》(2003年) 3.1.6《电力可靠性基本名词术语》(DL/T861-2004) 4.专用术语 4.1发电设备可靠性:是指设备在规定条件下、规定时间内,完成规定功能的能力。 4.2可靠性管理是用系统工程的观点对设备的可靠性进行控制,即对设备全寿命周期中各项可靠性工程技术活动进行规划、组织、协调、控制、监督,以实现确定的可靠性目标,使设备全寿命周期费用最低。 4.3燃气-蒸汽联合循环发电机组的统计分析范围包括燃气轮机、余热锅炉、蒸汽轮机、发电机和主变压器及其相应的附属、辅助系统,公用系统和设施。 4.4辅机设备统计分析范围包括启动锅炉、柴油发电机组、空压机组、调压站设备、循环水系统、闭式水泵、凝结水泵、高、中、低压给水泵、综合泵房设备、工业废水设备、化学制水区域设备、生产污水设备等。 4.5输变电设施统计分析范围包括高压备用变压器、全封闭组合电器、架空线路、避雷器、电容式电压互感器等。 5. 执行程序 5.1可靠性年度目标的制定 根据年度检修计划的安排,结合机组特性状况及历年可靠性指标完成值,参照同类

设备可靠性管理考核办法200901201

WUJING THERMAL POWER PLANT OF SHANGHAI ELECTRIC POWER CO., LTD. 设备可靠性管理考核办法控制表

WUJING THERMAL POWER PLANT OF SHANGHAI ELECTRIC POWER CO., LTD. 设备可靠性管理考核办法 SEPWJ-YW—07—30 1 主题内容与适用范围 1.1 本办法规定了上海电力股份有限公司吴泾热电厂与上海吴泾发电有限责任公司设备可靠性管理的考核目的、组织机构、内容、考核标准,以及未尽事宜的处理原则。 1.2 本办法适用上海电力股份有限公司吴泾热电厂与上海吴泾发电有限责任公司所管辖的所有设备。 2 引用标准 引用中华人民共和国电力行业标准《发电设备可靠性评价规程》、《电力可靠性监督管理办法》、《输变电设施可靠性评价规程》,并结合本厂生产管理有关要求、现场具体情况编订。 3 总则 3.1 考核目的和要求: 3.1.1 为了适应电力市场的严峻形势,落实厂部提出的管理上实现外圆 内方的工作策略,进一步提高设备的稳定性、可靠性。 3.1.2 设备可靠性管理是对设备的全过程管理,是现代化企业的科学管 理方法之一,为了促进可靠性管理工作顺利开展,特制定本考核 办法,目的是确保设备可靠性工作成为人人看得见,人人挂上钩,人人能出力的工作。 3.1.3 考核办法体现“三”公原则,即公平、公正、公开。 3.2 考核的原则: 3.2.1 由于一台设备涉及到许多专业、部门,因而,影响设备的可靠性 因素很多,要确保设备的可靠,需要大家共同努力才能完成。考 核既体现了针对性,也体现了全面性。针对性是指谁引起降低设 备可靠性就考核谁;全面性是指只要该台设备在全年中未发生一 次非计划停运,将给予相关部门奖励。

2020年设备可靠性管理考核细则

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020年设备可靠性管理考核细 则 Safety management is an important part of production management. Safety and production are in the implementation process

2020年设备可靠性管理考核细则 一、考核指标 1、列入主设备考核的设备 #1、#2机组汽机、锅炉、发电机、主变压器及所有影响机组启动、满出力运行(备用)的辅助设备。 2、列入辅助设备考核的设备(见附表) 汽机111台,锅炉308台,电气335台,热工394台,化检34台。 二、指标统计 1、统计时间的确定 (1)统计期限自月初1日零时至当月月末24时止。 (2)设备非计划停运小时数以设备停运(或退出备用)至修后投运(或转入备用)期间为实际统计时间。 (3)运行机组设备在备用期间发生非计划检修,当不影响机组

启动运行时,不可用统计时间按实际检修时间的一半计算;备用机组设备在不影响机组备用的情况下进行检修不考核,由值长负责把关。 (4)设备低谷消缺(双休日属低谷消缺),当不影响机组出力时,不可用统计时间按实际检修时间的一半计算。 (5)设备检修时,因我厂无力解决,需由他人协助解决造成工期延长,对该延长工期不予考核。 (6)设备检修期间因无非常规备件等原因造成检修延误,等备件期间不予考核。 (7)设备查找事件原因而进行试验此期间不考核。 (8)停运(或退出备用)、投运(或转入备用)时间及降出力均以值长记录及工作票为统计依据。 2、指标统计 (1)值长设《可靠性管理考核记录》一本,作为统计指标的原始记录。 (2)主设备及辅助设备计划检修时间由生产部根据设备实际情

人机系统可靠性计算(标准版)

人机系统可靠性计算(标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0772

人机系统可靠性计算(标准版) (一)、系统中人的可靠度计算 由于人机系统中人的可靠性的因素众多且随机变化,因此人的可靠性是不稳定的。人的可靠度计算(定量计算)、也是很困难的。 1.人的基本可靠度 系统不因人体差错发生功能降低和故障时人的成功概率,称为人的基本可靠度,用r表示。人在进行作业操作时的基本可靠度可用下式表示: r=a1a2a3(4—13)、 式中a1——输入可靠度,考虑感知信号及其意义,时有失误; a2——判断可靠度,考虑进行判断时失误; a3——输出可靠度,考虑输出信息时运动器官执行失误,如按错开关。

上式是外部环境在理想状态下的可靠度值。a1,a2,a3,各值如表4—5所示。 人的作业方式可分为两种情况,一种是在工作时间内连续性作业,另一种是间歇性作业。下面分别说明这两种作业人的可靠度的确定方法。 (1)、连续作业。在作业时间内连续进行监视和操纵的作业称为连续作业,例如控制人员连续观察仪表并连续调节流量;汽车司机连续观察线路并连续操纵方向盘等。连续操作的人的基本可靠度可以用时间函数表示如下: 式中r(t)、——连续性操作人的基本可靠度; t——连续工作时间; l(t)、——t时间内人的差错率。 (2)、间歇性作业。在作业时间内不连续地观察和作业,称为间歇性作业,例如,汽车司机观察汽车上的仪表,换挡、制动等。对间歇性作业一般采用失败动作的次数来描述可靠度,其计算公式为:r=l一p(n/N)、(4—15)、式中N失败动作次数;

可靠性计算公式大全

常运行的概率,用R(t)表示. 所谓失效率是指单位时间内失效的元件数与元件总数的比例,以λ表示,当λ为常数时,可靠性与 失效率的关系为: R(λ)=e-λu(λu为次方) 两次故障之间系统能够正常工作的时间的平均值称为平均为故障时间(MTBF) 如:同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障 ,计算机失效率:λ=10/(1000*1000)=1*10-5(5为次方) 千小时的可靠性:R(t)=e-λt=e(-10-5*10^3(3次方)=0.99 平均故障间隔时间MTBF=1/λ=1/10-5=10-5小时. 1)表决系统可靠性 表决系统可靠性:表决系统是组成系统的n个单元中,不失效的单元不少于k(k介于1和n之间),系统就不会失效的系统,又称为k/n系统。图12.8-1为表决系统的可靠性框图。通常n个单元的可靠度相同,均为R,则可靠性数学模形为: 这是一个更一般的可靠性模型,如果k=1,即为n个相同单元的并联系统,如果k=n,即为n个相同单元的串联系统。 2)冷储备系统可靠性 冷储备系统可靠性(相同部件情况):n个完全相同部件的冷贮备系统,(待机贮备系统),转换开关s 为理想开关Rs=1,只要一个部件正常,则系统正常。所以系统的可靠度: 图12.8.2 待机贮备系统

3)串联系统可靠性 串联系统可靠性:串联系统是组成系统的所有单元中任一单元失效就会导致整流器个系统失效的系统。下图为串联系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中,Ra——系统可靠度;Ri——第i单元可靠度 多数机械系统都是串联系统。串联系统的可靠度随着单元可靠度的减小及单元数的增多而迅速下降。图12.8.4表示各单元可靠度相同时Ri和nRs的关系。显然,Rs≤min(Ri),因此为提高串联系统的可靠性,单元数宜少,而且应重视串联系统的可靠性,单元数宜少,而且应重视改善最薄弱的单元的可靠性。 4)并联系统可靠性 并联系统可靠性:并联系统是组成系统的所有单元都失效时才失效的失效的系统。图12.8.5为并联轴系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中 Ra——系统可靠度 Fi——第i单元不可靠度

设备部可靠性、缺陷管理专工安全生产职责示范文本

设备部可靠性、缺陷管理专工安全生产职责示范文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

设备部可靠性、缺陷管理专工安全生产 职责示范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 (1)对可靠性、缺陷相关安全管理负责,对设备管理部 主任(副主任)负责。 (2)负责落实可靠性、缺陷相关安全法律法规、厂各项 规章制度。 1)贯彻落实国家、集团公司和河南省公司有关发电设 备可靠性相关的行业标准、规程等,以及上级指示、文 件; 2)修订厂内发电设备可靠性、缺陷管理规章制度并执 行; 3)及时协调解决可靠性、缺陷规章制度中出现的问 题;

4)及时收集有关专业上报提供的可靠性、缺陷统计信息,定期进行数据整理、核对; 5)负责向有关部门提供安全方面的可靠性技术资料; 6)根据集团公司、省公司要求,准确、完整、及时的上报可靠性、缺陷有关数据。 (3)负责可靠性、缺陷相关安全生产的管理考核。 1)按照《设备长周期及有效期管理标准》和部门《缺陷管理实施细则》对部门各专业日常可靠性、缺陷管理工作开展情况落实考核; 2)对部门各专业做好月度绩效奖指标考核明细; (4)在设备管理部主任(副主任)领导下做好可靠性、缺陷相关工作。 1)及时了解现场设备安全生产情况; 2)定期组织各专业召开可靠性分析会和缺陷分析会,依据可靠性分析和缺陷分析提出对生产运行检修和设备的

多种可靠度计算方法学位论文

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名: 年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于1、保密囗,在年解密后适用本授权书 2、不保密囗。 作者签名:年月日 导师签名:年月日

摘要 压力容器作为一种重要设备广泛应用于工程领域,其安全性和可靠性是现在研究的重要课题。压力容器在生产和使用过程中存在各种不确定性因素,如构件、缺陷尺寸参数的不确定性,工况载荷的随机波动,材料机械性能的随机性。本文将这些不确定性参数当作随机变量,考虑其概率分布形式,采用应力强度-干涉模型,利用一次二阶矩法,蒙特卡洛法和随机有限元法等可靠度计算方法对容器结构进行了可靠性分析,并讨论了各随机变量对可靠度结果的灵敏度。 本文对无缺陷压力容器的安全评定采用弹性失效判据,利用四种不同的方法计算了圆筒形和球形压力容器的可靠度,分析比较了各方法的优缺点。对于含凹坑缺陷的压力容器,文中采用基于塑性极限的塑性失效准则,其中极限荷载采用弹塑性增量法得到,通过ANSYS 软件批处理操作模拟蒙特卡洛法实现可靠性分析,并对GB/T 19624-2004《含缺陷压力容器安全评定》规范中的极限载荷安全系数进行了评估。本文最后对 GB/T 19624-2004《含缺陷压力容器安全评定》规范中给出的含凹坑缺陷压力容器安全评定方法做出了改进,提出了基于分项安全系数的含凹坑缺陷压力容器的安全评定方法。 关键字:压力容器;可靠性;应力强度-干涉模型;分项安全系数

设备的可靠性管理

设备管理的可靠性 设备是现代企业的物质基础,是企业固定资产的主体,也是企业生产力发展水平与企业现代化程度的主要标志。可以说,没有机器设备就没有现代化的生产,也就没有现代化的企业。现代社会无处不在的充满了各种各样设备,与此同时,与设备管理有关的问题也随之而来,设备的可靠性管理便是其中之一。加强设备管理工作是企业发展的需要,更是完成各项生产任务的基本要求,对保证企业正常的生产,提高企业生产效率,促进企业经济发展具有重要的意义。 可靠性管理一词来源于二战之后,当时在对日战争中,发生了向前线输送的电子设备半数以上发生了故障,美军向远东运送的兵器中,60%的航空机不能使用,于是战后航空设备的可靠性管理问题被正式提上议事日程。五十年代,美国的可靠性研究开始进入正规化,并逐步应用到各个领域层次,可以说发达国家可靠性管理起步比较早。 可靠性是在一定的时间内一定的条件下无故障的充分执行其预期功 能的概率。可靠性是设备的系统或是元器件,在规定或预定的时间内,完成一定功能的概率,可靠性的特点主要体现在全生命周期内的可靠性包括可靠度、故障概率、累积故障概率、故障频率等。 一、现代化设备可靠性管理的局限性 现代化设备可靠性管理的核心任务是保证设备的安全可靠性和 提高设备经济运行水平。杜绝设备原因造成装置的非计划停工、杜绝设备事故、杜绝直接作业层的安全事故、合理控制设备维修费用等是

设备可靠性管理的根本标志,同时也体现了设备管理工作的水平。然而,在以往的设备可靠性与维修管理方面却存在着诸多的问题,(一)在以往的设备可靠性与维修管理上主要是以经验管理的理念为依托,所能发挥的管理效应体系的系统化建设不够充分,企业实行的设备点检管理、故障缺陷管理和检修维修管理等自成一派,缺乏系统性,执行中存在一定程度的相互脱节现象,导致管理的整体功能不能得到更好地发挥。比如,设备点检、巡检和联检发现的问题甚至是造成设备非计划停机的问题在故障报告中反映不详尽,设备维修决策并没有全面做到以设备状态分析为指导依据。(三)在传统的设备可靠性与维修管理中,业务流程不尽完整和规范,管理过程经常依赖于个人经验,管理和技术分析多以定性方式为主,绩效管理的评价指标体系未尽完善,缺乏管理的科学性、规范性和实效性。(四)传统的设备可靠性与维修管理中,工作过程文档化程度不够,知识和经验得不到有效沉淀,信息资源得不到充分共享,管理分析和辅助决策需要依据的相关信息不足,管理的持续改进不能更好地实现。(五)传统的设备可靠性与维修管理中,对ERP的系统资源开发应用深度不够,对设备的可靠性管理,线上采用通知单的形式进行各类情况报告,线下仍需要做各项维护记录、台帐和报表,形成了线下、线上双轨运行的格局,存在数据、记录重复维护等问题。同时,由于对ERP系统的标准分析功能开发应用深度不够,在辅助设备可靠性管理和维修决策方面的作用没有得到更好地发挥。(六)在传统的ERP系统运用中,由于设备故障代码目录配置不尽完善,未能实现对各类设备技术对象的零部件、

可靠性计算公式大全

计算机系统的可靠性是制从它开始运行(t=0)到某时刻t这段时间内能正常运行的概率,用R(t)表示. 所谓失效率是指单位时间内失效的元件数与元件总数的比例,以λ表示,当λ为常数时,可靠性与 失效率的关系为: R(λ)=e-λu(λu为次方) 两次故障之间系统能够正常工作的时间的平均值称为平均为故障时间(MTBF) 如:同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障 ,计算机失效率:λ=10/(1000*1000)=1*10-5(5为次方) 千小时的可靠性:R(t)=e-λt=e(-10-5*10^3(3次方)=0.99 平均故障间隔时间MTBF=1/λ=1/10-5=10-5小时. 1)表决系统可靠性 表决系统可靠性:表决系统是组成系统的n个单元中,不失效的单元不少于k(k介于1和n之间),系统就不会失效的系统,又称为k/n系统。图12.8-1为表决系统的可靠性框图。通常n个单元的可靠度相同,均为R,则可靠性数学模形为: 这是一个更一般的可靠性模型,如果k=1,即为n个相同单元的并联系统,如果k=n,即为n个相同单元的串联系统。 2)冷储备系统可靠性 冷储备系统可靠性(相同部件情况):n个完全相同部件的冷贮备系统,(待机贮备系统),转换开关s为理想开关Rs=1,只要一个部件正常,则系统正常。所以系统的可靠度: 图12.8.2 待机贮备系统

3)串联系统可靠性 串联系统可靠性:串联系统是组成系统的所有单元中任一单元失效就会导致整流器个系统失效的系统。下图为串联系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中,Ra——系统可靠度;Ri——第i单元可靠度 多数机械系统都是串联系统。串联系统的可靠度随着单元可靠度的减小及单元数的增多而迅速下降。图12.8.4表示各单元可靠度相同时Ri和nRs的关系。显然,Rs≤min(Ri),因此为提高串联系统的可靠性,单元数宜少,而且应重视串联系统的可靠性,单元数宜少,而且应重视改善最薄弱的单元的可靠性。 4)并联系统可靠性 并联系统可靠性:并联系统是组成系统的所有单元都失效时才失效的失效的系统。图12.8.5为并联轴系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中 Ra——系统可靠度 Fi——第i单元不可靠度

产品与设备可靠性分析

设备与产品的可靠性诊断分析 摘要:可靠性分析在发现产品在设计、材料和工艺等缺陷方面有重要作用, 经分析和改进,可以提高产品的可靠性,为改善产品的战备完好性、提高任务成功率、减少维修保障费用提供信息,创造更高的经济效益。本文主要介绍了研究设备和产品可靠性分析的目的和意义,我国机械设备的可靠性现状以及设备和产品的可靠性分析试验,最后结合最近的可靠性的发展,介绍了设备和产品可靠性分析的发展趋势,从而对设备和产品可靠性分析的应用和发展有一个全面的、客观的认识。 关键字:设备;产品;可靠性分析 一.绪论 1.可靠性分析的目的和意义 可靠性作为产品质量和技术措施的一个最重要的指标已受到世界各工业国家的高度重视,因为任何产品和技术,尤其是高科技产品、大型设备及超大型设备的制造,尖端技术的发展,都要以可靠性技术为基础,科学技术的发展又要求高可靠性。 可靠性是衡量产品质量的一项重要指标,可靠性问题与经济效益和人身安全密切相关。随着科学技术的迅猛发展,大量的复杂系统被研发和应用,这些复杂系统在生产实践中发挥着巨大的作用,对其可靠性进行分析和对系统进行优化设计是系统设计者和管理者必须高度重视的问题。 可靠性包括可靠性数学、可靠性物理、可靠性管理及可靠性工程,其主要研究内容为产品或系统故障发生的原因、故障的消除和预防措施。可靠性分析的主要研究目的为保证产品的可靠性和可用性、延长使用寿命、降低维修费用、提高产品的用效益。现代科学技术和工业以惊人的速度向前发展,产品产量、参数的提高,使用条件的苛刻以及大量新技术、新工艺、新材料的应用,使产品可靠性问题日益突出,可靠性已经不仅影响产品的性能,而且关系到一个国家的经济发展和安全稳定,成为当今人们致力研究的对象。 2.我国机械设备可靠性现状 可靠性问题只是在第二次世界大战前后,才真正开始受到重视。从 50 年代至今,可靠性理论这门新兴学科以惊人的速度发展着,各方面都已积累了丰富的经验。 我国机械工业底子薄,上世纪七八十年代不少大型成套设备和精密自动化设备不能自行设计制造。产品可靠性差、能耗高,有效寿命多数只相当先进国家相应产品的1/3-1/2。 改革开放以来,特别是我国加入WTO之后,极大地促进了我国机械工

火力发电厂做好设备运行可靠性管理的具体措施

火力发电厂做好设备运行可靠性管理的具体措施 摘要设备运行管理是火力发电厂的重要管理工作之一,关系到火力发电厂的整体运行。考虑到设备运用中的实际特点,如何做好设备运行的可靠性管理,提高设备运行的可靠性,成为了保证火力发电厂安全稳定运行的关键。基于这一认识,火力发电厂应对设备运行管理工作引起足够的重视,并结合设备运行管理实际,认真分析设备运行管理中的不足,制定具体的设备运行管理措施,使火力发电厂的设备运行能够取得积极效果,达到满足火力发电厂生产管理需要的目的。为此,我们应对火力发电厂的设备运行可靠性管理进行深入研究。 关键词火力发电厂;设备运行;可靠性管理;具体措施 0 引言 火力发电厂与其他生产单元不同,火力发电厂中不但设备数量众多,在实际生产运行中,需要设备保持良好的运转状态,既需要设备得到完善的保护,又需要设备能够可靠平稳运行。从当前火力发电厂的工作实际来看,要想保证火力发电厂的设备运行平稳可靠,就要积极做好设备运行可靠性管理工作,不但要结合火力发电厂的生产运行实际,还要结合火力发电厂的设备管理实际。为此,我们应从火力发电厂的设备管理出发,积极寻求解决手段,为设备运行可靠性管理提供有力帮助。 2 强化设备管理人员的主人翁意识 在火力发电厂的设备运行可靠性管理中,设备管理人员是保证管理效果的重要因素。为此,只有重视设备管理人员的素质,不断强化设备管理人员的主人翁意识,才能保证火力发电厂的设备运行可靠性管理取得积极效果。 1)应该加强对设备运行的重视,将运行人员作为企业的重要管理人员来看待,确保设备运行工作能够得到有效开展,满足火力发电厂的生产运行实际。所以,只有强化设备管理人员的主人翁意识,才能保证火力发电厂的设备管理工作取得实效; 2)除了要对运行人员予以足够的重视之外,运行人员还要在工作中对自己的职责有清醒的认识,不但要对设备进行全面监控,还要把握监视测量原则,实现对火力发电厂的所有设备的监测与维修。基于火力发电厂的现实需要,运行管理人员只有明确自身职责,才能做好设备管理工作; 3)除了上述措施之外,设备管理人员还要对设备安全隐患有全面深入的了解,做到及时消除设备安全隐患,保证设备运行状态和运行平稳性满足实际需要,为设备运行提供有力支撑。由此可见,设备管理人员的意识和管理理念是决定设备管理效果的关键。基于这一认识,必须要全面提升设备管理人员的主人翁意识。

人机系统可靠性计算示范文本

文件编号:RHD-QB-K8474 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 人机系统可靠性计算示 范文本

人机系统可靠性计算示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 (一)、系统中人的可靠度计算 由于人机系统中人的可靠性的因素众多且随机变化,因此人的可靠性是不稳定的。人的可靠度计算(定量计算)、也是很困难的。 1.人的基本可靠度 系统不因人体差错发生功能降低和故障时人的成功概率,称为人的基本可靠度,用r表示。人在进行作业操作时的基本可靠度可用下式表示: r=a1a2a3 (4—13)、 式中a1——输入可靠度,考虑感知信号及其意义,时有失误;

a2——判断可靠度,考虑进行判断时失误; a3——输出可靠度,考虑输出信息时运动器官执行失误,如按错开关。 上式是外部环境在理想状态下的可靠度值。 a1,a2,a3,各值如表4—5所示。 人的作业方式可分为两种情况,一种是在工作时间内连续性作业,另一种是间歇性作业。下面分别说明这两种作业人的可靠度的确定方法。 (1)、连续作业。在作业时间内连续进行监视和操纵的作业称为连续作业,例如控制人员连续观察仪表并连续调节流量;汽车司机连续观察线路并连续操纵方向盘等。连续操作的人的基本可靠度可以用时间函数表示如下: 式中r(t)、——连续性操作人的基本可靠度; t——连续工作时间;

l(t)、——t时间内人的差错率。 (2)、间歇性作业。在作业时间内不连续地观察和作业,称为间歇性作业,例如,汽车司机观察汽车上的仪表,换挡、制动等。对间歇性作业一般采用失败动作的次数来描述可靠度,其计算公式为:r=l一p(n/N)、(4—15)、式中N 失败动作次数; n——失败动作次数; p——概率符号。 2.人的作业可靠度 考虑了外部环境因素的人的可靠度RH为: RH=1-bl·b2·b3·b4·bs(1—r)、(4一16)、 式中b1——作业时间系数; b2——作业操作频率系数; b3——作业危险度系数;

人机系统可靠性计算

编订:__________________ 审核:__________________ 单位:__________________ 人机系统可靠性计算 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3138-34 人机系统可靠性计算 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 (一)、系统中人的可靠度计算 由于人机系统中人的可靠性的因素众多且随机变化,因此人的可靠性是不稳定的。人的可靠度计算(定量计算)、也是很困难的。 1.人的基本可靠度 系统不因人体差错发生功能降低和故障时人的成功概率,称为人的基本可靠度,用r表示。人在进行作业操作时的基本可靠度可用下式表示: r=a1a2a3 (4—13)、 式中a1——输入可靠度,考虑感知信号及其意义,时有失误; a2——判断可靠度,考虑进行判断时失误; a3——输出可靠度,考虑输出信息时运动器官执行失误,如按错开关。

上式是外部环境在理想状态下的可靠度值。a1,a2,a3,各值如表4—5所示。 人的作业方式可分为两种情况,一种是在工作时间内连续性作业,另一种是间歇性作业。下面分别说明这两种作业人的可靠度的确定方法。 (1)、连续作业。在作业时间内连续进行监视和操纵的作业称为连续作业,例如控制人员连续观察仪表并连续调节流量;汽车司机连续观察线路并连续操纵方向盘等。连续操作的人的基本可靠度可以用时间函数表示如下: 式中 r(t)、——连续性操作人的基本可靠度; t——连续工作时间; l(t)、——t时间内人的差错率。 (2)、间歇性作业。在作业时间内不连续地观察和作业,称为间歇性作业,例如,汽车司机观察汽车上的仪表,换挡、制动等。对间歇性作业一般采用失败动作的次数来描述可靠度,其计算公式为: r=l一p(n/N)、 (4—15)、式中 N 失败动作次

可靠性定义及其度量指标

可靠性定义及其度量指标 【大纲考试内容要求】: 1、了解机械失效三个阶段和维修度、有效度、平均无故障工作时间; 2、熟悉可靠性、故障率、可靠性预计、人机界面设计要点。 【教材内容】: 第四节机械的可靠性设计与维修性设计 一、可靠性定义及其度量指标 (一)可靠性定义 所谓可靠性是指系统或产品在规定的条件和规定的时间内,完成规定功能的能力。 这里所说的规定条件包括产品所处的环境条件(温度、湿度、压力、振动、冲击、尘埃、雨淋、日晒等)、使用条件(载荷大小和性质、操作者的技术水平等)、维修条件(维修方法、手段、设备和技术水平等)。在不同规定条件下,产品的可靠性是不同的。 规定时间是指产品的可靠性与使用时间的长短有密切关系,产品随着使用时间或储存时间的推移,性能逐渐劣化,可靠性降低。所以,可靠性是时间的函数。这里所规定的时间是广义的,可以是时间,也可以用距离或循环次数等表示。 (二)可靠性度量指标 1.可靠度 可靠度是可靠性的量化指标,即系统或产品在规定条件和规定时间内完成规定功能的概率。可靠度是时间的函数,常用R(t)表示,称为可靠度函数。 产品出故障的概率是通过多次试验中该产品发生故障的频率来估计的。例如,取N个产品进行试验,若在规定时间t内共有Nf(t)个产品出故障,则该产品可靠度的观测值可用下式近似表示:R(t)≈[N—Nf(t)]/N (4—7) 与可靠度相反的一个参数叫不可靠度。它是系统或产品在规定条件和规定时间内未完成规定功能

的概率,即发生故障的概率,所以也称累积故障概率。 不可靠度也是时间的函数,常用F(t)表示。同样对N个产品进行寿命试验,试验到瞬间的故障数为Nf(t),则当N足够大时,产品工作到t 瞬间的不可靠度的观测值(即累积故障概率)可近似表示为: F(t)≈Nf(t)/N (4—8) 可靠度数值应根据具体产品的要求来确定,一般原则是根据故障发生后导致事故的后果和经济损失而定。 2.故障率(或失效率) 故障率是指工作到t 时刻尚未发生故障的产品,在该时刻后单位时间内发生故障的概率。故障率也是时间的函数,记为γ(t),称为故障率函数。 产品的故障率是一个条件概率,它表示产品在工作到t 时刻的条件下,单位时间内的故障概率。它反映t 时刻产品发生故障的速率,称为产品在该时刻的瞬时故障率且γ(t),习惯称故障率。故障率的观测值等于N个产品在t时刻后单位时间内的故障产品数△Nf(t)/△t与在t时刻还能正常工作的产品数Ns(t)之比,即: γ(t)=△Nf(t)/[Ns(t)·△t] (4——9) 故障率(失效率)的常用单位为(1/106h)。 产品在其整个寿命期间内各个时期的故障率是不同的,其故障率随时间变化的曲线称为寿命的曲线,也称浴盆曲线,如图4—6所示。 由图可见,产品的失效过程可分为以下3个阶段:

设备可靠性管理制度

设备可靠性管理制度 1 目的 电力设备可靠性管理是发电厂设备质量安全管理的重要内容,也是电力系统设备现代化管理重要方法。为提高自备电厂设备管理水平,实行量化管理和技术优化,提高设备的健康水平,保证机组安全、稳定、经济、环保地运行,实行电力设备可靠性管理,对自备电厂有着重要的意义。 2 范围 本管理制度规定了设备可靠性管理的内容、基本任务和数据分析。 本管理制度适用于兰州分公司自备电厂设备可靠性管理工作。 3 职责 3.1 管理机构 3.1.1 成立自备电厂设备可靠性管理领导小组,领导自备电厂发电设备与输变电设备可靠性管理工作,负责确定可靠性管理工作的业务分工,保证可靠性管理工作的正常运转,设立可靠性管理专(兼)责。 3.1.2 领导小组成员:主管生产副厂长、安技部主任、发电部主任、检修部主任、燃运部主任、安技部各专业专工、发电部各专业专工、检修部各专业专工。设备可靠性管理由安技部归口管理,安技部可靠性管理兼责负责机组可靠性数据的报送与日常管理工作。 3.2 领导小组主要职责 3.2.1 组织、开发、应用可靠性管理技术,努力提高电力设备运行可靠性。 3.2.2 监督和协调自备电厂各部门的可靠性管理工作。 3.2.3 根据省调和电力行业协会下达的可靠性考核指标,结合自备电厂实际,制定相应的管理措施和考核办法。 3.2.4 根据机组运行情况,组织召开自备电厂可靠性管理工作会议。 3.3 安技部主要职责 3.3.1安技部是在自备电厂可靠性领导小组的领导下具体负责自备电厂发电设备、输变电设备可靠性管理的职能机构,设可靠性管理专(兼)责,负责自备电厂设备可靠性管理的日常工作。

3.3.2 贯彻上级可靠性管理部门颁布、下发的电力可靠性管理各项规定,完成上级布置的各项任务,办理可靠性管理工作的具体业务。 3.3.3 负责自备电厂设备可靠性信息的统计、分析研究并存储,建立齐全的数据库,所有信息认真核对,确认无误,经部门主任、主管生产副厂长审核批准后存档,并按时报送省调和电力行业协会。 3.3.4 每月会同经济活动分析会议,进行设备可靠性的评估及分析,对设备的健康状况、运行检修等做出全面评价。 3.4 发电部主要职责 3.4.1 报送数据包括发电量、主设备及主要辅助设备状态原始数据,发电设备与系统解列并列时间,输变电设施状态、开关、断路器动作次数、原因等原始数据。 3.4.2 根据设备可靠性管理信息,分析找出问题的关键,及时采取相应措施,制订预防措施。 3.4.3 严格执行自备电厂《运行管理制度》,使机组安全运行和设备处于良好的健康状态,确保可靠性指标的完成。 3.5 检修部主要职责 3.5.1 负责辅助设备状态变化原因的分析和确认,并对其正确性负责。 3.5.2 负责辅助设备检修费用和主要设备小修及事故检修费用的统计并对其正确性负责。 3.5.3 检修部应严格执行自备电厂设备管理制度,积极消缺,使机组处于良好的健康状态,确保可靠性指标的完成。 4 管理内容与要求 4.1 发电设备、输变电设施可靠性管理的内容 4.1.1 发电设备可靠性,是指设备在规定条件下和规定的时间内完成规定功能的能力。4.1.2 设备可靠性管理,是指发电厂的主机、主要辅机及输变电设施可靠性管理,是电厂发电设备的全面质量管理和全过程安全管理的重要组成部分,是发电厂现代科学管理的重要内容之一。设备可靠性管理是用系统的观点对设备的可行性进行控制,即对设备全寿命周期中各项可靠性工程技术活动进行规划、组织、协调、控制、监督,以实现确定的可靠性管理目标,使设备全寿命周期费用最低。 4.2 设备可靠性管理的任务 4.2.1 通过对电力主、辅设备状况、运行参数的分析,以可靠性指标来检验设备从设计、制造、安装、生产运行等环节预期的目标和效益,找出问题的关键,并作为安全生产、技术改

人机系统可靠性计算

人机系统可靠性计算 (一)系统中人的可靠度计算 由于人机系统中人的可靠性的因素众多且随机变化,因此人的可靠性是不稳定的。人的可靠度计算(定量计算)也是很困难的。 1.人的基本可靠度 系统不因人体差错发生功能降低和故障时人的成功概率,称为人的基本可靠度,用r表示。人在进行作业操作时的基本可靠度可用下式表示: r=a1a2a3 (1—26) 式中a1——输入可靠度,考虑感知信号及其意义,时有失误; a2——判断可靠度,考虑进行判断时失误; a3——输出可靠度,考虑输出信息时运动器官执行失误,如按错开关。 上式是外部环境在理想状态下的可靠度值。a1,a2,a3,各值如表1—11所示。 表1--11可靠度计算 作业类别内容a1~a3 a2 简单一般复杂变量在6个以下,已考虑人机工程学原则 变量在10个以下 变量在10个以上,考虑人机工程学不充分 0.9995~0.9999 0.9990~0.9995 0.990~0.999 0.999 0.995 0.990 人的作业方式可分为两种情况,一种是在工作时间内连续性作业,另一种是间歇性作业。下面分别说明这两种作业人的可靠度的确定方法。 (1)连续作业。在作业时间内连续进行监视和操纵的作业称为连续作业,例如控制人员连续观察仪表并连续调节流量;汽车司机连续观察线路并连续操纵方向盘等。 连续操作的人的基本可靠度可以用时间函数表示如下: r(t)=exp[∫0+∞l(t)dt] (1—27) 式中r(t)——连续性操作人的基本可靠度; t——连续工作时间; l(t)——t时间内人的差错率。 (2)间歇性作业。在作业时间内不连续地观察和作业,称为间歇性作业,例如,汽车司机观察汽车上的仪表,换挡、制动等。对间歇性作业一般采用失败动作的次数来描述可靠度,其计算公式为: r=l一p(n/N) (1—28) 式中N——总动作次数;

相关主题
文本预览
相关文档 最新文档