当前位置:文档之家› 巴拿赫空间中线性算子的w加权drazin广义逆的新表示

巴拿赫空间中线性算子的w加权drazin广义逆的新表示

巴拿赫空间中线性算子的w加权drazin广义逆的新表示
巴拿赫空间中线性算子的w加权drazin广义逆的新表示

泛函分析第3章连续线性算子与连续线性泛函

第3章连续线性算子与连续线性泛函 本章将介绍赋范线性空间上,特别是Banach空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach定理。他们是泛函分析早期最光辉的成果,有广泛的实际背景, 尤其在各种物理系统研究中应用十分广泛。 3.1连续线性算子与有界线性算子 在线性代数中,我们曾遇到过把一个”维向量空间E"映射到另一个加维向 量空间E"的运算,就是借助于川行”列的矩阵 对F中的向量起作用来达到的。同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。 [定义3?1]由赋范线性空间X中的某子集D到赋范线性空间丫中的映射T 称为算子,D称为算子了的定义域,记为D(r),为称像集{y|y = 7k,xeD(7')}为算子的值域,记作T(D)或77)。 若算子T满足: (1)T(x+y) = Tx+Ty e£)(T)) (2)T(ax) = (/rx(V

空间后方交会的解算

空间后方交会的解算 一. 空间后方交会的目的 摄影测量主要利用摄影的方法获取地面的信息,主要是是点位信息,属性信息,因此要对此进行空间定位和建模,并首先确定模型的参数,这就是空间后方交会的目的,用以求出模型外方位元素。 二. 空间后方交会的原理 空间后方交会的原理是共线方程。 共线方程是依据相似三角形原理给出的,其形式如下 111333222333()()() ()()() ()()()()()()A S A S A S A S A S A S A S A S A S A S A S A S a X X b Y Y c Z Z x f a X X a Y Y a Z Z a X X b Y Y c Z Z y f a X X a Y Y a Z Z -+-+-=--+-+--+-+-=--+-+- 上式成为中心投影的构线方程, 我们可以根据几个已知点,来计算方程的参数,一般需要六个方程,或者要三个点,为提高精度,可存在多余观测,然后利用最小二乘求其最小二乘解。 将公式利用泰勒公式线性化,取至一次项,得到其系数矩阵A ;引入改正数(残差)V ,则可将其写成矩阵形式: V AX L =- 其中 111333222333[,]()()()()()()()()()()()()()()T x y A S A S A S x A S A S A S A S A S A S y A S A S A S L l l a X X b Y Y c Z Z l x x x f a X X a Y Y a Z Z a X X b Y Y c Z Z l y y y f a X X a Y Y a Z Z =-+-+-=-=+-+-+--+-+-=-=+-+-+- 则1()T T X A A A L -= X 为外方位元素的近似改正数, 由于采用泰勒展开取至一次项,为减少误差,要将的出的值作为近似值进行迭代,知道小于规定的误差 三. 空间后方交会解算过程 1. 已知条件 近似垂直摄影

巴拿赫空间上的有界线性算子

第八章 巴拿赫空间上的有界线性算子 算子 线性算子 非线性算子 无界线性算子 有界线性算子 §1 有界线性算子 1.1 有界线性算子的基本概念与性质 定义1.1 设E 及1E 都是实(或复的)线性空间,T 是由E 的某个子空间D 到线性空间1E 中的映射,如果对任意 D y x ∈,,有 ()Ty Tx y x T +=+ 则称T 是可加的。若对任意的实(或复)数α及任意的 D x ∈,有 ()Tx x T αα= 则称T 是齐次的。可加齐次的映射称为线性映射或线性算子。D 中使θ=Tx 的元素x 的集合称为T 的零空间。 设1E 是实(或复)数域,于是T 成为由D 到实(或复)

数域的映射,这时称T 为泛函。如果T 还是线性的,则称T 为线性泛函。泛函或线性泛函常用g f ,等符号表示。 定义1.2 设E 及1E 都是实或复的赋范线性空间,D 为E 的子空间,T 为由D 到1E 中的线性算子。如果按照第六章§2.3定义2.6,T 是连续的,则称T 为连续线性算子。如果T 将D 中任意有界集映成1E 中的有界集,则称T 是有界线性算子。如果存在D 中的有界集A 使得()A T 是1E 中的无界集,则称T 是无界线性算子。 例 1 将赋范线性空间E 中的每个元素x 映成x 自身的算子称为E 上的单位算子,单位算子常以I 表示.将E 中的每个元素x 映成θ的算子称为零算子. 容易看出,单位算子与零算子既是有界线性算子也是连续线性算子. 例 2 连续函数的积分 ()()?= b a dt t x x f 是定义在连续函数空间[]b a C ,上的一个有界线性泛函,也是连续线性泛函.* 例 1、例 2中出现的线性算子或线性泛函既是有界的又是连续的.对线性算子来说,有界性与连续性等价(见定理1.3). 定理 1.1 设E ,1E 都是实赋范线性空间,T 是由E 的

空间后方交会

第12次课首页

教案正文

F0 F x x dX s X F 0 —— dZ F x 0d F x0d F x0d x f adX X s)d(Y Y s)s(Z Z S) a3(X X s)b3(Y Y s)C3(Z Z s ) y f a2(X X s)b2(Y Y s)C2(Z Z s) a3(X X s)b3(Y Y s)C3(Z Z s) c.单像空间后方交会对控制点的要求 至少有三个不在一条直线上的地面控制点。但为了保证精度,一般使用 至少4个平高控制点,且任意三个不在一条直线上。 四、共线条件方程的线性化 在已知内方位元素的情况下,共线条件方程表达式为: T a i ( X_X s )_b i( Y_Y s )_C i ( Z_Z s ) a3(X—X s 厂b3(Y—Y s 厂C3(厂「) f a2(X X s) b2(Y Y s) C2(Z Z s ) ) (1) a3(X X s) b3(Y Y s ) C3(Z Z s (1)式变换为: F x F y f d(X X s) bdY Y s) G(z Z s) a3(X X s) b3(Y Y s) C3(Z Z s) f a2(X X s) b2(Y Y s) C2(Z Z s) a3(X X s) b3(Y Y s) C3(Z Z s) 按泰勒级数展开,取一次项,得: F x(X s飞,Z s,F0 x (X X X S) F0 X Y s (Y s Y{) F0 X Z (Z s Z s z s) F0 x ( 0) F0 x ( 0) F0 x 0) F X(X S,Y0,Z0, 0> F y(X s,Y S,Z s, F0 x s) F y 0(Y s Y S0) Y S F0 f(Z s s Z S) 0) 0) F0 y ( F y(x0,Y s0,Z:, 00, 0) 控制点为什么不 能三点共线 (3)式可以写成:

高中数学-空间向量的基本定理练习

高中数学-空间向量的基本定理练习 课后导练 基础达标 1.若对任意一点O ,且OP =y x +,则x+y=1是P 、A 、B 三点共线的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案:C 2.已知点M 在平面ABC 内,并且对空间任一点O ,OM OM=x + 31+31,则x 的值为…( ) A.1 B.0 C.3 D. 3 1 答案:D 3.在以下命题中,不正确的个数是( ) ①已知A,B,C,D 是空间任意四点,则DA CD BC AB +++=0 ②|a |+|b |=|a +b |是a ,b 共线的充要条件 ③若a 与b 共线,则a 与b 所在的直线的平行 ④对空间任意一点O 和不共线的三点A,B,C,若z y x ++=,(其中x,y,z∈R ),则P,A,B,C 四点共面 A.1 B.2 C.3 D.4 答案:C 4.设命题p:a ,b ,c 是三个非零向量;命题q:{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:B 5.下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OM --= B.MC MB MA ++=0 C.3 13131++++ D.OC OB OA OM +-=2 答案:B 6.在长方体ABCD —A 1B 1C 1D 1中,E 为矩形ABC D的对角线的交点,设A 1=a,11B A =b,11D A =c,则E A 1=____________.

答案:a +21b +21c 7.设O 为空间任意一点,a,b 为不共线向量,OA =a,OB =b,OC =ma+nb,(m,n∈k)若A,B,C 三点共线,则m,n 满足____________. 答案:m+n=1. 8.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,在下列各条件下,点P 是否与A 、B 、C 一定共面? (1)OP =52OA +51OB +5 2OC ; (2)OP=2OA-2OB-OC. 解:(1)OP = 52OA +51OB +52OC . ∵1525152=++,∴P 与A 、B 、C 共面. (2)OP =OC OB OA --22. ∵2-2-1=-1,∴P 与A 、B 、C 不共面. 9.如右图,已知四边形ABCD 是空间四边形,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且CF =32CB ,CG =3 2CD . 求证:四边形EFGH 是梯形. 证明:∵E、H 分别是AB 、AD 的中点, ∴= 21,=2 1, EH =-=21AD -21AB =21(AD -AB )=21BD =2 1(CB CD -) =21(23CG -23CF )=43(-)=4 3. ∴EH ∥FG 且|EH |=43|FG |≠|FG |. ∴四边形EFGH 是梯形. 综合运用 10.如右图,平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,11A A =c ,则下列向量中与B 1M 相等的向量是( )

泛函分析第3章连续线性算子与连续线性泛函

第3章 连续线性算子与连续线性泛函 本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。 3.1 连续线性算子与有界线性算子 在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵 1112 121 22 212n n m m mn a a a a a a A a a a ?? ? ? = ? ??? 对n E 中的向量起作用来达到的。同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。 [定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射 T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){} ,y y Tx x D T =∈为算子的值域,记作()T D 或TD 。 若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+?∈ (2)()()(),T x Tx F x D T ααα=?∈∈ 称T 为线性算子。对线性算子,我们自然要求()T D 是X 的子空间。特别地,如

单像空间后方交会和双像解析空间后方-前方交会的算法程序实现

单像空间后方交会和双像解析空间后方-前 方交会的算法程序实现 遥感科学与技术 摘要:如果已知每张像片的6个外方位元素,就能确定被摄物体与航摄像片的关系。因此,利用单像空间后方交会的方法,可以迅速的算出每张像片的6个外方位元素。而前方交会的计算,可以算出像片上点对应于地面点的三维坐标。基于这两点,利用计算机强大的运算能力,可以代替人脑快速的完成复杂的计算过程。 关键词:后方交会,前方交会,外方位元素,C++编程 0.引言: 单张像片空间后方交会是摄影测量基本问题之一,是由若干控制点及其相应像点坐标求解摄站参数(X S,Y S,ZS,ψ、ω、κ)。单像空间后方交会主要有三种方法:基于共线条件方程的平差解法、角锥法、基于直接线性变换的解法。而本文将介绍第一种方法,基于共线条件方程反求象片的外方位元素。 而空间前方交会先以单张像片为单位进行空间后方交会,分别求出两张像片的外方位元素,再根据待定点的一对像点坐标,用空间前方交会的方法求解待定点的地面坐标。可以说,这种求解地面点的坐标的方法是以单张像片空间后方交会为基础的,因此,单张像片空间后方交会成为解决这两个问题以及算法程序实现的关键。

1.单像空间后方交会的算法程序实现: (1)空间后方交会的基本原理:对于遥感影像,如何获取像片的外方位元素,一直是摄影测量工作者探讨的问题,其方法有:利用雷达(Radar)、全球定位系统(GPS)、惯性导航系统(I N S)以及星像摄影机来获取像片的外方位元素;也可以利用一定数量的地面控制点,根据共线方程,反求像片的外方位元素,这种方法称为单像空间后方交会(如图1所示)。 图中,地面坐标X i、Yi、Zi和对应的像点坐标x i、yi是已知的,外方位元素XS、Y S、ZS(摄站点坐标),ψ、ω、κ(像片姿态角)是待求的。 (2)空间后方交会数学模型:空间后方交会的数学模型是共线方程, 即中心投影的构像方程: 式中X、Y、Z是地面某点在地面摄影测量坐标系中的坐标,x,y是该地面点在像片上的构像点的像片坐标,对 于空间后方交会而言它们是已知的,还有主距f是已知的。而9个方向余弦a 1,a 2,a3;b1,b 2,b 3;c 1,c2,c 3是未知的,具体表达式可以取

空间向量基本定理

空间向量基本定理 【学习目标】 在复习平面向量定理的基础上,掌握空间向量基本定理及其推论; 【学习重点】 掌握空间向量基本定理及其推论; 【学习难点】 掌握空间向量基本定理及其推论。 【课前预习案】 一、复习 平面向量向量基本定理 。 二、课本助读:认真阅读课本第35页的内容. 1.空间向量基本定理:如果向量 , , 是空间中三个 的向量,a 是空间中 向量,那么 实数123,,λλλ,使得 112233a e e e λλλ=++①。 空间中 的三个向量123,,e e e 叫做这个空间的一个 。①式表式向量a 关于基底123,,e e e 的分解。 特别地,当向量123,,e e e 时,就得到这个向量的一个正交分解。当1e i =,2e j =,3e k =时,就是我们前面学过的标准正交分解。 2.以下四个命题中正确的是( ) A .空间的任何一个向量都可用其它三个向量表示 B .若{a ,b ,c }为空间向量的一组基底,则a ,b ,c 全不是零向量 C .△ABC 为直角三角形的充要条件是AB ·AC →=0 D .任何三个不共线的向量都可构成空间向量的一个基底 【课堂探究案】 探究一:基底的判断

A / C M E D / B / D B 1.若{a ,b ,c }是空间的一个基底,则下列各组中不能构成空间一个基底的是( ) A .a,2b,3c B .a +b ,b +c ,c +a C .a +2b,2b +3c,3a -9c D .a +b +c ,b ,c 2.在以下3个命题中,真命题的个数是( ) ①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面; ②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a , b 共线; ③若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底. A .0 B .1 C .2 D .3 探究二:用基底表示向量 3. 如图,在正方体///B D CA OADB -中,,点E 是AB 与OD 的交点,M 是OD / 与CE 的交点,试分别用向量OC OB OA ,,表示OD 和OM 4.如图,在平行六面体 ABCD —A ′B ′C ′D ′中, 的单位向量分别是' ,,,,321AA AD AB e e e 且,2=AB ,5=AD ,7'=AA 试用321,,e e e 表示AC 、B A '、 D A '、'AC . 【课后检测案】 1.在长方体ABCD —A 1B 1C 1D 1中,下列关于1AC 的表达式中: ①1AA +A 1B 1→+A 1D 1→ ;

1空间谱估计测向原理

1空间谱估计测向原理 对于一般远场信号而言同一信号到达不同天线元存在一个波程差这个波程差导致了接收阵元间的相位差利用阵元间的相位差,就可以估计出信号的方位 如图1所示。 图1方位估计原理 对于窄带信号而言两个天线之间的相位差甲。通过测量得到的相位差、就可以计算出来波方位。 对于窄带信号信号可用的复包络形式表示 考虑N个远场的窄带信号入射到空间某阵列天线上其中阵列天线由M个阵元组成其通道数与阵元数相等。则第!个阵元接收到的信号为: 式(1)中i=1,2,3、、、、M;Ni(t)中t表示第i个阵元在t时刻的噪声。 将M个阵元在同一时刻接收到的信号排列成一个列矢量,可得: 上式中g ij为第i个阵元对第j个信号的增益。 在理想情况下,假设阵列中各个阵元是各向同性的且不存在通道不一致、互祸等因素的影响则上式中的 增益归一化后上式可以简化为:

将上式写成矢量形式如下: x(t)=As(t)+w(t) (4) 式(4)中二X(t)为阵列数据,S[t}为空间信号N(t)为噪声数据,A为空间阵列的流型矩阵(导向矢量阵)。阵列数据X(t)的协方差矩阵R可写成; (5) 其中是空间信号的相关矩阵。为理想白噪声功率。 对协方差矩阵R进行特征分解,可以进行信号数量的判断;然后确定信号的子空间与噪声子空间根据信号参数范围进行谱峰搜索找出最大值点对应的角度即信号入射方向;将信号的频率信息、方位信息等进行关联分析整理出完整的有价值的信息。 2空间谱估计测向系统的组成 空间谱估计测向系统一般包括测向天线阵、超外差接收机、数字信号处理机等硬件部分,设备的组成框图如图z所示 测向天线阵中安装了多个相同特性的全向天线阵元,一般采用圆阵。 超外差接收机采用多次变频,实现高的动态和虚假抑制,同时要求频率稳定性高。 数字信号处理机一般采用AD+DSP+FPGA的设计方案,用FPGA设计协处理器处理大量、规则的计算,而利用DSP的灵活性处理复杂不规则的计算,从而使数字信号处理机的性能达到最优. 空间谱估计测向系统的工作过程如下:测向天线阵在数字信号处理机的控制下选择所需的接收天线将接收到的多路无线电信号,直接送到超外差接收机。超外差接收机在数字信号处理机的控制下调谐在所需的工作频点同时输出多路中频信号到达数字信号处理机。数字

3.1 赋范线性空间和Banach空间

第3章 赋范线性空间 3.1 赋范线性空间和Banach 空间 3.1.1 赋范线性空间 定义3.1.1 (范数,赋范线性空间) 设X 为是实(或:复)数域F 的线性空间,若对x X ?∈,存在一个实数x 于之对应,且满足下列条件: (1) 0≥x ; 且0=x ?=0x ; (非负性 (non-negativity)) (2) αα=x x ,α∈F ; (正齐(次)性 (positive homogeneity)) (3) +≤+x y x y ,,X ∈x y ; (三角不等式(triangle inequality)) 则称x 为x 的范数(norm),称(,)X ? (或:X )为赋范线性空间(normed linear space), 简称赋范空间(normed space). 例3.1.1 空间[,]C a b 是闭区间[,]a b 上的连续函数全体所成的线性空间。对[,]f C a b ?∈,规定 [,] max ()t a b f f t ∈=, (3.1.1) 易证f 是f 的范数,则[,]C a b 按上述范数成为赋范线性空间。 例 3.1.2 设[,]a b L 是闭区间[,]a b 上的Lebesgue 可积函数全体所成的线性空间。对 [,]f a b ?∈L ,规定 ()d b a f f t t =?, (3.1.2) 若将在[,]a b 上满足()()f t g t ?=的两个函数,f g 视为同一个函数,即将在[,]a b 上满足 ()0f t ? =的函数f 视为恒等于零的函数,即0f =,则在[,]a b L 上,f 是f 的范数,从而 [,]a b L 按上述范数成为赋范线性空间。 例 3.1.3 在n 维实向量空间n R 或n 维复向量空间(称为酉空间)n C 中,对 12(,,,)n n x x x x ?=∈R (或n C ),令 12 21n i i x x =??= ??? ∑, (3.1.3)

高中数学空间向量的基本定理题库

3.1.2 空间向量的基本定理 学习目标 1.了解共线向量、共面向量的意义,掌握它们的表示方法.2.理解共线向量的充要条件和共面向量的充要条件及其推论,并能应用其证明空间向量的共线、共面问题.3.理解基底、基向量及向量的线性组合的概念. 知识点一 共线向量定理与共面向量定理 1.共线向量定理 两个空间向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数x ,使a =x b . 2.向量共面的条件 (1)向量a 平行于平面α的定义 已知向量a ,作OA → =a ,如果a 的基线OA 平行于平面α或在α内,则就说向量a 平行于平面α,记作a ∥α. (2)共面向量的定义 平行于同一平面的向量,叫做共面向量. (3)共面向量定理 如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是存在唯一的一对实数x ,y ,使c =x a +y b . 知识点二 空间向量分解定理 1.空间向量分解定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c . 2.基底 如果三个向量a ,b ,c 是三个不共面的向量,则a ,b ,c 的线性组合x a +y b +z c 能生成所有的空间向量,这时a ,b ,c 叫做空间的一个基底,记作{a ,b ,c },其中a ,b ,c 都叫做基向量.表达式x a +y b +z c ,叫做向量a ,b ,c 的线性表示式或线性组合. 1.向量a ,b ,c 共面,即表示这三个向量的有向线段所在的直线共面.( × ) 2.若向量e 1,e 2不共线,则空间任意向量a ,都有a =λe 1+μe 2(λ,μ∈R ).( × ) 3.若a ∥b ,则存在唯一的实数λ,使a =λb .( × )

空间后方交会程序

一. 实验目的: 掌握摄影测量空间后方交会的原理,利用计算机编程语言实现空间后方交会外方位元素的解算。 二. 仪器用具及已知数据文件: 计算机windows xp 系统,编程软件(VISUAL C++6.0),地面控制点在摄影测量坐标系中的坐标及其像点坐标文件shuju.txt 。 三. 实验内容: 单张影像的空间后方交会:利用已知地面控制点数据及相应像点坐标根据共线方程反求影像的外方位元素。 数学模型:共线条件方程式: )(3)(3)(3)(1)(1)(1Zs Z c Ys Y b Xs X a Zs Z c Ys Y b Xs X a f x -+-+--+-+--= )(3)(3)(3)(2)(2)(2Zs Z c Ys Y b Xs X a Zs Z c Ys Y b Xs X a f y -+-+--+-+--= 求解过程: (1)获取已知数据。从航摄资料中查取平均航高与摄影机主距;获取控制点的地面测量坐标并转换为地面摄影测量坐标。 (2)量测控制点的像点坐标并做系统改正。 (3)确定未知数的初始值。在竖直摄影且地面控制点大致分布均匀的情况下,按如下方法确定初始值,即: n X X S ∑=0,n Y Y S ∑=0,n Z mf Z S ∑=0 φ =ω=κ=0 式中;m 为摄影比例尺分母;n 为控制点个数。 (4)用三个角元素的初始值,计算个方向余弦,组成旋转矩阵R 。 (5)逐点计算像点坐标的近似值。利用未知数的近似值和控制点的地面 坐标代入共线方程式,逐点计算像点坐标的近似值(x )、(y )。 (6)逐点计算误差方程式的系数和常数项,组成误差方程式。 (7)计算法方程的系数矩阵A A T 和常数项l A T ,组成法方程式。 (8)解法方程,求得外方位元素的改正数dXs ,S dY ,s dZ ,d φ,d ω,d κ。 (9)用前次迭代取得的近似值,加本次迭代的改正数,计算外方位元素 的新值。

空间向量基本定理教案

《3.1.2空间向量基本定理》教案 一、教学目标: 1.知识目标:了解向量与平面平行的意义,掌握它们的表示方法。理解共线向量定理、共面向量定理和空间向量分解定理,理解空间任一向量可用空间不共面的三个已知向量唯一线性表示,会在简单问题中选用空间三个不共面向量作为基底表示其他向量。会用空间向量的基本定理解决立体几何中有关的简单问题。 2.能力目标:通过空间向量分解定理的得出过程,体会由特殊到一般,由低维到高维的思想方法。培养学生类比、联想、维数转换的思想方法和空间想象能力。 3.情感目标:创设适当的问题情境,从生活中的常见现象引入课题,开始就引起学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,体现新课程改革的理念之一,加强数学与生活实践的联系。 二、教学重点: 运用空间向量基本定理表示空间任一向量,并能根据表达式判断向量与基底的关系。 三、教学难点: 空间向量的分解作图,用不同的基底表示空间任一向量。灵活运用空间向量基本定理证明空间直线的平行、共面问题。 四、教学过程 1.复习引入: 在平面向量中,我们学习了平行向量基本定理、平面向量基本定理,请大家回忆一下定理的内容。(找同学回答) 由上节课的学习,我们可以把平面向量的线性运算推广到空间向量,那么请大家思考:平行向量基本定理在空间中是否成立? 结论在空间中也成立。这就是空间中的“共线向量定理”(板书并投影) 注意:①向量0a ≠; ②a b ∥b a λ?=是共线向量的性质定理,b a λ=?a b ∥是空间向量共线的判定定理; 2、问题探究: “向量与平面平行”的概念:如果向量a 的基线平行于平面α或在平面α内,就称a 平行于平面α,记作a ∥α。

Banach空间及其相关定理

课程论文课程现代分析基础 学生姓名 学号 院系 专业 指导教师 二O一五年十二月四日

目录 1 绪论 (1) 2 Banach空间基本概念 (1) 2.1拟范数定义及例子 (1) 2.2 Banach空间 (2) 2.3 Banach空间中线性变换及其性质 (3) 3 一致有界定理及其推论 (4) 3.1问题 (4) 3.2基本概念 (4) 3.3一致有界定理及其推论 (5) 3.4一致有界性定理及其推论的应用 (6) 4 Hahn-Banach定理与凸集分离定理 (7) 4.1实线性空间上的Hahn-Banach定理 (7) 4.2复线性空间上的Hahn-Banach定理 (8) 4.3赋范线性空间上的Hahn-Banach定理 (8) 4.4有关Hahn-Banach定理的一些推论 (9) 4.5 Hahn-Banach定理的几何形式:凸集分离定理 (9) 5 Banach空间中开映射、闭图像定理以及逆算子定理 (9) 5.1开映射定理 (9) 5.2逆算子定理 (11) 5.3闭图像定理 (12) 6 总结 (14) 参考文献 (15)

Banach空间及其相关定理 南京理工大学自动化学院,江苏南京 摘要:本文的主要是介绍了Banach空间以及其相关定理。首先,本文讲了Banach空间产生的背景以及应用领域。然后本文介绍了Banach空间的基本概念及其相关性质。最后本文开始从一致有界定理开始,将Banach空间中Hahn-Banach定理、开映射、闭图像以及逆算子定理这几个重要定理逐一做出介绍并给出相应定理的证明。 关键词:Banach空间;一致有界定理;Hahn-Banach定理;开映射、闭图像、逆算子定理

空间后方交会程序

空间后方交会程序

————————————————————————————————作者:————————————————————————————————日期: ?

一. 实验目的: 掌握摄影测量空间后方交会的原理,利用计算机编程语言实现空间 后方交会外方位元素的解算。 二. 仪器用具及已知数据文件: 计算机wind ows xp 系统,编程软件(VI SUA L C ++6.0),地面控 制点在摄影测量坐标系中的坐标及其像点坐标文件shu ju.txt 。 三. 实验内容: 单张影像的空间后方交会:利用已知地面控制点数据及相应像点坐标根据 共线方程反求影像的外方位元素。 数学模型:共线条件方程式: ) (3)(3)(3) (1)(1)(1Zs Z c Ys Y b Xs X a Zs Z c Ys Y b Xs X a f x -+-+--+-+--= ) (3)(3)(3)(2)(2)(2Zs Z c Ys Y b Xs X a Zs Z c Ys Y b Xs X a f y -+-+--+-+--= 求解过程: (1)获取已知数据。从航摄资料中查取平均航高与摄影机主距;获取 控制点的地面测量坐标并转换为地面摄影测量坐标。 (2)量测控制点的像点坐标并做系统改正。 (3)确定未知数的初始值。在竖直摄影且地面控制点大致分布均匀 的情况下,按如下方法确定初始值,即: n X X S ∑=0,n Y Y S ∑=0,n Z mf Z S ∑=0 φ =ω=κ=0 式中;m为摄影比例尺分母;n为控制点个数。 (4)用三个角元素的初始值,计算个方向余弦,组成旋转矩阵R 。 (5)逐点计算像点坐标的近似值。利用未知数的近似值和控制点的地面坐标代入共 线方程式,逐点计算像点坐标的近似值(x )、(y )。 (6)逐点计算误差方程式的系数和常数项,组成误差方程式。 (7)计算法方程的系数矩阵A A T 和常数项l A T ,组成法方程式。 (8)解法方程,求得外方位元素的改正数dXs ,S dY ,s dZ ,d φ,dω,d κ。 (9)用前次迭代取得的近似值,加本次迭代的改正数,计算外方位元素的新值。

空间后方交会的直接解

空间后方交会的直接解 空间后方交会,即由物方已知若干个控制点以及相应的像点坐标,解求摄站的坐标与影像的方位,这是一个摄影测量的基本问题。通常采用最小二乘解算,由于原始的观测值方程是非线性的,因此,一般空间后方交会必须已知方位元素的初值,且解算过程是个迭代解算过程。但是,在实时摄影测量的某些情况下,影像相对于物方坐标系的方位是任意的,且没有任何初值可供参考。这时常规的空间后方交会最小二乘算法就无法处理,而必须建立新的空间后方交会的直接解法。 直接解法的基本思想是将它分成两步:先求出三个已知点i P 到摄站S 的距离i S ;然后求出摄站S 的坐标和影像方位。 物方一已知点()i i i i ,Z ,Y X P 在影像上的成像()i i i ,y x p ,根据影像已知的内方位元素()0 ,y f,x 可求得从摄站()S S S S ,Z ,Y X 到已知点i P 的观测方向i ,βαi 。 () ??? ????-+-= -=2 020 tan tan x x f y y βf x x αi i i i i (1) 距离方程组可以写成如下形式: ?? ??? =+++=+++=+++020202312 1133123232 3322322122 2211221b x x x a x b x x x a x b x x x a x (2) 其中()j ;i ,,i,j S ,b a ij ij ij ij ≠===321cos ?。因此,解算摄站S 到三个 控制点的距离问题,被归结为解算一个三元二次联立方程组的问题。这个方程组的解算方法选用迭代法。 迭代计算公式可写成:

第三章 有界线性算子-黎永锦

第3章 有界线性算子 音乐能激发或抚慰情怀,绘画使人赏心悦目, 诗歌能动人心弦,哲学使人获得智慧,科学可 改善物质生活,但数学能给予以上的一切. Klein F .(克萊恩) (1849-1925,德国数学家) Banach S .在1922年建立了完备赋范线性空间的公理,证明了一些基本定理后,就讨论 了定义在一个完备赋范线性空间上而取值为另一个完备赋范线性空间的算子,在这类算子中最重要的是连续加法算子,所谓加法算子是指对所有x ,y ,都有Ty Tx y x T +=+)(.容易证明,T 是连续加法算子时,必有Tx x T αα=)(成立.Banach S .证明了若T 是连续的加法算子,则存在常数0>M ,使得||||||||x M Tx ≤.另外他还证明了若}{n T 是连续加法算子序列,T 也是加法算子,且对任意X x ∈,都有Tx x T n n =∞ →lim ,则T 也是连续的. Hahn H .在1922年证明了,若X 是一个完备赋范空间,}{n f 为X 上的一列线性连续泛 函,且对任意X x ∈,)}({x f n 都有上界,则||}{||n f 一定是有界的. Banach S .和Steinhaus H .在1927年证明了,若n T 为完备赋范空间X 到赋范空间Y 的线性连续算子,且对任意X x ∈,||}{||x T n 都有界,则||}{||n T 一定有界,这就是Banach 空间理论中最重要的定理之一,即一致有界原理. Neumann Von J ..在1929年至1930年还引进并讨论了算子的几种收敛性. 在1932年,Banach S .出版了线性算子理论(aires e lin rations e op des orie e Th ''')一

空间向量基本定理汇总

1 装 订 线 庆云第一中学课堂导学案 (设计者:于长田 审核者:刘晓莉) 年级 高二 学科 数学 编号 x (2-1)44日期 2015-12-02 班级 姓名 3.1.2空间向量基本定理 一.学习目标:掌握空间向量基底的概念;了解空间向量的基本定理及其推论;了解空间向 量基本定理的证明。 二.自学指导:阅读课本P82—P84页注意下面问题。 1.共线向量定理: 2.共面向量: 3.共面向量定理: 4.空间向量分解定理: 三.知识应用 例1在平行六面体ABCD —A 1B 1C 1D 1中,AB = a ,AD =b ,1AA =c ,P 是CA 1的中点,M 是CD 1的中点,N 是C 1D 1的中点,点Q 在CA 1上,且CQ :QA 1=4:1, 用基底{a 、b 、c }表示以下向量: (1)AP ,(2)AN ,(3)AQ 练习:1.已知平行六面体ABCD —A 1B 1C 1D 1,设,AB = a ,AD =b ,1AA =c 用基底{} ,,a b c 表示如下向量 : (1) 111,,,AC AB A D DC (2)AG (G 是侧面CC 1D 1D 的中心) 2.已知空间四边形OABC 中,M,N 分别是对边OA,BC 的中点,点G 在MN 上,且MG=2GN.设OA=,a ,OB b = ,OC c =试用基底{} ,,a b c 表示OG 例2.已知向量a =1e -22e +33e ,=21e +2e ,=61e -22e +63e , 判断a +b 与c 能否共面或共线?c -3b 与b -2a 能否共面或共线?

3 . 已知2,a i j k =-+ 32,b i j k =-++ -37c i j =+ 证明这三个向量共面。 4.已知三个向量a ,b ,c 不共面,并且p a b c =+-,235q a b c =--,71822r a b c =-++,向量p ,q ,r 是否共面? 例 3.已知矩形ABCD,P 为平面ABCD 外一点,且P A ⊥平面ABCD,M,N 分别为PC,PD 上的点,且 PM=2MC,PN=ND 求满足MN=x AB y AD z AP ++的实数x,y,z 的值。 5 已知平行六面体ABCD —A 1B 1C 1D 1 (1)化简112 23 AA BC AB ++并在图上标出其结果。(2)设M 是底面ABCD 的中心,N 是侧 面BCC 1B 1对角线BC 1上的 3 4 分点,设1MN AB AD AA αβλ=++试求,,αβλ的值。 练习巩固: 1.“a =x b ”是“向量a 、b 共线”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既非充分也非必要条件 2.满足下列条件,能说明空间不重合的A 、B 、C 三点共线的是 ( ) A.AB →+BC →=AC → B.AB →-BC →=AC → C.AB →=BC → D .|AB →|=|BC →| 3.已知{a ,b ,c }是空间向量的一个基底,则可以与向量p =a +b ,q =a -b 构成基底的向量是 A .a B .b C .a +2b D .a +2c 4.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是 ( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、D D .A 、C 、D 5.在下列等式中,使点M 与点A ,B ,C 一定共面的是 ( ) A.OM →=25OA →-15OB →-15OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC →=0 D.OM →+OA →+OB →+OC → =0 6.已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若由OP →=15OA →+23OB →+λOC → 确定的一点P 与A , B , C 三点共面,则λ=________. 7.在以下3个命题中,真命题的个数是________. ①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面. ②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线. ③若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底. 8.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD → =2e 1-e 2,若A ,B ,D 三点共

空间向量基本定理及其应用

空间向量基本定理及其应用 教学目的: 1、了解空间向量基本定理; 2、能利用基向量法解一些简单的空间问题. 教学重点: 教学难点: 教学过程: 一、复习引入: 1、(1)向量的平行四边形法则: (2)向量的三角形法则: (3)向量的多边形法则: 2、平面向量基本定理:在平面上,取两个不共线的向量1e 、2e 作基底,则平面内的任一向量a 都可以用1e 、2e 表示,即存在唯一的实数x 、y ,使得12a xe ye =+. 二、讲授新课: 1、空间向量基本定理:在空间,取三个不共面的向量1e 、2e 、3e 作基底,则空间的任一向量a 都可以用1e 、2e 、3e 表示,即存在唯一的实数x 、y 、z ,使得123a xe ye ze =++. 2、将ABCD (包括它的内部)按向量a 平移到A B C D ''''的轨迹所形成的几何体叫做平行六面体,记作平行六面体 ABCD A B C D ''''-. 它的六个面都是平行四边形, 每个面的边叫做平行六面体的棱 三、讲解范例: 例1、三棱锥P-ABC 的三条侧棱PA 、PB 、PC 两两垂直,求证:ΔABC 为锐角三角形.

例2、设两异面直线a 、b 所成的角为θ,直线a 上两点A 、B 在b 上的射影分别是A′、B′, 则cos θ= A B AB '' . 证:∵AA′⊥A′B ′, BB ′⊥A′B ′, ∴cos = || | | AB A B AB A B '' ?'' =()|| | |AA A B B B A B AB A B ''''''++?''=2|||||| | ||| A B A B AB A B AB ''''= '', 故cos θ= A B AB '' . 练习:三棱锥P-ABC 中,PA ⊥平面ABC ,∠ACB=90°且PA=AC=BC=a ,则异面直线PB 与 AC 所成角的正切值等于________.答:2 例3、已知平行六面体ABCD A B C D ''''-中, 4,3,5,90AB AD AA BAD '===∠=, 60BAA DAA ''∠=∠=, (1)用向量AB 、AD 、AA '表示AC '; (2)求AC '的长 解:(1)AC AB BC CC AB AD AA '''=++=++ (2)22 ||()AC AB AD AA ''=++ 222||||||222AB AD AA AB AD AB AA AD AA '''=+++?+?+? 222435243cos90245cos60235cos60 =+++???+???+??? 169250201585=+++++= 所以,||85AC '= 例4、已知O 为空间任意一点,G 为ΔABC 的重心,试用向量OA 、OB 、OC 表示OG ; A B A′ B ′ a b

泛函分析第3章--连续线性算子与连续线性泛函

泛函分析第3章--连续线性算子与连续线性泛函

第3章 连续线性算子与连续线性泛函 本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。 3.1 连续线性算子与有界线性算子 在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵 111212122212n n m m mn a a a a a a A a a a ?? ? ? = ? ??? L L M M M L 对n E 中的向量起作用来达到的。同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。 [定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){} ,y y Tx x D T =∈为算子的值域,记作()T D 或TD 。 若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+?∈ (2)()()(),T x Tx F x D T ααα=?∈∈ 称T 为线性算子。对线性算子,我们自然要求()T D 是X 的子空间。特别地,如果T 是由X 到实数(复数)域F 的映射时,那么称算子T 为泛函。 例 3.1 设X 是赋范线性空间,α是一给定的数,映射:T x x α→是X 上的线性算子,称为相似算子;当1α=时,称T 为单位算子或者恒等算子,记作I 。 例3.2 [],x C a b ?∈,定义()()t a Tx t x d ττ=? 由积分的线性知,T 是[],C a b 到[],C a b 空间中的线性算子。若令 ()()[](),b a f x x d x C a b ττ =?∈?

相关主题
文本预览
相关文档 最新文档