当前位置:文档之家› 防跳继路器的工作原理共12页

防跳继路器的工作原理共12页

防跳继路器的工作原理共12页
防跳继路器的工作原理共12页

防跳继电器的工作原理

35kV及以上的断路器常采用“电气防跳”。此种防跳继电器有有两个线圈,一个是供启动用的电流线圈,接在跳闸回路中;另一个是自保持用的电压线圈,通过本身的常开触点(TBJ1)接入合闸回路。

当合闸过程中,如正遇永久性故障,因而保护出口继电器触点BCJ闭合,断路器跳闸,并起动防跳继电器TBJ。若控制开关手柄(合闸按钮)未复归或其触点被卡住,以及自动合闸装置的合闸触点被卡住(没有分开),由于防跳继电器的触点TBJ1已经闭合,致使TBJ的电压线圈带电,起自保持的作用。另外,触点TBJ2业已断开,能避免合闸线圈HQ再次导通,也就防止了断路器发生“跳跃”。

触点TBJ3(与BCJ的触点并在一起)的作用,是为了防止保护出口继电器BCJ的触点被烧坏。因为自动跳闸时,BCJ的触点可能较辅助触点QF2(串在跳闸线圈TQ前的断路器常开辅助触点)先断开,以致被电弧烧坏。由于TBJ3与它并联,即使BCJ的触点先断,也不会被烧坏,而且还有跳闸出口存在。

真空断路器防跳继电器莫名启动了

在断路器磨合过程中,忽然停了下来,发现防跳继电器启动

了,无法合闸,请问是怎么回事呢?有哪些可能?

1、检查是否有故障发生不可恢复,使TBJ的电流线圈始终带电吸合,造成断路器跳闸回路一直被接通,同时TBJ的电压保持线圈始终闭锁着合闸回路,不允许断路器再次合闸。

2、检查是不是由于其他原因导致保护装置误动,进而启动TBJ。

3、重新校验一下TBJ继电器,检查其特性是否不太好,比如返回系数太小,使TBJ动作后不能及时返回,造成合闸失败。

4、检查TBJ继电器接点距离是否符合要求,会不会是由于接点距离太造成的。

控制回路防跳设计与防跳继电器的选用断路器控制回路若发生断路器“跳跃”是非常危险的,容易引起机构损伤,甚至引起断路器的爆炸。断路器的“跳跃”现象一般是在跳闸、合闸回路同时接通时才发生。为防止断路器的“跳跃”现象发生,通常“防跳”回路设计都是采用防跳回路,当断路器出现“跳跃”时,将断路器闭锁到跳闸位置。

常用防跳回路有串联式防跳回路、并联式防跳回路。国内产品多采用串联式防跳回路, 进口断路器多采用并联式防跳回路。合理的防跳回路除具有防跳功能外, 还具有防止保护出口触点断弧而烧毁的优点, 这也是应用微机保护装置不可缺少的技术条件。

常见的串联式电流操作的“防跳”回路动作原理如图1所示,图中

TBJ为专设的防跳继电器,该继电器有一个电流启动线圈和一个电压

保持线圈。

“防跳”回路动作原理:当控制开关SA5~8接通,使断路器合闸后,如保护动作,其触点KCO闭合,使断路器跳闸。此时TBJ的电流线圈带电,其触点TBJ1闭合。如果合闸脉冲未解除 ( 例如控制开关未复归其触点SA5~8仍接通,或自动重合闸继电器KR触点卡住等情

况 ) ,TBJ的电压线圈自保持,其触点TBJ2断开合闸线圈回路,使断路器不致再次合闸。只有合闸脉冲解除,TBJ的电压线圈断电后,

接线才恢复图示原来状态。

触点TBJ1的作用:TBJ电流线圈带电,触点TBJ1接通TBJ电压线圈自保持,只有合闸脉冲解除后TBJ电压线圈断电,触点TBJ1断开退

出自保持。

触点TBJ2的作用:TBJ电流或电压线圈带电,触点TBJ2断开合闸线圈回路,有效防止断路器再次合闸,达到防跳目的。如断路器机构内也有防跳功能,为了防止产生寄生回路,按规定只能二者选其一,若需取消操作箱TBJ的防跳功能可用导线将触点TBJ2短接;若需取消开关的防跳功能可拆除至防跳继电器线圈的连线。

触点TBJ3的作用:TBJ电流或电压线圈带电,触点TBJ3处吸合状态,可有效防止因跳闸回路的断路器辅助接点调整不当(动作变位过慢),造成保护出口KCO触点分断时燃弧烧毁的现象发生。用导线将触点TBJ2短接取消TBJ的防跳功能后,能吸放动作的TBJ仍具有对KCO

触点的保护功能。

电阻R的作用:当保护出口KCO触点回路串接有信号继电器,如触点TBJ3闭合而无电阻R时,信号继电器可能还未可靠动作就被TBJ3短路,串接电阻R后可减小分流保证信号继电器可靠动作。通常串接信号继电器的电流线圈阻值较小,故电阻R选用1欧便可满足上述要求。当保护出口KCO触点回路无串接信号继电器时,则此电阻R可以取消。

并联式电压操作的“防跳”回路动作原理如图2所示,图中TBJ为专设的防跳继电器,该继电器有一个电压启动线圈和一个电压保持线圈。触点TBJ1、TBJ2、TBJ3和电阻R的作用同串联式电流操作的“防

跳”回路。

并联式电压操作的“防跳”回路其跳闸、合闸线圈回路和断路器辅助接点回路完全分开,并将防跳继电器电压启动线圈、合闸保持继电器和位置继电器都接在辅助接点回路上。此方法适合某些进口开关分闸电流很小或现场断路器操作线圈电流不明确时使用。

也有用一个电压型继电器组成的“防跳”回路,其工作原理是保护信号由跳闸回路经二极管启动并在合闸回路的电压型继电器,并由该继电器的触点TBJ1~3实现前述防跳功能和BCJ触点的保护功能。此方法较简单,但会导致跳闸与合闸二回路间耐压下降。

国外ABB、西门子、施耐得等厂家的断路器内部设置的“防跳”回路也是电压操作型,其中ABB的VD4型真空断路器国内有不少厂家仿造用量较大。电压操作的“防跳”回路动作原理如图3所示。这类断路

器的防跳回路由一个并联在断路器合闸回路上的电压型继电器完成。

当合闸命令存在时, 合闸整流桥D3(考虑交直流两用而设置)输出经合闸脱扣器Y3, 辅助开关接点S2, S1, S3-1, 防跳

继电器KO 的常闭接点

1-2接通。断路器合闸后, 并联在合闸回路的辅助接点S3-2闭合, 启动防跳继电器KO , KO 接点位置切换(由常闭接点1-2接通转为常开接点1-4接通), 断合闸回路并保持。若此时线路或设备故障, 继电保护动作跳闸。但由于合闸回路已可靠断开, 从而防止了开关跳跃。控制电源掉电,则KO自保持回路返回,接通合闸回路,可以再次合闸。

DZ-619型小型继电器产品系列中就有专门针对“防跳”要求设计的

多种规格,如表格一所示。

表格一: DZ-619型防跳继电器各种类别主要特点

电流操作的防跳继电器有电流启动线圈 ( 常用电流等级有0.5、1、2、4A,各种额定电流等级的线圈压降分别小于4、2、1、0.4V;宽电流等级有0.25/0.5、0.5/1、 1/2、 2/4A ) 和电压保持线圈 ( 常用电压等级有24、55、72、110、220V ) 。触点形式为二付常开触点二付常闭触点 ( 即触点形式为2H2D )。其动作时间直流回路为5ms

或10ms;交流回路为15ms均可满足快速动作要求。电流、电压线圈之间或线圈与触点之间耐压水平为交流2000V。触点循环容量为 DC 220V 感性负载 5ms接通、断开50W;接通容量为DC 220V 接通5A 不断弧,可满足跳闸、合闸回路对接通电流容量的要求。

用户可根据现场断路器跳、合闸线圈选配相适应的防跳继电器电流和电压等级规格,确保该防跳继电器在现场能可靠动作且动作时间应小于跳闸回路断路器辅助触点的转换 ( 跳闸时断开 ) 时间。选配时应注意真空断路器较旧式断路器跳闸速度快(VD4型真空断路器分闸时间33~45mS);小型继电器比大体积继电器动作时间快。DZ-619小型继电器与大体积继电器有关技术参数如表格二所示。为确保防跳继电器实现快速动作,也可按其动作电流小于跳闸电流的一半选配。实际工作中各厂家配合方法可能不尽相同,不合适的配合可能会造成防跳继电器不动作或防跳继电器电流线圈过载烧毁。为确保配合正确厂家还有0.25A、1.5A、2.5A、3A、5A等特殊规格电流线圈和可在较宽的电流范围内实现防跳功能现场适应性较好的宽电流防跳继电器。

表格二: DZ-619小型继电器与大体积继电器有关技术参数的对比

现场跳闸回路的跳闸电流可按下式计算:

跳闸电流=220 (或110) / (跳闸线圈电阻+线圈回路电阻)其中:线圈回路电阻含防跳继电器电流线圈电阻。

为方便区分,厂家在继电器规格表示方法中将启动线圈排在动作时间括弧之前,保持线圈排在括弧之后。选用防跳继电器时注意电流线圈应为启动线圈,才能确保断路器跳闸可靠正确。例如1000(10S)-220继电器其电流线圈为启动线圈,动作电流不大于70%额定值,该继

电器常用在防跳电路中;而 220(10S)-1000 继电器其电流线圈为保持线圈,保持电流不大于70%额定值,电流保持线圈无动作电流要求,该继电器常用在保护出口电路中。若误将电流保持线圈当启动线圈使用有可能会造成断路器跳闸线圈动作失误,电路设计选用继电器时一定要区分清楚,防止订错误事 (双启动型无此问题)。

近年来有人参考上世纪九十年代出现的利用二极管组合分流的信号继电器设计原理,推出了不用再考虑保持系数的自适应防跳回路技术方案(详见技术交流:一种自适应配合和大容量分断的防跳回路)。DZ-619型小型继电器产品系列中也有专门针对“保护出口”要求设

计的多种规格,如表格三所示。

表格三:DZ-619型保护出口继电器各种类别主要特点

保护出口继电器电压启动线圈动作值有的规定为50~70%额定值,因“继电保护及安全自动装置反事故措施要点”中要求:跳闸出口继电器的起动电压不宜低于直流额定电压的50%,以防止继电器线卷正电源侧接地时因直流回路过大的电容放电引起的误动作;但也不应过高,以保证直流电源降低时的可靠动作和正常情况下的快速动作。保护出口继电器电流保持线圈与断路器跳、合闸电流的配合方法为线圈保持电流不大于额定跳(合)闸电流的一半左右,线圈压降小于5%

额定值

关于断路器里防跳继电器的问题

前段时间我们厂做了一套10kV开关柜,用的是扬州某开关厂的断路器,贴得西门子标志,

它的操作机构里有一个防跳回路,到现场运行前调试时发

现:

断路器故障跳闸后不能自动重合闸,需要手动复位一下才能再投入,后来我们把断路器里的防跳继电器拆掉,拆掉后就正常了,请问这个继电器是起到一个什么作用?是不是每个断路器里都有?有时设计上会加防跳回路,这个防跳是起什

么作用?

我们用的是南京四方的综合保护装置,断路器型号是3AH2这个继电器是防跳继电器,起防跳用的。

微机保护里面也有防跳功能,不过两个不能同时用,用了就

会出现类似问题。

可以在要货时说明不要加防跳,有的厂家防跳可以跳线短

掉。

防跳继电器的工作原理

35kV及以上的断路器,常采用“电气防跳”。此种防跳继电器有有两个线圈,一个是供启动用的电流线圈,接在跳闸回路中;另一个是自保持用的电压线圈,通过本身的常开触点(TBJ1)接入合闸回路。

当合闸过程中,如正遇永久性故障,因而保护出口继电器触点BCJ闭合,断路器跳闸,并起动防跳继电器TBJ。若控制开关手柄(合闸按钮)未复归或其触点被卡住,以及自

动合闸装置的合闸触点被卡住(没有分开),由于防跳继电器的触点TBJ1已经闭合,致使TBJ的电压线圈带电,起自保持的作用。另外,触点TBJ2业已断开,能避免合闸线圈HQ再次导通,也就防止了断路器发生“跳跃”。

触点TBJ3(与BCJ的触点并在一起)的作用,是为了防止保护出口继电器BCJ的触点被烧坏。因为自动跳闸时,BCJ的触点可能较辅助触点QF2(串在跳闸线圈TQ前的断路器常开辅助触点)先断开,以致被电弧烧坏。由于TBJ3与它并联,即使BCJ的触点先断,也不会被烧坏,而且还有跳闸出口存在。

防晃继电器分析及解决办法

预防电力系统晃电措施的分析 一、低压控制回路现状: 目前我厂低压电动机采用接触器控制。接触器有失压和欠压保护功能,在系统电压出现瞬间波动时,会造成接触器释放,使设备跳闸,影响生产。为了使系统电压波动时不引起设备跳闸,根据接触器工作原理,目前分析较好的方法是让接触器延时分断,躲过电力系统电压波动时间,采用具有延时单元接触器,在系统电压瞬间波动时接触器延时分断,来保证设备正常运行。 二、延时接触器原理: 该类型接触器采用直流电源控制,增加延时单元装置(适用于SC-E02接触器),断电后延时时间2-3秒接触器分断。需要改动二次控制回路,停止按钮从延时装置引出,正常操作停止设备不延时。 费用:每台接触器约150元延时单元装置约560元合计约710元。 三、二厂使用情况: 目前二厂采用该型号接触器对部分设备进行了改造,已改造6台同步机注油器。高压机4台低压机1台CO2机1台。2011年6月19日电力系统电压波动时,已采用该类型接触器的同步机和未采用该类型接触器的同步机均未跳闸,所以效果待验证。 四、建议我厂改造设备 1、对于同步机目前分析首先主要对注油器进行改造,油泵因为一开一备有自动投功能,应该不是影响跳机的主要原因,结合二厂的改造

分析,注油器是引起跳机的主要原因,目前二厂也属于摸索总结阶段,因此考虑首先对注油器进行改造。 2、对于变频器跳机主要有2个原因,一是控制变频器运行继电器欠压释放造成变频器停机,另一原因是变频器本身欠压保护动作跳闸,针对这两种原因,控制回路可以采用延时接触器或延时继电器,对于变频器本身欠压保护问题,通过修改变频器参数来实现,投入变频器掉电瞬间来电在启动功能,此项参数修改也需要摸索试验。 3、下步考虑,先对部分同步机进行改造,边改造边验证效果,待备件到位后开始实施。效果理想逐步完善推广。 4、如果全部改造需用费用分析预算如下,高低压机注油器回路、合成循环机注油器回路、中低压甲醇循环机注油器回路、CO2压缩机注油器回路、氨泵一甲泵控制回路、吹风气鼓风机控制回路。数量39台,约27690元。 五、深圳生产的防晃电接触器每台约1000多元,价格较高,可以购买两台试用,以便与常熟接触器使用情况进行对比。 三厂电管站 2011年7月28日

断路器防跳回路接线原理及应用

断路器防跳回路接线原理及应用 断路器是电力系统中重要的一次设备。目前国内生产厂家很多, 其灭弧原理、操作机构和控制回路也是多种多样, 各有特点, 尤其是防跳回路的设计更是千差万别。如何把控制回路和防跳回路很好地结合起来, 是工程技术人员最关心的问题。本文根据多年的现场经验和应用实践, 对目前比较流行的防跳回路接线和原理给予介绍, 并就应用中出现的问题进行探讨。 1防跳回路的作用 a1 防止因控制开关或自动装置的合闸接点未能及时返回(例如操作人员未松开手柄, 自动装置的合闸接点粘连) 而正好合闸在故障线路和设备上, 造成断路器连续合切现象。 b1 对于电流启动、电压保持式的电气防跳回路还有一项重要功能, 就是防止因跳闸回路的断路器辅助接点调整不当(变位过慢) , 造成保护出口接点先断弧而烧毁的现象。这种现象对于微机保护装置来说是不可容忍的, 而这一点却常被人们忽视。 2防跳回路的典型接线 常用防跳回路有串联式防跳回路、并联式防跳回路、弹簧储能式防跳回路、跳闸线圈辅助接点式防跳回路等。国产断路器多采用串联式防跳回路 断路器多采用并联式防跳回路。其中串联式防跳回路最合理, 应用也最广泛, 它除具有防跳功能外, 还具有防止保护出口接点断弧而烧毁的优点, 这也是应用微机保护装置不可缺少的技术条件。其他防跳回路只具有防止断路器跳跃的功能, 跳闸线圈辅助接点式防跳回路在执行防跳功能时, 跳闸线圈长期带电有可能烧毁。 2.1串联式防跳回路 所谓串联式防跳, 即防跳继电器TBJ 由电流启动, 该线圈串联在断路器的跳闸回路中。电压保持线圈与断路器的合闸线圈并联。当合闸到故障线路或设备上, 则继电保护动作, 保护出口接点TJ 闭合,此时防跳继电器TBJ 的电流线圈启动, 同时断路器跳闸, TBJ 的常闭接点断开合闸回路, 另一对常开接点接通电压线圈并保持。若此时SK (5—8) 或HJ 接点不能返回而继续发出合闸命令, 由于合闸回路已被断开, 断路器不能合闸, 从而达到防跳目的。另外,当TBJ 启动后, 其并联于保护出口的常开接点闭合并自保, 直到“逼迫”断路器常开辅助接点变位为止,有效地防止了保护出口接点断弧。串联式防跳回路,如图1 所示。

防跳回路的作用1

1 防跳回路的作用 a1 防止因控制开关或自动装置的合闸接点未能及时返回(例如操作人员未松开手柄, 自动装置的合闸接点粘连) 而正好合闸在故障线路和设备上, 造成断路器连续合切现象。 b1 对于电流启动、电压保持式的电气防跳回路还有一项重要功能, 就是防止因跳闸 回路的断路器辅助接点调整不当(变位过慢) , 造成保护出口接点先断弧而烧毁的现象。 这种现象对于微机保护装置来说是不可容忍的, 而这一点却常被人们忽视。 2 防跳回路的典型接线 常用防跳回路有串联式防跳回路、并联式防跳回路、弹簧储能式防跳回路、跳闸线圈辅助接点式防跳回路等。国产断路器多采用串联式防跳回路 断路器多采用并联式防跳回路。其中串联式防跳回路最合理, 应用也最广泛, 它除具有防跳功能外, 还具有防止保护出口接点断弧而烧毁的优点, 这也是 应用微机保护装置不可缺少的技术条件。其他防跳回路只具有防止断路器跳跃的功能, 跳闸线圈辅助接点式防跳回路在执行防跳功能时, 跳闸线圈长期带电有可能烧毁。 2.1 串联式防跳回路 所谓串联式防跳, 即防跳继电器TBJ 由电流启动, 该线圈串联在断路器的跳闸回路中。电压保持线圈与断路器的合闸线圈并联。当合闸到故障线路或 设备上, 则继电保护动作, 保护出口接点TJ 闭合,此时防跳继电器TBJ 的电流线圈 启动, 同时断路器跳闸, TBJ 的常闭接点断开合闸回路, 另一对常开接点接通电压线圈并保持。若此时SK (5—8) 或HJ 接点不能返回而继续发出合闸命令, 由于合闸回路已被断开, 断路器不能合闸, 从而达到防跳目的。另外,当TBJ 启动后, 其并联于保护出口的常 开接点闭合并自保, 直到“逼迫”断路器常开辅助接点变位为止,有效地防止了保护出口 接点断弧。串联式防跳回路,如图1 所示。 2.2 并联式防跳回路

防跳继电器

TBJ路器防跳原理[内容摘要]:断路器防跳回路的作用是防止接点粘连的情况下,跳、合闸命令同时施加到断路器得跳、合闸线圈上,造成断路器反复跳闸、合闸,损坏断路器。防跳回路的设计使断路器出现跳跃时,将断路器闭锁在跳闸位置。防跳回路分为操作箱中防跳回路和断路器中防跳回路,操作箱中的防跳回路与断路器中的防跳回路一般不能同时使用,如果同时使用,断路器中的防跳继电器可能会造成因“寄生”回路而自保持,无法返回。通过跳、合闸回路二次接线的改动来实现操作箱中防跳回路和断路器中的防跳回路之间的选择。关键词:防跳;跳闸位置;合闸位置;重合闸;拒动 1.基本原理: 1.1断路器防跳回路的作用是防止接点粘连的情况下,跳、合闸命令同时施加到断路器得跳、合闸线圈上,造成断路器反复跳闸、合闸,损坏断路器。防跳回路的设计使断路器出现跳跃时,将断路器闭锁在跳闸位置。图(1)图1接线为操作箱防跳回路原理图,其中TBJ是防跳继电器,当正常分、合闸时,对操作影响不大。但一旦发生合闸于故障线路,手合继电器SHJ来不及分开或粘连,或自动装置的合闸接点ZHJ粘连时,如果没有防跳继电器时,断路器会发生反复的跳闸、合闸,短时间内多次切断故障电流,这是不允许的。这种断路器的跳跃现象轻则对系统造成多次冲击,严重时可能使

断路器爆炸。接入防跳继电器 后,当断路器手动分闸或保护装置跳闸时,都有跳闸电流流过TBJ的电流线圈,这时合闸回路TBJ的常闭TBJ1接点分开,合闸回路不通,如果合闸信号没有复归,将通过TBJ的常开接点TBJ2使TBJ的电压线圈得电,使其自保持,直到合闸信号返回。这样TBJ就起到防止断路器反复分、合闸的作用。接于分闸回路的TBJ电流线圈,要求其在分闸时造成的压降要小,规程规定不能大于控制电源额定电压的5%,TBJ继电器的动作电流则不能大于分闸电流的50%,保证TBJ 在分闸过程中可靠动作。1.2在有些断路器中已经考虑了防跳回路,它一般是由电压型继电器来完成防跳功能的。图(2)如图2所示,K1为防跳继电器,当远方或断路器就地合闸时,断路器由分闸状态变为合闸状态,断路器S1常开接点“10、12”闭合,启动K1防跳继电器,K1防跳继电器常开接点“13、14”闭合,使K1防跳继电器自保持,K1防跳继电器常闭接点“21、22”断开,合闸回路不通。合闸信号不消失,防跳继电器不返回,这样K1就起到防止断路器反复分合闸的作用。1.3操作箱中的防跳回路与断路器中的防跳回路一般不能同时使用,如果同时使用,断路器中的防跳继电器可能会造成因“寄生”回路而自保持,无法返回。至于是拆除操作箱中的防跳回路,还是拆除断路器中的防跳

跳汰机司机操作规程(新编版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 跳汰机司机操作规程(新编版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

跳汰机司机操作规程(新编版) 1.须知: (1)跳汰机构造、性能、操作原理及其调整方法。 (2)洗煤系统的工艺流程及生产环节相互联系。 (3)生产计划及产品指标要求。 2.开机前的准备: (1)检查跳汰机及附属设备是否正常。 (2)开车前向有关岗位发出信号。 3.启动与运转: (1)接到有关岗位及回开机信号后,逐台启动设备,然后向有关岗位回开机信号,注意运转中有无异常现象。 (2)开机顺序:开动一、二段斗子提升机打开总水管阀门(小水门)冲水阀门开动风阀电机,初调小风门打开总风管蝶阀开动一二

段排料电机开动电振给煤机 打开手动排料阀六至最大位置。 (3)操作原则: 给料: ①要做到给料均匀(单位时间内给料量要均匀,沿整个筛面数量,粒度组成分布均匀); ②在原煤粒度大、矸石多、中煤含量多时,应减少给料量; ③在原煤粒度小,中煤量小,轻比重物含量多时应增加给料量。 用水: ①一般原则:一段给水大于二段,每段给水由入料向出料端递减,做到煤水交融,床层一段不堆,二段不空,呈鱼鳞片状波动前行; ②根据原煤性质调整用水:A:原煤中轻比重物含量多可选性较好时,水量小反之则大些;B:原煤中粒度大,矸石多时,水量大些,反之小些;C:给煤量大,应增加顶水,冲水尽量减少,以原煤能润湿不打团为宜。

新VD4断路器分合闸防跳技术介绍

Doc. Title Doc. No. 新VD4断路器分合闸脱扣器 技术介绍 1YH8 122 109 F Rev A Issued By Product Type Doc. Status Revision Page Company Department New VD4 Draft Released A 1 of 7 ABB Xiamen Switchgear Co., Ltd. TD [ ] [X ] Author 1st Approved By 2nd Approved By Distribution Huang Ming Bernard Su Bernard Su External _________________________________________________________________________________________________________________________ 一、 脱扣器原理简介 新VD4断路器所配的脱扣器为创新的安全型双线圈设计脱扣器,分合闸脱扣器完全相同。分合闸脱扣器皆可承受被长期通电而不会烧毁。分合闸脱扣器安装在脱扣器功能模块中,整个模块可以进行简单快速的更换,并同时保持断路器参数的稳定性。 以合闸脱扣器为例,新脱扣线圈的工作原理如下图所示: 图1 控制模块原理示意图 每个脱扣器包含有一个动作线圈(5-3端子间)和一个保持线圈(3-4端子间),并集成了一整套控制保护电路。动作线圈的额定功率为200W ,保持线圈的额定功率仅为5W 。 1. 在无合闸命令状态下,受IC 控制的电子开关M1和M2皆处于关断状态,动 作线圈和保持线圈都不被导通。 2. 如果脱扣器接受到的合闸命令小于设定的门槛电压,也就是低于60%的额定 二次工作电压时,IC 控制的电子开关M1和M2仍然不被导通,动作线圈和保持线圈中没有任何电流通过,脱扣器不动作。

洗煤厂跳汰机司机安全生产责任制

编号:SY-AQ-08104 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 洗煤厂跳汰机司机安全生产责 任制 Safety production responsibility system of jigger driver in Coal Preparation Plant

洗煤厂跳汰机司机安全生产责任制 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 1、在生产过程中要严格遵守国家有关安全生产的法律、法规、规章、标准和技术规范。 2、认真贯彻执行《矿山安全法》、《煤矿安全规程》、《洗煤厂安全规程》和上级的有关规定,并认真进行学习,根据制定的所辖安全实际防范措施进行实施,牢固树立“安全第一”的思想,严格按章作业。 3、严格执行本工种操作规程,严禁违章操作,严格遵守劳动纪律,拒绝违章指挥。 4、参加班前、班后会,及时对跳汰机存在问题提出主导性意见,制定本班跳汰机安全运行措施,并负责实施,同时认真做好记录。 5、及时联系班组维修人员对设备进行维护、保养和检修,保证设备安全运行。 6、熟悉本岗位跳汰机的工作原理、构造、性能、技术特征、零部件

的名称和作用,电动机、控制设备的性能和有关电气基础知识。7、熟练掌握本岗位设备的开、停车程序和操作方法。并具有检查、分析、防止和排除故障、进行自检自修的基本技能。 8、按规定及时认真如实填写各种记录,字迹要清晰工整,不得出格或漏填,做好交接班工作。 9、岗中用心排查存在的安全隐患,勤观察设备的运行状况,发现异常及时采取措施处理,杜绝“三违”现象。 这里填写您的公司名字 Fill In Your Business Name Here

浅谈断路器防跳回路原理及与保护操作箱防跳回路的配合

浅谈断路器防跳回路原理及与保护操作箱防跳回路的配合 发表时间:2016-12-07T16:17:39.137Z 来源:《电力设备》2016年第19期作者:郭健谢致进肖毅涛[导读] 防跳回路分为操作箱中防跳回路和断路器中防跳回路,操作箱中的防跳回路与断路器中的防跳回路一般不能同时使用。 (华北电力科学研究院(西安)有限公司陕西西安 710065)摘要:防跳回路分为操作箱中防跳回路和断路器中防跳回路,操作箱中的防跳回路与断路器中的防跳回路一般不能同时使用,如果同时使用,断路器中的防跳继电器可能会造成因“寄生”回路而自保持,无法返回。一般我们通过跳、合闸回路二次接线的改动来实现操作箱中防跳回路和断路器中的防跳回路之间的选择。保护操作箱的防跳设置与断路器本体的防跳设置如何正确合理的选择;如何避免故障发生 时,如何把控制回路和防跳回路很好地结合起来, 是技术人员关心的。本文对目前比较流行的防跳回路接线和原理给予介绍,并浅谈断路器内防跳回路和微机保护防跳回路两者共存的方式。 关键词:断路器操作箱防跳 1 防跳回路的作用 1断路器防跳回路的作用是防止接点粘连的情况下,跳、合闸命令同时施加到断路器得跳、合闸线圈上,造成断路器反复跳闸、合闸,损坏断路器。防跳回路的设计使断路器出现跳跃时,将断路器闭锁在跳闸位置。 2 对于电流启动、电压保持式的电气防跳回路还有一项重要功能, 就是防止因跳闸回路的断路器辅助接点调整不当(变位过慢) , 造成保护出口接点先断弧而烧毁的现象。这种现象对于保护操作箱来说是不可容忍的, 而这一点却常被人们忽视。 2防跳回路的典型接线 常用防跳回路有串联式防跳回路、并联式防跳回路、弹簧储能式防跳回路等。国产断路器多采用串联式防跳回路。其中串联式防跳回路最合理, 应用也最广泛, 它除具有防跳功能外, 还具有防止保护出口接点断弧而烧毁的优点, 这也是应用保护操作箱不可缺少的技术条件。其他防跳回路只具有防止断路器跳跃的功能, 跳闸线圈辅助接点式防跳回路在执行防跳功能时, 跳闸线圈长期带电有可能烧毁。 2.1 串联式防跳回路 所谓串联式防跳, 即防跳继电器TBJ 由电流启动, 该线圈串联在断路器的跳闸回路中。电压保持线圈与断路器的合闸线圈并联。当合闸到故障线路或设备上, 则继电保护动作, 保护出口接点TJ 闭合,此时防跳继电器TBJ 的电流线圈启动, 同时断路器跳闸, TBJ 的常闭接点断开合闸回路, 另一对常开接点接通电压线圈并保持。若此时SK (5—8) 或HJ 接点不能返回而继续发出合闸命令, 由于合闸回路已被断开, 断路器不能合闸, 从而达到防跳目的。另外,当TBJ 启动后, 其并联于保护出口的常开接点闭合并自保, 直到“逼迫”断路器常开辅助接点变位为止,有效地防止了保护出口接点断弧。串联式防跳回路,如图1 所示。 2.2并联式防跳回路 所谓并联式防跳, 即防跳继电器KO 的电压线圈并联在断路器的合闸回路上(如图2 所示)。例如一个持久的合闸命令存在时, 合闸整流桥输出经Y3, S2, S3, S1, KO (2—1) 接通。断路器合闸后, 并联在合闸回路的辅助接点S3′闭合, 启动防跳继电器KO , KO 接点即由2—1 位置切换到4—1 位置, 断开合闸回路并保持。若此时线路或设备故障, 继电保护动作跳闸。但由于合闸回路已可靠断开, 从而防止了开关跳跃。 2.3 弹簧储能式防跳回路 如图3, 当一个持久合闸命令到来时, 合闸电流经SK 或HJ 通过S3, K1, K1, S2, S1, YA 1 接通开关合闸。合闸后弹簧机构开始储能, 并联在合闸回路的弹簧储能辅助开关S3 常闭点接通防跳继电器K1, K1 的常开点自保, 常闭点断开合闸回路。若此时线路或设备故障, 继电保护动作跳闸, 由于合闸回路已可靠断开, 有效地防止了开关跳跃。

常见透平机械工作原理图解

常见透平机械工作原理图解 风机包括通风机、透平鼓风机、罗茨鼓风机和透平压缩机,详细划分为离心式压缩机、轴流式压缩机、离心式鼓风机、罗茨鼓风机、离心式通风机、轴流式通风机和叶氏鼓风机等7大类 一、离心式压缩机 离心式压缩机是一种叶片旋转式压缩机(即透平式压缩机)。在离心式压缩机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。早期,由于这种压缩机只适于低,中压力、大流量的场合,而不为人们所注意。由于化学工业的发展,各种大型化工厂,炼油厂的建立,离心式压缩机就成为压缩和输送化工生产中各种气体的关键机器,而占有极其重要的地位。随着气体动力学研究的成就使离心压缩机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心压缩机向高压力,宽流量范围发展的一系列问题,使离心式压缩机的应用范围大为扩展,以致在很多场合可取代往复压缩机,而大大地扩大了应用范围。

有些化工基础原料,如丙烯、乙烯、丁二烯、苯等,可加工成塑料、纤维、橡胶等重要化工产品。在生产这种基础原料的石油化工厂中,离心式压缩机也占有重要地位,是关键设备之一。除此之外,其他如石油精炼,制冷等行业中,离心式压缩机也是极为关键的设备。我国在五十年代已能制造离心式压缩机,从七十年代初开始又以石油化工厂,大型化肥厂为主,引进了一系列高性能的中、高压力的离心式压缩机,取得了丰富的使用经验,并在对引进技术进行消化、吸收的基础上大大增强了自己的研究、设计和制造能力。 性能特点: 优点: 离心式压缩机之所以能获得这样广泛的应用,主要是比活塞式压缩机有以下一些优点。 1、离心式压缩机的气量大,结构简单紧凑,重量轻,机组尺寸小,占地面积小。 2、运转平衡,操作可靠,运转率高,摩擦件少,因之备件需用量少,维护费用及人员少。 3、在化工流程中,离心式压缩机对化工介质可以做到绝对无油的压缩过程。 4、离心式压缩机为一种回转运动的机器,它适宜于工业汽轮机或燃汽轮机直接拖动。对一般大型化工厂,常用副产蒸汽驱动工业汽轮机作动力,为热能综合利用提供了可能。但是,离心式压缩机也还存在一些缺点。 缺点: 1、离心式压缩机还不适用于气量太小及压比过高的场合。 2、离心式压缩机的稳定工况区较窄,其气量调节虽较方便,但经济性较差。 3、离心式压缩机效率一般比活塞式压缩机低。 二、轴流式压缩机 轴流式压缩机是属于一种大型的空气压缩机,最大的功率可以达到 150000KW,排气量是20000m3每分钟,它的压缩机能效比可以达到百分之90左右,比离心机要节能一些。它是由3大部分组成,一是以转轴为主体的可以旋转的部分简称转子,二是以机壳和装在机壳上的静止部件为主体的简称定子(静子),三是壳体、密封体、轴承箱、调节机构、联轴器、底座和控制保护等组成。轴流式压缩机也属于透平式或速度式压缩机,炼油厂多选用作催化裂化装置的主风机。 轴流压缩机的结构简图

防跳回路常见故障分析

防跳回路常见故障分析 [摘要] 在继电保护工作中,二次回路的完好是系统安全稳定运行的保证,而二次回路故障则是继保工作人员经常遇到的问题。本文结合继保人员在日常工作中碰到的实际问题,分析探讨如何处理二次回路中防跳回路故障的一些基本思路及方法。 1 防跳回路动作原理及常见故障 1.1动作原理 断路器跳跃可以分为两种情况: 1.1.1控制回路没有故障,由于开关机构或辅助接点接触不良,开关触点卡住等原因。控制回路确有故障,开关合于故障点,保护动作使开关跳闸,此时KK开关尚未返回(或自动装置接点卡住等),即经KK开关5、8触点(或接点)再次发出合闸脉冲使开关合闸,将造成扩大故障损坏设备的后果。 装设防跳装置就是为了避免上述问题的发生。当保护动作跳闸时,KK开关5、8虽有合闸脉冲发出,但由于开关跳闸过程中防跳继电器(TBJ)启动,合闸脉冲经KK开关5、8接点TBJ常开接点使TBJ电压线圈保持,断开TBJ常闭接点即断开了合闸回路。 1.2常见故障 1.2.1在某变电所一10KV线路保护整组试验过程中,发现开关多次出现跳跃现象(重合闸压板已退出),且跳跃过程中防跳继电器动作但没有保持。处理此类问题时,首先应想到是否是防跳装置出现故障。校验防跳继电器后显示继电器工作正常,说明二次回路接线可能有问题。检查二次回路后发现KK开关⑤-⑧接点粘连,且防跳保持回路错误地接至图1中虚线1所示位置,TBJ电流线圈动作后其电压线圈不能自保持,造成防跳装置失灵,开关多次分合闸。正确的接线如图中实线1所示。 图1 1.2.2 TBJ电流线圈和电压线圈在运行过程中,因长时间通电,经常会造成线圈之间的绝缘降低甚至击穿,造成设备运行故障。如某变电所10KV一线路故障跳闸后,开关没有进行重合闸。现场处理时,一般应检查合闸回路本身有无故障,如合闸接触器(HC)是否烧坏,开关辅助接点接触是否良好,或重合闸回路工作是否正常,如重合闸继电器中的时间元件有没有启动等。重合闸装置试验后显示正确动作,合闸回路及开关辅助接点等也没有损坏的迹象,但二次回路放上控制熔丝后用万用表电压挡测量,合闸回路中TBJ常闭接点保持打开。测量TBJ电流线圈和电压线圈之间的绝缘电阻发现绝缘已击穿(如图1中虚线2所示)。由于TBJ电流线圈和电压线圈之间的绝缘击穿,TBJ的电压线圈(正电源、KK开关的13-16接点、HD、TBJ的电压线圈、负电源)动作,使TBJ常闭接点保持打开,合闸回路被闭锁,当事故跳闸或手动分闸后开关不能合闸。更换新的TBJ继电器后上述故障现象即消失。

交流接触器防晃电方案对比研究

交流接触器防晃电方案对比研究 姜万东1周海涛1杜佳2 (1. 江苏国网自控科技股份有限公司,江苏昆山 215311; 2. 国网辽宁电力阜新供电公司,辽宁阜新 123000) 摘要本文介绍了交流接触器防晃电的两种解决方案,即失压再起动方案和晃电保持方案。采用定性分析的方法,分析了母线残压情况、电动机残压情况以及电压恢复时是否存在直接起动和反相位合闸的问题,并指出采用接触器晃电保持方案和快切装置相结合的方式,既保证了快速恢复供电,又使系统冲击电流最小。 关键词:防晃电;交流接触器;失压再起;防晃电保持 The Comparative Study on the Anti-electricity Shaking Scheme of AC Contactor Jiang Wandong1 Zhou Haitao1Du Jia2 (1. Jiangsu State Grid Automation Technology Co., Ltd, Kunshan, Jiangsu 215311; 2. Liaoning Power Grid Fuxin Power Supply, Fuxin, Liaoning 123000) Abstract This paper introduces two solutions of anti-electricity shaking for AC contactor: lost voltage restart scheme and keep contactor not release scheme. In using the method of qualitative analysis, this paper analyzes the residual voltage of the bus, the residual voltage of the motor and the problem of whether there is a direct restart and anti-phase switching after the voltage recovery, and points out that the combination of keeping contactor not released scheme and quick switching device ensure that the power supply which can be restored quickly, and the impulse current of the system being reduced to minimum. Keywords:anti-electricity shaking; AC contactor; lost voltage restart; keep contactor not released 电网因雷击、短路、重合闸、同一段设备起动或故障以及其他原因造成电网电压短时大幅度波动、短时中断数秒的现象俗称“晃电”[1-3]。对于交流接触器,当系统电压发生晃电时,若电压在某一瞬间低于接触器线圈的释放电压,则使低压马达停止运行进而导致用户的严重损失[4-5]。文献[6]也指出接触器对电压暂降敏感度影响因素都很多。目前交流接触器的防晃电方案主要有晃电后接触器再起、晃电接触器保持、采用防晃电交流接触器和采用延时分批再起等方案。文献[7]指出采用专门的防晃电交流接触器不适于防晃电要求较高的场合,而采用分批延时再起动不利于快速的恢复供电,只适用于晃电持续时间较长电动机停转时分批起动电动机(按工艺分批起动),避免造成对系统电压的冲击。 综上所述,在目前交流接触器的防晃电方案中,普遍采用的是晃电后再起接触器和晃电时接触器保持不释放方案(防晃时间一般设定500~1000ms)。应用中存在着对两种方案的系统电压情况、电动机残压情况以及电压恢复时是否系统存在冲击电流等认识较为模糊的问题。本文采用定性分析的方式,来分析晃电时两种方案接触器释放或保持吸合对母线残压、电机能量交互的影响情况,得出分析对比结论,并提出应用建议。 1接触器防晃电的两种方案 交流接触器防晃电再起动方案如图1(a)所示。当系统发生晃电时,电压降低使接触器释放;若电压在再起装置设定的防晃电时间内恢复,则再起装置QD继电器接点闭合,使接触器重新吸合,保证了供电回路继续工作。其中:端子3、8为装置提供

断路器防跳回路接线原理及其应用

断路器防跳回路接线原理及其应用来源:北极星电力论文网时间:2009-06-05 15:41 阅读:8397次 2 断路器是电力系统中重要的一次设备。目前国内生产厂家很多, 其灭弧原理、操作机构和控制回路也是多种多样, 各有特点, 尤其是防跳回路的设计更是千差万别。如何把控制回路和防跳回路很好地结合起来, 是工程技术人员最关心的问题。本文根据多年的现场经验和应用实践, 对目前比较流行的防跳回路接线和原理给予介绍, 并就应用中出现的问题进行探讨。 1 防跳回路的作用 a1 防止因控制开关或自动装置的合闸接点未能及时返回(例如操作人员未松开手柄, 自动装置的合闸接点粘连) 而正好合闸在故障线路和设备上, 造成断路器连续合切现象。 b1 对于电流启动、电压保持式的电气防跳回路还有一项重要功能, 就是防止因跳闸回路的断路器辅助接点调整不当(变位过慢) , 造成保护出口接点先断弧而烧毁的现象。这种现象对于微机保护装置来说是不可容忍的, 而这一点却常被人们忽视。 2 防跳回路的典型接线 常用防跳回路有串联式防跳回路、并联式防跳回路、弹簧储能式防跳回路、跳闸线圈辅助接点式防跳回路等。国产断路器多采用串联式防跳回路 断路器多采用并联式防跳回路。其中串联式防跳回路最合理, 应用也最广泛, 它除具有防跳功能外, 还具有防止保护出口接点断弧而烧毁的优点, 这也是 应用微机保护装置不可缺少的技术条件。其他防跳回路只具有防止断路器跳跃的功能, 跳闸线圈辅助接点式防跳回路在执行防跳功能时, 跳闸线圈长期带电有可能烧毁。 2.1 串联式防跳回路 所谓串联式防跳, 即防跳继电器TBJ 由电流启动, 该线圈串联在断路器的跳闸回路中。电压保持线圈与断路器的合闸线圈并联。当合闸到故障线路或 设备上, 则继电保护动作, 保护出口接点TJ 闭合,此时防跳继电器TBJ 的电流线圈启动, 同时断路器跳闸, TBJ 的常闭接点断开合闸回路, 另一对常开接点接通电压线圈并保持。若此时SK (5—8) 或HJ 接点不能返回而继续发出合闸命令, 由于合闸回路已被断开, 断路器不能合闸, 从而达到防跳目的。另外,当TBJ 启动后, 其并联于保护出口的常开接点

交流接触器介绍

交流接触器的介绍 交流接触器的主要工作是接通和断开用电器的电路。之所以用两种触头是为了减少因通断瞬间产生电弧的损害,延长主触头的寿命。辅助触头更换比较容易,价格也便宜。(主辅触头分别动作的时间差及小,故不会影响用电器工作。 如:吸合时,辅助触头先吸合通过小电流,主触头吸合时就不会产生较大的电弧了。断开时主触头先断开,这时辅助触头还有电流流过,在主辅头断开时就不会有产生较大的电弧了。 1、交流接触器的工作原理: 当线圈通电时,静铁芯产生电磁吸力,将动铁芯吸合,由于触头系统是与动铁芯联动的,因此动铁芯带动三条动触片同时运行,触点闭合,从而接通电源。当线圈断电时,吸力消失, 动铁芯联动部分依靠弹簧的反作用力而分离,使主触头断开,切断电源。 2、交流接触器的选择: (1)持续运行的设备。接触器按67-75%算.即100A的交流接触器,只能控制最大额定电流是67-75A以下的设备。 (2)间断运行的设备。接触器按80%算.即100A的交流接触器,只能控制最大额定电流是80A以下的设备。 (3)反复短时工作的设备。接触器按116-120%算。即100A的交流接触器,只能控制最大额定电流是116-120A以下的设备。

3、交流接触器的接法: 一: 一般三相接触器一共有8个点,三路输入,三路输出,还有是控制点两个。输出和输入是对应的,很容易能看出来。如果要加自锁的话,则还需要从输出点的一个端子将线接到控制点上面。 二: 首先应该知道交流接触器的原理。他是用外界电源来加在线圈上,产生电磁场。加电吸合,断电后接触点就断开。知道原理后,你应该弄清楚外加电源的接点,也就是线圈的两个接点,一般在接触器的下部,并且各在一边。其他的几路输入和输出一般在上部,一看就知道。还要注意外加电源的电压是多少(220V或 380V),一般都标得有。并且注意接触点是常闭还是常开。如果有自锁控制,根据原理理一下线路就可以了。 4、交流接触器的基本分类 交流接触器又可分为电磁式,永磁式和真空式三种。 常用的交流接触器CJ10,CJ40,CJ12,CJ20和引进的CJX,3TB,B等系列。 电磁式 结构 接触器主要由电磁系统、触点系统、灭弧系统及其它部分组成。 ①电磁系统:电磁系统包括电磁线圈和铁心,是接触器的重要组成部分,依靠它带动触点的闭合与断开。 ②触点系统:触点是接触器的执行部分,包括主触点和辅助触点。主触点的作用是接通

浅谈断路器机构防跳与保护防跳解除方法

龙源期刊网 https://www.doczj.com/doc/6611874940.html, 浅谈断路器机构防跳与保护防跳解除方法 作者:李明 来源:《中国科技博览》2016年第03期 [摘要]断路器的保护防跳和机构防跳在处理不当的情况下可能存在着一定的问题,本文以一次断路器位置指示灯异常为例,介绍了保护防跳和断路器机构防跳的工作原理及作用,并对目前工作中存在的有关防跳回路的应用方式进行了分析,同时给出了有关防跳回路的一种解除方法从而解决了工程实际问题。 [关键词]断路器;机构防跳;保护防跳 中图分类号:TM561 文献标识码:A 文章编号:1009-914X(2016)03-0277-01 防跳回路在电力系统中的应用非常广泛,在断路器合闸过程中,如果控制开关未复归或接点粘死,此时若遇系统永久性故障,继电保护装置动作于断路器跳闸,此时断路器发生再次合闸、跳闸,多次重复动作的现象,即发生断路器跳跃现象。断路器跳跃现象,会造成断路器开断能力下降,致使断路器损坏,严重情况甚至会导致断路器爆炸,而设置断路器防跳回路能够避免断路器跳跃现象的发生,从而延长电力设备使用寿命。 根据继电保护“六统一”有关要求,目前在工程实际中选择断路器机构防跳,取消保护防跳,但由于防跳回路的取消方式各地不尽相同,会造成产生寄生回路或者失去防跳功能,因此在工程实际中迫切需要正确取舍防跳的方法。本文以一起在工作现场中发生的防跳回路引起的异常现象为例,详细分析了防跳回路基本工作原理,进而总结出取消防跳回路的基本方法。 1 异常现象 某变电站110kV 线路保护采用国电南自PSL-621C 装置,断路器采用杭州西门子的3AP1-FG 型号开关。在保护更换二次安装完毕后,我们在进行断路器分合实验过程中,在测控屏上控制开关操作合时,断路器可靠合闸,但测控屏上的断路器合闸位置指示“红灯”和分闸位置指示“绿灯”同时点亮,而断路器实际在合闸位置。 2 防跳回路防跳原理、区别及异常分析 目前断路器防跳回路的设置存在着两种方式,一种在继电保护装置操作箱中设置,一般称之为操作箱防跳或保护防跳,由二次设备厂家设计(“六统一”出台以前);二是断路器机构防跳,由一次设备厂家在开关机构控制回路中设计。两种防跳回路设计的目的都是防止断路器出现多次跳合现象,但在回路的具体实现方式及作用上有所区别,下面分别以国电PSL-621C 装置中的保护防跳和杭州西门的3AP1-FG 断路器机构防跳为例进行阐述。

跳汰机司机操作规程

仅供参考[整理] 安全管理文书 跳汰机司机操作规程 日期:__________________ 单位:__________________ 第1 页共5 页

跳汰机司机操作规程 1.须知: (1)跳汰机构造、性能、操作原理及其调整方法。 (2)洗煤系统的工艺流程及生产环节相互联系。 (3)生产计划及产品指标要求。 2.开机前的准备: (1)检查跳汰机及附属设备是否正常。 (2)开车前向有关岗位发出信号。 3.启动与运转: (1)接到有关岗位及回开机信号后,逐台启动设备,然后向有关岗位回开机信号,注意运转中有无异常现象。 (2)开机顺序:开动一、二段斗子提升机 打开总水管阀门(小水门) 冲水阀门 开动风阀电机,初调小风门 打开总风管蝶阀 开动一二段排料电机 开动电振给煤机 打开手动排料阀六至最大位置。 (3)操作原则: 给料: ①要做到给料均匀(单位时间内给料量要均匀,沿整个筛面数量,粒度组成分布均匀); ②在原煤粒度大、矸石多、中煤含量多时,应减少给料量; 第 2 页共 5 页

③在原煤粒度小,中煤量小,轻比重物含量多时应增加给料量。 用水: ①一般原则:一段给水大于二段,每段给水由入料向出料端递减,做到煤水交融,床层一段不堆,二段不空,呈鱼鳞片状波动前行; ②根据原煤性质调整用水:A:原煤中轻比重物含量多可选性较好时,水量小反之则大些;B:原煤中粒度大,矸石多时,水量大些,反之小些;C:给煤量大,应增加顶水,冲水尽量减少,以原煤能润湿不打团为宜。 ③根据原煤质量调整用水:A:第一段细粒精煤透筛损失大及矸石+1.8重物含量小时,增加一段顶水;B:细粒中煤和矸石污染精煤煤重时,应减少顶水;C:在保证产品规定数、质量前提下,要尽量减少用水,为其它工序创造良好条件。调风: ①一般原则:给风量一段大二段,靠近排料隔室给风要小,给风量要保证上升期床层跳起松动,下降期床层紧密有吸啜力; ②根据原煤情况调整风量:A:原煤含矸石多、粒度大,风量要大,反之要小;B:原煤含轻比重物少,中间物多,风量要大,反之要小;C:给料增加,风量也要增加; ③根据产品情况调节风量:A:矸石中+1.8比重物含量少,应加大一段风量;B:矸石、中煤中精煤透筛损失大时,应减少风量;C:细粒矸石和中煤污染中煤,精煤时应加大用风量。 4.排料和维护: (1)正常床层的要求是:整个跳汰箱内床层厚度均匀下降期吸啜力要强,床层要紧密,上升和膨胀期游动性要好,床层要松散,用螺杆试探,感觉层次清楚,从上到下表面水层—精煤水层—混合层—矸石(或 第 3 页共 5 页

继电保护流程详解

变压器继电保护原理图动作过程讲解 目录: 一、变压器的保护方式 二、断路器在分闸状态,用控制开关合闸过程 三、断路器在合闸状态,用控制开关分闸过程 四、断路器的“试合闸”动作过程 五、断路器合闸到永久性短路故障点,变压器保护动作过程及跳跃闭锁继电器的“防跳”功能分析 六、断路器在合闸工作状态,变压器电流速断保护范围内发生故障,保护动作过程分析 七、断路器在合闸工作状态,变压器过电流保护范围内发生故障,保护动作过程分析 八、断路器在合闸工作状态,变压器轻瓦斯信号动作过程 九、断路器在合闸工作状态,变压器重瓦斯保护动作过程 十、断路器在合闸工作状态,变压器温度信号动作过程

十一、断路器在合闸工作状态,变压器单相接地保护动作过程 十二、断路器在合闸工作状态,断路器跳闸回路断线监视功能分析 十三、断路器在合闸工作状态,变压器电流测量回路工作原理分析 过程讲解: 一、变压器的保护方式 1.对于6~10kV车间变电所的主变压器,通常装设带时限的过电流保护,如果过电流保护动作时间大于0.5~0.7s时,还应装设电流速断保护。 2.瓦斯保护容量在800kV.A及其以上的油浸式变压器应装设瓦斯保护,作为变压器油箱内部故障和油面降低的主保护。 3.电流速断保护它与瓦斯保护相互配合,可快速切除变压器高压侧及其内部的各种故障,均为变压器的主保护。 4.过电流保护是为了防止变压器外部短路引起的过电流和作为变压器主保护的后备保护而装设的继电保护装置。 5.温度保护作为变压器油温升高和冷却系统工作不良的保护装置。 6.单相接地保护由零序电流互感器及与之连接的电流继电器构成。作为变压器高压侧出现单相接地故障的保护。 二、断路器在分闸状态,用控制开关合闸过程 1.当断路器QF在分闸位置,控制开关SA在“跳闸后”位置。“工作位置”行程开关2SQ 触点已闭合,控制开关SA(11,10)触点接通,常闭辅助触点QF1闭合,此时,绿灯GN

防跳回路动作原理及常见故障

1 防跳回路动作原理及常见故障 1.1动作原理 断路器跳跃可以分为两种情况: 1.1.1控制回路没有故障,由于开关机构或辅助接点接触不良,开关触点卡住等原因。 控制回路确有故障,开关合于故障点,保护动作使开关跳闸,此时KK开关尚未返回(或自动装置接点卡住等),即经KK开关5、8触点(或接点)再次发出合闸脉冲使开关合闸,将造成扩大故障损坏设备的后果。 装设防跳装置就是为了避免上述问题的发生。当保护动作跳闸时,KK开关5、8虽有合闸脉冲发出,但由于开关跳闸过程中防跳继电器(TBJ)启动,合闸脉冲经KK开关5、8接点TBJ常开接点使TBJ电压线圈保持,断开TBJ常闭接点即断开了合闸回路。 1.2常见故障 1.2.1在某变电所一10KV线路保护整组试验过程中,发现开关多次出现跳跃现象(重合闸压板已退出),且跳跃过程中防跳继电器动作但没有保持。处理此类问题时,首先应想到是否是防跳装置出现故障。校验防跳继电器后显示继电器工作正常,说明二次回路接线可能有问题。检查二次回路后发现KK开关⑤-⑧接点粘连,且防跳保持回路错误地接至图1中虚线1所示位置,TBJ电流线圈动作后其电压线圈不能自保持,造成防跳装置失灵,开关多次分合闸。正确的接线如图中实线1所示。 图1 1.2.2 TBJ电流线圈和电压线圈在运行过程中,因长时间通电,经常会造成线圈之间的绝缘降低甚至击穿,造成设备运行故障。如某变电所10KV一线路故障跳闸后,开关没有进行重合闸。现场处理时,一般应检查合闸回路本身有无故障,如合闸接触器(HC)是否烧坏,开关辅助接点接触是否良好,或重合闸回路工作是否正常,如重合闸继电器中的时间元件有没有启动等。重合闸装置试验后显示正确动作,合闸回路及开关辅助接点等也没有损坏的迹象,但二次回路放上控制熔丝后用万用表电压挡测量,合闸回路中TBJ常闭接点保持打开。测量TBJ电流线圈和电压线圈之间的绝缘电阻发现绝缘已击穿(如图1中虚线2所示)。

最新变压器继电保护原理图动作过程讲解

变压器继电保护原理图动作过程讲解

变压器继电保护原理图动作过程讲解目录: 一、变压器的保护方式 二、断路器在分闸状态,用控制开关合闸过程 三、断路器在合闸状态,用控制开关分闸过程 四、断路器的“试合闸”动作过程 五、断路器合闸到永久性短路故障点,变压器保护动作过程及跳跃闭锁继电器的“防跳”功能分析 六、断路器在合闸工作状态,变压器电流速断保护范围内发生故障,保护动作过程分析 七、断路器在合闸工作状态,变压器过电流保护范围内发生故障,保护动作过程分析 八、断路器在合闸工作状态,变压器轻瓦斯信号动作过程 九、断路器在合闸工作状态,变压器重瓦斯保护动作过程 十、断路器在合闸工作状态,变压器温度信号动作过程 十一、断路器在合闸工作状态,变压器单相接地保护动作过程 十二、断路器在合闸工作状态,断路器跳闸回路断线监视功能分析 十三、断路器在合闸工作状态,变压器电流测量回路工作原理分析 一、变压器的保护方式 1.对于6~10kV车间变电所的主变压器,通常装设带时限的过电流保护,如果过电流保护动作时间大于0.5~0.7s时,还应装设电流速断保护。

2.瓦斯保护容量在800kV.A及其以上的油浸式变压器应装设瓦斯保护,作为变压器油箱内部故障和油面降低的主保护。 3.电流速断保护它与瓦斯保护相互配合,可快速切除变压器高压侧及其内部的各种故障,均为变压器的主保护。 4.过电流保护是为了防止变压器外部短路引起的过电流和作为变压器主保护的后备保护而装设的继电保护装置。 5.温度保护作为变压器油温升高和冷却系统工作不良的保护装置。 6.单相接地保护由零序电流互感器及与之连接的电流继电器构成。作为变压器高压侧出现单相接地故障的保护。 二、断路器在分闸状态,用控制开关合闸过程 1.当断路器QF在分闸位置,控制开关SA在“跳闸后”位置。“工作位置”行程开关2SQ触点已闭合,控制开关SA(11,10)触点接通,常闭辅助触点QF1闭合,此时,绿灯GN接通控制小母线WC而亮平光。 电流路径:WC+→1FU→SA11-10→GN→2SQ→QF1→KO→2FU→WC- 2.控制开关SA切至“预备合闸”位置时: 其一,控制开关SA(9,10)触点接通,SA(11,10)触点断开,绿灯GN接通闪光小母线WF,断路器位置和控制开关位置不对应,绿灯GN闪光; 电流路径:WF+→SA9-10→GN→2SQ→QF1→KO→2FU→WC- 其二,控制开关SA(1,3)触点接通,为“事故跳闸”音响信号接通做准备。 3.控制开关SA切至“合闸”位置时:

相关主题
文本预览
相关文档 最新文档