当前位置:文档之家› 高中数学解三角形课件

高中数学解三角形课件

高中数学解三角形课件
高中数学解三角形课件

解三角形

(数学5必修)第一章:解三角形

[基础训练A 组]

一、选择题

1.在△ABC 中,若0

30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-

2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )

A .A sin

B .A cos

C .A tan

D .

A

tan 1

3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )

A .直角三角形

B .锐角三角形

C .钝角三角形

D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )

A .2

B .

2

3

C .3

D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )

A .006030或

B .006045或

C .0060120或

D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( )

A .090

B .0120

C .0135

D .0150

二、填空题

1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。

2.在△ABC 中,若=++=A c bc b a 则,2

22_________。

3.在△ABC 中,若====a C B b 则,135,30,20

0_________。

4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。 三、解答题

1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么

2.在△ABC 中,求证:

)cos cos (a

A b

B c a b b a -=-

3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。

4.在△ABC 中,设,3

,2π

=-=+C A b c a 求B sin 的值。

(数学5必修)第一章:解三角形

[综合训练B 组] 一、选择题

1.在△ABC 中,::1:2:3A B C =,则::a b c 等于( )

A .1:2:3

B .3:2:1

C .2

D .2 2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .大于零 B .小于零 C .等于零 D .不能确定 3.在△ABC 中,若B A 2=,则a 等于( )

A .A b sin 2

B .A b cos 2

C .B b sin 2

D .B b cos 2

4.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( ) A .直角三角形 B .等边三角形 C .不能确定 D .等腰三角形 5.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( ) A .090 B .060 C .0135 D .0150

6.在△ABC 中,若14

13

cos ,8,7=

==C b a ,则最大角的余弦是( ) A .51- B .61- C .7

1- D .81-

7.在△ABC 中,若tan 2A B a b

a b

--=

+,则△ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形

二、填空题

1.若在△ABC 中,0

60,1,ABC A b S ?∠==则

C

B A c

b a sin sin sin ++++=_______。

2.若,A B 是锐角三角形的两内角,则B A tan tan _____1(填>或<)。 3.在△ABC 中,若=+=C B C B A tan tan ,cos cos 2sin 则_________。 4.在△ABC 中,若,12,10,9===c b a 则△ABC 的形状是_________。

5.在△ABC 中,若=+=

==

A c b a 则2

2

6,2,3_________。 6.在锐角△ABC 中,若2,3a b ==,则边长c 的取值范围是_________。

三、解答题

1. 在△ABC 中,0

120,,ABC A c b a S =>=V ,求c b ,。

2. 在锐角△ABC 中,求证:1tan tan tan >??C B A 。

3. 在△ABC 中,求证:2

cos 2cos 2cos 4sin sin sin C B A C B A =++。

4. 在△ABC 中,若0120=+B A ,则求证:

1=+++c

a b c b a 。

5.在△ABC 中,若2

23cos cos 222

C A b

a c +=

,则求证:2a c b +=

(数学5必修)第一章:解三角形

[提高训练C 组] 一、选择题

1.A 为△ABC 的内角,则A A cos sin +的取值范围是( ) A .)2,2( B .)2,2(- C .]2,1(- D .]2,2[-

2.在△ABC 中,若,900

=C 则三边的比

c

b

a +等于( ) A .2cos 2B A + B .2cos 2B A - C .2

sin 2B A + D .2sin 2B

A -

3.在△ABC 中,若8,3,7===c b a ,则其面积等于( )

A .12

B .2

21

C .28

D .36

4.在△ABC 中,090C ∠=,00450<

A .sin cos A A >

B .sin cos B A >

C .sin cos A B >

D .sin cos B B >

5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( ) A .090 B .060 C .0120 D .0150

6.在△ABC 中,若2

2

tan tan b a B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形 C .不能确定 D .等腰三角形

二、填空题

1.在△ABC 中,若,sin sin B A >则A 一定大于B ,对吗填_________(对或错) 2.在△ABC 中,若,1cos cos cos 2

2

2

=++C B A 则△ABC 的形状是______________。 3.在△ABC 中,∠C 是钝角,设,cos cos ,sin sin ,sin B A z B A y C x +=+== 则z y x ,,的大小关系是___________________________。 4.在△ABC 中,若b c a 2=+,则=+

-+C A C A C A sin sin 3

1

cos cos cos cos ______。 5.在△ABC 中,若,tan lg tan lg tan lg 2C A B +=则B 的取值范围是_______________。

6.在△ABC 中,若ac b =2

,则B B C A 2cos cos )cos(++-的值是_________。

三、解答题

)sin()()sin()(2

2

2

2

B A b a B A b a +-=-+

2. 如果△ABC 内接于半径为R 的圆,且,sin )2()sin (sin 22

2B b a C A R -=-

求△ABC 的面积的最大值。

3. 已知△ABC 的三边c b a >>且2

,2π

=-=+C A b c a ,求::a b c

4. 在△ABC 中,若()()3a b c a b c ac ++-+=,且tan tan 3A C +=+AB 边上的高为,,A B C 的大

小与边,,a b c 的长

(数学5必修)第一章 [基础训练A 组]

一、选择题

00tan 30,tan 302b

b a

c b c b a

=====-= 0,sin 0A A π<<>

cos sin()sin ,,22A A B A B ππ=->-都是锐角,则,,222

A B A B C πππ

->+<>

作出图形

01

2sin ,sin 2sin sin ,sin ,302

b a B B A B A A ===

=或0150 设中间角为θ,则22200005871

cos ,60,180601202582

θθ+-=

==-=??为所求 二、填空题 1.12 11sin sin sin cos sin 222

A B A A A ==≤ 2.0

120 22201cos ,12022b c a A A bc +-=

=-=

3.26- 0

0sin 15,,4sin 4sin154sin sin sin a b b A A a A A B B ====== 4. 0120 a ∶b ∶c =sin A ∶sin B ∶sin C =7∶8∶13,

令7,8,13a k b k c k === 22201

cos ,12022

a b c C C ab +-=

=-= 5. 4 ,,sin sin sin sin sin sin AC BC AB AC BC AB

B A

C B A C

+===+AC BC +

sin )cos

22

A B A B

A B +-=+= max 4cos 4,()42

A B

AC BC -=≤+=

三、解答题

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+=

sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+=

cos 0A =或cos 0B =,得2

A π

=

或2

B π

=

所以△ABC 是直角三角形。

2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2

22-+=代入右边

得右边22222222

22()222a c b b c a a b c abc abc ab +-+--=-=

22a b a b ab b a -==-=左边,

∴)cos cos (A

B c b a -=-

3.证明:∵△ABC 是锐角三角形,∴,2

A B π

+>即

02

2

A B π

π

>>

->

∴sin sin(

)2

A B π

>-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++

4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222

A C A C

B B

+-=,

∴1sin cos 222B A C -==,而0,22

B π

<<

∴cos 2B =

∴sin 2sin cos 222B B B ===8

39

参考答案(数学5必修)第一章 [综合训练B 组]

一、选择题

12

,,,::sin :sin :sin :263222

A B C a b c A B C πππ====== ,A B A B ππ+<<-,且,A B π-都是锐角,sin sin()sin A B B π<-= sin sin 22sin cos ,2cos A B B B a b B ===

sin sin lg lg 2,2,sin 2cos sin cos sin cos sin A A

A B C B C B C

===

sin()2cos sin ,sin cos cos sin 0,B C B C B C B C +=-= sin()0,B C B C -==,等腰三角形

22

()()3,()3,a b c b c a bc b c a bc +++-=+-=

2222

2

2

01

3,cos ,6022

b c a b c a bc A A bc +-+-==

== 222

2cos 9,3c a b ab C c =+-==,B 为最大角,1

cos 7

B =-

2cos

sin

sin sin 22tan 2sin sin 2sin cos 22

A B A B

A B a b A B A B A B

a b A B +----===+-++, tan

2tan ,tan 022tan 2A B A B A B A B ---=

=+,或tan 12A B += 所以A B =或2

A B π

+=

二、填空题

1.

3392

211sin 4,13,222

ABC S bc A c c a a ?==?

====

sin sin sin sin 32

a b c a A B C A ++===

++

2.> ,22A B A B ππ+>>-,即sin()

2tan tan()2cos()2

B A B B π

ππ->-=-

cos 1sin tan B B B ==,1

tan ,tan tan 1tan A A B B

>>

3. 2 sin sin tan tan cos cos B C

B C B C

+=+

sin cos cos sin sin()2sin 1cos cos sin sin 2

B C B C B C A

B C A A +++===

4. 锐角三角形 C 为最大角,cos 0,C C >为锐角

5. 060

2

2

2

23

1cos 22

b c a A bc +

-+-====

6

222222222

222213,49,594a b c c a c b c c c c b a c ??+>>??+>+><<<+>??

三、解答题

1.

解:1

sin 4,2ABC S bc A bc ?=

== 222

2cos ,5a b c bc A b c =+-+=,而c b >

所以4,1==c b

2. 证明:∵△ABC 是锐角三角形,∴,2

A B π

+>即

02

2

A B π

π

>>

->

∴sin sin(

)2

A B π

>-,即sin cos A B >;同理sin cos B C >;sin cos C A >

∴sin sin sin sin sin sin cos cos cos ,1cos cos cos A B C

A B C A B C A B C

>>

∴1tan tan tan >??C B A

3. 证明:∵sin sin sin 2sin

cos sin()22

A B A B

A B C A B +-++=++ 2sin cos 2sin cos

2222A B A B A B A B

+-++=+ 2sin (cos cos )222A B A B A B

+-+=+

2cos 2cos cos 222C A B

=?

4cos cos cos 222

A B C

=

∴2cos 2cos 2cos 4sin sin sin C

B A

C B A =++

即222a b c ab +-=

而∵0

120,A B +=∴060C =

2222

220cos ,2cos 602a b c C a b c ab ab ab

+-=+-==

∴原式成立。

5.证明:∵2

23cos cos 222C A b

a c +=

∴1cos 1cos 3sin sin sin 222

C A B

A C ++?+?=

即sin sin cos sin sin cos 3sin A A C C C A B +++= ∴sin sin sin()3sin A C A C B +++=

即sin sin 2sin A C B +=,∴2a c b +=

参考答案(数学5必修)第一章 [提高训练C 组]

一、选择题

sin cos ),4

A A A π

+=

+

而50,sin()144424

A A A ππππ

π<<<+<

?-<+≤ sin sin sin sin sin a b A B A B c C

++==+

2sin cos 222A B A B A B

+--==

011

cos ,60,sin 22

ABC A A S bc A ====V 090A B +=则sin cos ,sin cos A B B A ==,00

045,A <<

sin cos A A <,0

4590,sin cos B B B <<>

22222201,,cos ,1202

a c

b b

c b c a bc A A -=++-=-=-=

22sin cos sin cos sin ,,sin cos sin cos cos sin sin cos sin A B A B A

A A

B B A B B A B

?=== sin 2sin 2,2222A B A B A B π==+=或

二、填空题

1. 对 ,sin sin B A >则22a b a b A B R R

>?>?> 2. 直角三角形

21

(1cos 21cos 2)cos ()1,2A B A B +++++= 21

(cos 2cos 2)cos ()0,2

A B A B +++= 2cos()cos()cos ()0A B A B A B +-++= cos cos cos 0A B C =

3. z y x << ,,sin cos ,sin cos ,22

A B A B A B B A y z π

π

+<

<

-<<<

4.1 sin sin 2sin ,2sin

cos 4sin cos

2222

A C A C A C A C

A C

B +-+++== cos 2cos ,cos cos 3sin sin 222222A

C A C A C A C -+==

则221sin sin 4sin sin 322

A C A C = 1

cos cos cos cos sin sin 3

A C A C A C +-+

22(1cos )(1cos )14sin sin 22

A C

A C =---++

22222sin 2sin 4sin sin 112222

A C A C

=-?++=

5. )2,3[ππ 2tan tan tan tan tan ,tan tan()tan tan 1

A C

B A

C B A C A C +==-+=-

2tan tan tan tan()tan A C

B A

C B +=-+=-

3tan tan tan tan 2tan B B A C B -=+≥=

3tan 3tan ,tan 0tan 3

B B B B B π

≥>?≥≥

6.1 22

,sin sin sin ,b ac B A C ==B B C A 2cos cos )cos(++-

2cos cos sin sin cos 12sin A C A C B B =+++-

cos cos sin sin cos 12sin sin A C A C B A C =+++- cos cos sin sin cos 1A C A C B =-++

cos()cos 11A C B =+++=

三、解答题

1. 解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A

a b A B b A B B ++===--

cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B

π===+=或2

∴等腰或直角三角形

2. 解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=-

222sin sin )sin ,,a A c C b B a c b -=--=-

222

2

2

2

,cos ,4522

a b c a b c C C ab +-+-====

2222,2sin ,2,sin c

R c R C a b R C

===+-= 2

222

22,

R a b ab ab +=+≥≤

2

1sin

244S ab C ab ==≤2max 212R S +=

1

22sin 2sin sin sin 4

R A R B A B =

??=

21

[cos()cos()]2A B A B =??--+

22

1[cos()2(122

A B =??-+≤

?+

2

max 12

S R ∴= 此时A B =取得等号

3. 解:sin sin 2sin ,2sin cos 4sin cos

222

A C A C A C A C

A C

B +-+++== 1sin cos 2sin cos 222424224

B A

C B B B B -=====

3,,,24242B B

A C A C

B A

C ππππ-=+=-=-=-

333sin sin()sin cos cos sin 444A B B B πππ=-=-=

1

sin sin()sin cos cos sin 4444

C B B B πππ=-=-=

::sin :sin :sin a b c A B C ==)77(:7:)77(-+

4. 解:22201

()()3

,,cos ,602

a b c a b c ac a c b ac B B ++-+=+-===

tan tan 3tan(),

,1tan tan 1tan tan A C A C A C A C

++

=

=-

- tan tan 2A C =+tan tan 3A C += 得tan 1tan 2tan 1tan 2A A C C =??=+????==+????00

00

75454575

A A C C

??==?

?

??==????或 当00

75,45A C ==

时,

1),8b c a =

=== 当00

45,75A C ==

时,

1),8sin b c a A

=

=== ∴当000

75,60,45A B C ===

时,8,1),a b c ===

当0

45,60,75A B C ===时,8,1)a b c ===。

高中数学-解三角形知识点汇总及典型例题1

解三角形的必备知识和典型例题及详解 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2 +b 2 =c 2 。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B = c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角.

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

(完整版)高中数学必修五解三角形测试题及答案

(数学5必修)第一章:解三角形 [基础训练A 组] 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题 1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3.在△ABC 中,若====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。 5.在△ABC 中,,26-= AB 030C =,则AC BC +的最大值是________。 三、解答题 1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

解三角形知识点归纳总结

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;s in s in B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

高中数学专题练习:解三角形问题

高中数学专题练习:解三角形问题 [题型分析·高考展望]正弦定理和余弦定理是解三角形的工具,而解三角形问题是高考每年必考的热点问题之一.命题的重点主要有三个方面:一是以斜三角形为背景求三角形的基本量、求三角形的面积、周长、判断三角形形状等;二是以实际生活为背景,考查解三角形问题;三是与其他知识的交汇性问题,此类试题一直是命题的重点和热点. 常考题型精析 题型一活用正弦、余弦定理求解三角形问题 例1(1)(·广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=23, cos A= 3 2且b

点评在根据正弦、余弦定理解三角形问题中,要结合大边对大角进行判断.一般地,斜三角形中,用正弦定理求角时,若已知小角求大角,有两解,已知大角求小角有一解;在解三角形问题中,三角形内角和定理起着重要作用,在解题中要注意根据这个定理确定角的范围,确定三角函数值的符号,防止增解等扩大范围的现象发生. 变式训练1(·课标全国Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC. (1)求sin B sin C; (2)若∠BAC=60°,求B. 题型二正弦、余弦定理的实际应用 例2如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为 1 260 m,经测量cos A=12 13,cos C= 3 5.

(完整版)高中数学解三角形方法大全

解三角形 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解 【例1】考查正弦定理的应用 (1)ABC ?中,若ο 60=B ,4 2 tan = A ,2=BC ,则=AC _____; (2)ABC ?中,若ο 30=A ,2= b ,1=a ,则=C ____; (3)ABC ?中,若ο 45=A ,24=b ,8=a ,则=C ____; (4)ABC ?中,若A c a sin =,则c b a +的最大值为_____。

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在ABC ?中,已知a、b、A (1)若A为钝角或直角,则当b a>时,ABC ?有唯一解;否则无解。 (2)若A为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b< < sin时,三角形有两解; 当b a≥时,三角形有唯一解 实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式 1.余弦定理:在ABC ?中,角C B A、 、的对边分别为c b a、 、,则有 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ,其变式为: ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2.余弦定理及其变式可用来解决以下两类三角形问题: (1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; (2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; 说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决 3.三角形的面积公式 (1) c b a ABC ch bh ah S 2 1 2 1 2 1 = = = ? ( a h、 b h、 c h分别表示a、b、c上的高); (2)B ac A bc C ab S ABC sin 2 1 sin 2 1 sin 2 1 = = = ? (3)= ?ABC S C B A R sin sin sin 22(R为外接圆半径) (4) R abc S ABC4 = ? ; (5)) )( )( (c p b p a p p S ABC - - - = ? 其中) ( 2 1 c b a p+ + = (6)l r S ABC ? = ?2 1 (r是内切圆的半径,l是三角形的周长)

(word完整版)高中数学解三角形练习题

解三角形卷一 一.选择题 1.在△ABC 中,sin A :sin B :sin C =3:2:4,则cos C 的值为 A .23 B .-23 C .14 D .-14 2、在ABC △中,已知4,6a b ==,60B =o ,则sin A 的值为 A 、3 B 、2 C 、3 D 、2 3、在ABC △中,::1:2:3A B C =,则sin :sin :sin A B C = A 、1:2:3 B 、 C 、 D 、2 4、在ABC △中,sin :sin :sin 4:3:2A B C =,那么cos C 的值为 A 、14 B 、14- C 、78 D 、1116 5、在ABC △中,13,34,7===c b a ,则最小角为 A 、3π B 、6π C 、4 π D 、12π 6、在ABC △中,60,16,A b ==o 面积3220=S ,则c = A 、610 B 、75 C 、55 D 、49 7、在ABC △中,()()()a c a c b b c +-=+,则A = A 、30o B 、60o C 、120o D 、150o 8、在ABC △中,根据下列条件解三角形,则其中有二个解的是 A 、10,45,70b A C ===o o B 、60,48,60a c B ===o C 、7,5,80a b A ===o D 、14,16,45a b A ===o 二、填空题。 9.在△ABC 中,a ,b 分别是∠A 和∠B 所对的边,若a =3,b =1,∠B =30°,则∠A 的值是 . 10.在△ABC 中,已知sin B sin C =cos 22 A ,则此三角形是__________三角形. 11. 在△ABC 中,∠A 最大,∠C 最小,且∠A =2∠C ,a +c =2b ,求此三角形三边之比为 .

高中数学解三角形练习及详细答案

解三角形练习 题一:在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=(). A.43B.2 3 C. 3 D. 3 2 题二:在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=23,c=22,1+tan A tan B= 2c b,则C =(). A.30°B.45° C.45°或135°D.60° 题三:在△ABC中,角A、B、C所对的边分别是a、b、c.若b=2a sin B,则角A的大小为________. 题四:在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2b-c)cos A-a cos C=0.求角A的大小. 题五:在△ABC中,内角A,B,C依次成等差数列,AB=8,BC=5,则△ABC外接圆的面积为________. 题六:在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin B(tan A+tan C)=tan A tan C. 求证:a,b,c成等比数列. 题七:某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港

口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇. (1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值. 题八:如图,在△ABC中,已知B=π 3,AC=43,D为BC边上一点.若AB=AD,则△ADC的 周长的最大值为________. 题九:如图,在△ABC中,点D在BC边上,AD=33,sin∠BAD=5 13,cos∠ADC= 3 5. (1)求sin∠ABD的值; (2)求BD的长. 题十:如图,在湖面上高为10 m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)(). A.2.7 m B.17.3 m C.37.3 m D.373 m 题十一:在△ABC中,若sin2A+sin2B < sin2C,则△ABC的形状是(). A.锐角三角形B.直角三角形

高一数学解三角形(含答案).

解三角形 1.正弦定理: 2sin sin sin a b c R A B C ===或变形:::sin :sin :sin a b c A B C =. 2.余弦定理: 222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 或 222222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?= ???+-= ?? . 3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角. 2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 5.解题中利用 ABC ?中A B C π ++=,以及由此推得的一些基本关系式进行三角变换的运算,如: sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin ,tan cot 222222 A B C A B C A B C +++===. 高一数学测试题———正弦、余弦定理与解三角形 一、选择题: 1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于 ( ) A .60° B .60°或120° C .30°或150° D .120° 2、符合下列条件的三角形有且只有一个的是 ( ) A .a=1,b=2 ,c=3 B .a=1,b= 2 ,∠A=30° C .a=1,b=2,∠A=100° C .b=c=1, ∠B=45° 3、在锐角三角形ABC 中,有 ( ) A .cosA>sin B 且cosB>sinA B .cosAsinB 且cosBsinA 4、若(a+b+c)(b+c-a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形

高二数学必修五解三角形知识点公式(精选课件)

高二数学必修五解三角形知 识点公式 高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A +B+C=180°;C=180°—(A+B ); 2、三角形三边关系:a+b〉c; a—b〈c 3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin ,2222 A B C A B C ++== 4、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有2sin sin sin a b c R C ===A B 。 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角....文档交流 仅供参考... ②已知两角和其中一边的对角,求其他边角.(对于已知两边

和其中一边所对的角的题型要注意解的情况...文档交流 仅供参考... 7、三角形面积公式:111sin sin sin 222C S bc ab C ac ?AB =A ==B 。=2R2si nAsin Bsin C=R abc 4 8、余弦定理:在 C ?AB 中,有2222cos a b c bc =+-A , 2222cos b a c ac =+-B , 2222cos c a b ab C =+-。 9、余弦定理的推论: 222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=。 2222222222cos ,2cos ,2cos a b c ab C b c a bc A a c b ac B +-=+-=+-=10、余弦定理主要解决的问题: ①已知两边和夹角,求其余的量. ②已知三边求角 11、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式

高中数学解三角形课件

解三角形 (数学5必修)第一章:解三角形 [基础训练A 组] 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题 1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,2 22_________。 3.在△ABC 中,若====a C B b 则,135,30,20 0_________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。 三、解答题 1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么 2.在△ABC 中,求证: )cos cos (a A b B c a b b a -=- 3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。

高中数学必修解三角形教案

高中数学必修解三角形 教案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

第2章 解三角形 正弦定理 教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题. 教学重点:正弦定理的探索和证明及其基本应用. 教学难点:已知两边和其中一边的对角解三角形时判断解的个数. 教学过程: 一、复习准备: 1. 讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办? 2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以把边、角关系准确量化? →引入课题:正弦定理 二、讲授新课: 1. 教学正弦定理的推导: ①特殊情况:直角三角形中的正弦定理: sin A =c a sin B =c b sin C =1 即c = sin sin sin a b c A B C == . ② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形) 当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a b A B =. 同理,sin sin a c A C = (思考如何作高?),从而 sin sin sin a b c A B C == . ③*其它证法:证明一:(等积法)在任意斜△ABC 当中S △ ABC = 111 sin sin sin 222 ab C ac B bc A ==.

(完整)高中数学解三角形专题及例题.doc

解三角形专题 1 课题 教学目标理解正玄定理、余弦定理的基本内容 会应用正玄定理、余弦定理解决有关三角形的问题 重点、难点正玄定理、余弦定理的基本内容及其简单应用 本章中的有关三角形的一些实际问题,往往动笔计算比较复杂,象这样的 问题的计算就要求大家能用计算器或电脑来帮助计算,能根据精确度的需考点及考试内容要保留相应的位数。尽管科学技术发展很快,但必要的计算能力对于一个 现代人还是有必要的,所以平时大家还要注意训练自己的运算速度与准确 性,时刻注意锻炼自己的意志力。 教学内容 一、正弦定理及其证明 正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即 a b c sin A sin B sin C 正弦定理揭示的是一般三角形中的重要边角关系,它们是解三角形的两个重要定理之一。 对于正弦定理,课本首先引导学生回忆任意三角形中有大边对大角,小边对小角的边角关系, 引导学生思考是否能得到这个边、角关系准确量化表示的问题。由于涉及边角之间的数量关系,就 比较自然地引导到三角函数。 在直角三角形中,边之间的比就是锐角的三角函数。研究特殊的直角三角形中的正弦,就很快 证明了直角三角形中的正弦定理。分析直角三角形中的正弦定理,考察结论是否适用于锐角三角形,可以发现 asinB 和 bsinA 实际上表示了锐角三角形边 AB上的高。这样,利用高的两个不同表示,就容易证明锐角三角形中的正弦定理。 钝角三角形中定理的证明要应用正弦函数的诱导钝角三角形中定理的证明要应用正弦函数的诱 导公式,教科书要求学生自己通过探究来加以证明。可以考虑采用向量的知识来证明。 二、余弦定理及其证明 余弦定理在一个三角形中,任一边的平方都等于其它两边的平方和减去这两边与其夹角的余弦 的积的 2 倍,即 a2b2c22bc cos A ; b2a2c22ac cos B ; c2a2b22ab cosC ; 余弦定理同样揭示的是一般三角形中的重要边角关系,它们是解三角形的两个重要定理之一。由直 角三角形三边间的关系,归纳猜想任意三角形的边角间的关系。自己学会探索、并试着去从理论上去解决。通过这个定理的探索并去从理论上证明,作为一个现代中学生,要掌握一些研究 事物的方法、要学会学习,善于提出问题,并且试着去解决问题。 同样这个定理的证明也是采用了向量的相关知识很容易得到解决,向量知识在数学上的一个具 体应用,这也体现了数学科学的特点之一:前后知识间联系紧密。 这也要求大家能够将前后知识联系起来,而不应该是孤立地来学习某部分知识,而不善于将所 学恰当地应用,这也要求大家能够活学活用。当然这两个定理的证明证明方法,自己还可以考虑采 用比如平面几何知识等其它的方法,以锻炼自己的能力。 三、正弦定理和余弦定理的应用 正弦定理的应用: 1.用正弦定理解三角形是正弦定理的一个直接应用,正弦定理可以用于两类解三角形的问题:(1)已知三角形的任意两个角与一边,求其他两边和另一角。 (2)已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其他的边 和角 . 2.三角形解的个数

(完整版)高二数学必修五解三角形知识点公式,推荐文档

cos , cos 高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b

高中数学解三角形解答题专题训练含答案

解三角形解答题专题训练 2017.12 1.在ABC ?中,角,,A B C 所对的边分别是,,a b c ,已知(Ⅰ)求C ; ,且sin sin()3sin 2C B A A +-=,求ABC ?的面积. 因为sin 0A ≠,解得 (Ⅱ)由sin sin()3sin 2C B A A +-=,得sin()sin()3sin 2B A B A A ++-=, 整理,得sin cos 3sin cos B A A A =. 若cos 0A =,则 ABC ?的面积 若cos 0A ≠,则sin 3sin B A =,3b a =. 由余弦定理,得2222cos c a b ab C =+-,解得1,3a b ==. ABC ?的面积 综上,ABC ?的面积为 2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c. 已知a+b=5, (Ⅰ) 求角C 的大小; (Ⅱ)求△ABC 的面积. 解: (Ⅰ)∵A+B+C=180 整理,得 01cos 4cos 42=+-C C

∵ ∴C=60° (Ⅱ)由余弦定理得:c 2=a 2+b 2-2abcosC ,即7=a 2+b 2-ab ∴ 由条件a+b=5得 7=25-3ab , 故 所以 的面积 3.已知,,a b c 分别为ABC ? 三个内角,,A B C 所对的边长,且cos cos 2cos a B b A c C +=. (1 )求角C 的值; (2)若4,7c a b =+=,求 ABC S ?的值. 解:(1 得:sin cos sin cos 2sin cos A B B A C C +=, 又sin sin()2sin cos C A B C C =+=, (2)由余弦定理:2222cos c a b ab C =+-, ∴11ab =,∴4.在ABC ?中,内角C B A ,,的对边为c b a ,,,已知(1)求角C 的值; (2)若2=c ,且ABC ?的面积为,求b a ,. 解:(1 ?<

相关主题
文本预览
相关文档 最新文档