当前位置:文档之家› 空调系统中各种风量的关系

空调系统中各种风量的关系

空调系统中各种风量的关系
空调系统中各种风量的关系

一般净化空调可以按照换气次数计算风量

舒适性空调不要用。

“送风量包括新风量和回风量,新风量包括排风量、渗透风量、维持正压的风量。”

更正:渗透和维持正压是一个风量

有人又说“渗透和维持正压不是一个风量?如果两者平衡的话那就是室内和外界的压差为0 怎么保证5-10Pa的正压要求呢?

答:两者的确是一个概念。其实“要保证5-10Pa的正压”,就是要计算需要多少的渗透风量。

对于有空调的房间,考虑通风时,应该是排风量略小于新风量,以利空调房间保持正压。

实际上,保持正压时,新风量=排风量+渗透风量,所以,新风量肯定大于排风量;反过来,保持负压式,新风量=排风量-渗透风量,所以,新风量肯定小于排风量。

排风量应该小于新风量保持房间正压,那大概小多少呢,有具体数值吗?

答:一般取新风量的80%就OK 了。

新风量一般按总风量的10%选,估算的时候可以采用新风量取容积的10%来算。

换气次数=新风量+循环风量(回风量)=排风量+渗透风量+循环风量(回风量),所以,换气次数不等于新风量。新风是为了满足卫生要求而设计的,换气次数是通风要求的,等于送风量除以房间容积,与新风量没有直接关系。

VAV变风量空调系统原理、特点、选型

VAV变风量空调系统原理、特点、选型VAV变风量集中空调系统,是相对于传统的定风量集中空调系统较先进的一种空调方式,是通过改变送入被控房间的风量(送风温度不变)来消除室内的冷、热负荷,保证房间的温度达到设定值并保持恒定,例如,夏季当室内温度高于设定值时就提高送风量,反之减小送风量;冬季当室内温度高于设定值时就减小送风量,反之提高送风量;VAV变风量集中空调系统是全空气系统的一种类别,60年代起源于美国,自80年开始在欧美、日本等国得到迅速发展,最重要的原因是变风量空调系统巨大的节能优势。经过十几年的普及和发展,目前变风量空调系统己占据了欧、美、日集中空调系统约30%的市场份额,并在世界上越来越多的国家得到应用。进入90年代以来,采用VAV变风量空调系统技术的多层建筑与高层建筑已达到95%,已被越来越多的中高端楼宇采用,并成为现代化智能化大楼的一部分,这种空调方式可以显著的降低空调系统的能耗和改善空调系统的性能,提高空调系统的舒适度。 一、VAV变风量空调系统组成:变风量空调系统有各种类型,他们均由四个基本部分构成:变风量末端装置(变风量空调箱、房间温控器)、空气处理及输送设备、风管系统(新风/排风/送风/回风管道)及自动控制系统。变风量空调系统基本构成图 二、VAV变风量空调系统原理:在空调系统中冷机风机、水泵是主要的耗电设备,要想降低空调系统的能耗,只能从这些设备中去考虑,而从根本上来说,空调系统的总能耗的多少最终是由室内达到的温湿度环境决定的,即空调系统的能耗维持着建筑物内温湿度与室外温湿度的差,要想降低空调系统能耗,必须首先从根本上,即合理的室内温湿度环境上进行分析研究,显 2 然最理想的模式就是任何情况下所需求的等于所供给的,VAV变风量空调系统的基本原理正是通过改变送入各房间的风量(改变风量调节温度)来满足室内人员对房间不同温湿度的要求,确保室内温度保持在设计范围内,从而使得空气处理机组在低负荷时的送风量下降,空气处理机组的送风机转速也随之而降低,并自动适应室外环境对建筑物内温湿度的影响,真正达到所需即所供,据国外多年成熟工程案例测算,总能耗相比FC+新风空调系统可节约30%~40%,节能效果非常显著。 三、VAV变风量空调系统的优点(详见VAV系统与FC+新风系统技术分析表)变风量空调系统区别于其它空调形式的优势主要表现在以下几个方面: 1、节能由于空调系统在全年大部分时间里是在部分负荷下运行,而变风量空调系统是通过改变送风量来调节室温的,因此可以大幅度减少送风风机的动力耗能。据模拟测算,当风量减少到80%时,风机耗能将减少到51%;当风量减少到50%时,风机耗能将减少到15%。全年空调负荷率为60%时,变风量空调系统(变静压控制)可节约风机动力耗能78%。 2、新风作冷源因为变风量空调系统是全空气系统,在过渡季节可大量采用新风作为天然冷源,相对于风机盘管系统,能大幅度减少制冷机的能耗,亦可改善室内空气质量。 3、无冷凝水烦恼变风量空调系统是全空气系统,冷水管路不经过吊顶空间,避免了风机盘管系统中令人烦恼的冷凝水滴漏和污染吊顶问题。 4、系统灵活性好现代建筑工程中常需进行二次装修,若采用带VAV空调箱装置的变风量空调系统,其送风管与风口以软管连接,送风口的位置可以根据房间分隔的变化而任意改变,也可根据需要适当增加风口,而在采用定风量系统或风机盘管系统的建筑工程中,任何小的局部改造都显得很困难。 5、系统噪声低风机盘管系统存在现场噪声,而变风量空调系统噪声主要集中在机房用户端噪声较小。 6、不会发生过冷或过热带VAV空调箱的变风量空调系统与一般定风量系统相比,能更有效地调节局部区域的温度,实现温度的独立控制,避免在局部区域产生过冷或过热现象。 7、可实现远程集中监控,提高楼宇智能化程度采用DDC数字控制的变风量空调系统,可以实现计算机联网运行,接入到楼宇自控系统中,从而提高楼宇智能化程度。

洁净空调风量计算2

洁净空调工程风量计算 时间:2009-10-1618:57来源:互联网 作者:乔雨 点击:179次 洁净工程(洁净室)风量计算介绍了洁净室的风量计算原理,计算步骤。正压洁净室送风量计算,系统送风量计算,系统新风量计算,有害气体允许最高浓度,系统的回风(循环风)量计算 洁净工程(洁净室)风量计算 洁洁净工程(洁净室)风量计算是在已知洁净级别或允许菌浓等条件下计算风量。(1)已知条件: 1、净度级别或菌浓度; 2、卫生要求,静压差要求; 3、由冷负荷选空调设计的制冷是否有余量; 4、人员数,静动比要求,发尘和发菌量等。 (2)计算内容: 1、送风量,新风量,循环风量; 2、发尘量和发菌量; (3)洁净度级别,菌浓度校核。 如下图所示: 一、正压洁净室送风量QⅠ计算 1.乱流洁净室送风量计算Q1-1 乱流洁净室——1000级、10000级、100000级、300000级的洁净室,送风量是以换气次数为准来计算的:

QⅠ-1=K V 式中:K——换气次数; V——洁净室净体积; N——非单向流洁净室稳定含尘浓度; G——洁净室内单位体积发尘量; M——室外空气含尘浓度; S——回风量与送风量之比; ηH——回风通路上过滤器的总效率; ηX——新风通路上过滤器的总效率。 实际工程计算中换气次数K很难用以上公式计算,一般均采用经验换气次数。在各国的洁净室标准中,相同级别的非单向流洁净室的经验换气次数并不相同。国标《洁净厂房设计规范》(G B50073-2001)中明确规定了不同级别的非单向流洁净室洁净送风量计算所需的经验换气次数,见下表: 注:① 换气次数适用于层高小于4.0m的洁净室。 ② 室内人数少、热源小时,宜采用下限值。 ③ 大于100000级的洁净室换气次数不小于12次。 二、系统送风量QⅡ计算 系统送风量应在洁净室送风量基础上再加上系统漏风量。对于严格按《洁净室施工及验收规范》制作安装的风道系统和空调设备,建议其漏风率取下表数值: 漏风率(%) 洁净度级别 系统 空调设备 总计εΣ 低于1000级 1000级到低于100级 4 2 1 2 1 1 4 2 2 空气洁净度等级 G B 50073-2001I S O/D I S14644 —4 医药洁净厂房设 计规范 6级(1000级) 50~6025~56 7级(10000级)15~2511~25≥25 8级(100000级)10~153.5~7≥15 9级(1000000级)10~153.5~7≥12

变风量空调系统的优缺点

在各种空调方式中,VAV 空调系统有其自身的优点: 1、由于空调系统大部分时间在部分负荷下运行,所以风量的减少带来了风机能 耗的降低和末端设备里的再加热器能耗的降低; 2、能实现局部区域的灵活控制; 3、利用系统多样性,可使中央系统的初始成本低; 4、同样,由于可利用系统的多样性,今后扩展的成本大大降低; 5、系统是自平衡的(Self2balancing) ,等等。 因此,国外智能大厦的空调系统多采用VAV 空调系统, 或与CAV 空调系统、FCU 空调系统相结合的方式。 虽然VAV 空调系统具有上述优点,但是它的控制却最复杂。目前,VAV 空调系统的控制方式基本上采用多个回路的PID控制。在系统模型参数变化不大的情况下,PID 控制效果良好。但是,VAV 空调系统是一个干扰大的、高度非线性的、不确定性系统,这是由于: 1、外界气候和空调区域里的人员活动的变化很大,对系统形成很大的干扰; 2、空气调节过程是高度非线性的;各执行器的运行特性也是非线性的; 3、各个控制回路之间耦合强烈,完全解耦是不可能的; 4、随着时间的推移,设备会老化和更换,从而造成系统参数的变化。 5、在许多系统里,系统的数学模型很难建立。 1. 1 VAV 系统的节能研究 20 世纪70 年代到90 年代,主要集中研究它的能耗情况,即与定风量(CAV) 空调系统和风机盘管系统比较节能效果。与CAV 空调系统相比,VAV 系统可以不需或减少再热量,降低送风量,从而减小风机能耗,降低制冷负荷等。此外,VAV系统还可以通过消除过冷、回收灯光的热量而节能[1 - 3 ] 。Wallace 等人提出在高层建筑的VAV系统中引入建筑能耗监控系统和计算机控制,可以优化节能效果。风机能耗在VAV 系统中占很大的比重,因此对风机采取有效的调节措施,降低风机能耗是增强VAV 系统节能效果的重要途径。 目前,风机调节主要采用调节风机入口导流叶片角度和变风机转速两种方法, Englander 和Norford 比较了二者的节能效果,并用动态模拟软件HVACSIM + 进行了模拟计算,结果表明,采用变转速调节要比采用调节风机进口导流叶片角度节能30 % ,而且变转速调节与DDC 结合效果会更好。加州能源委员会总结多年的VAV 设计经验,认为风机的调节方式对能耗的影响比风机类型的影响大,而且指出变转速调节与变静压控制方式结合节能效果显著。 1. 2 VAV 系统送风量的控制研究 VAV 系统是通过改变送入室内的送风量来实现对室内温度调节的空调系统,因此风量控制是VAV 系统控制的关键环节,它关系着整个系统的能耗情况和系统的稳定性和可靠性。目前总送风量的控制方法主要有两种:静压控制法和风量控制 法。 1. 2. 1 静压控制法 静压控制法又分为定静压法和变静压法。定静压控制由于简单、运行可靠,目前仍作为一种主要的控制方法在变风量系统中得到普遍采用,但不利于风机节能。变静压法可以最大限度地降低能耗,节能效果显著。Tung 和Wang 等人介绍

变风量(VAV)空调系统简介

变风量(V A V)空调系统简介 变风量(Variable Air V olume)空调系统是一种通过改变送风量来调节室内温湿度的空调系统。Dleta控制公司是世界上首家设计、制造出一体化(即集控制器、执行机构和流速传感器于一身)的V A V控制器的BA产品制造商。变风量空调系统60年代起源于美国,自80年代开始在欧美、日本等国得到迅速发展,最重要的原因是变风量空调系统巨大的节能优势。经过十几年的普及和发展,目前变风量空调系统己占据了欧、美、日集中空调系统约30% 的市场份额,并在世界上越来越多的国家得到应用。进入90年代以来,采用V A V 技术的多层建筑与高层建筑已达到95%。变风量空调系统由空气处理机组、新风/排风/送风/回风管道、变风量空调箱、房间温控器等组成,其中变风量空调箱是该系统的最重要部分。 一、变风量空调系统(V A V)的优势变风量空调系统区别于其它空调形式的优势主要在以下几个方面: 1、节能由于空调系统在全年大部分时间里是在部分负荷下运行,而变风量空调系统是通过改变送风量来调节室温的,因此可以大幅度减少送风风机的动力耗能。据模拟测算,当风量减少到80% 时,风机耗能将减少到51%;当风量减少到50%时,风机耗能将减少到15%。全年空调负荷率为60% 时,变风量空调系统(变静压控制)可节约风机动力耗能78%。 2、新风作冷源因为变风量空调系统是全空气系统,在过渡季节可大量采用新风作为天然冷源,相对于风机盘管系统,能大幅度减少制冷机的能耗,亦可改善室内空气质量。 3、无冷凝水烦恼变风量空调系统是全空气系统,冷水管路不经过吊顶空间,避免了风机盘管系统中令人烦恼的冷凝水滴漏和污染吊顶问题。 4、系统灵活性好现代建筑工程中常需进行二次装修,若采用带V A V空调箱装置的变风量空调系统,其送风管与风口以软管连接,送风口的位置可以根据房间分隔的变化而任意改变,也可根据需要适当增加风口。而在采用定风量系统或风机盘管系统的建筑工程中,任何小的局部改造都显得很困难。 5、系统噪声低风机盘管系统存在现场噪声,而变风量空调系统噪声主要集中在机房,用户端噪声较小。 6、不会发生过冷或过热带V A V空调箱的变风量空调系统与一般定风量系统相比,能更有效地调节局部区域的温度,实现温度的独立控制,避免在局部区域产生过冷或过热现象。 7、提高楼宇智能化程度采用DDC数字控制的变风量空调系统,可以实现计算机联网运行,接入到楼宇自控系统中,从而提高楼宇智能化程度。 8、减少综合性初投资由于增加了系统静压控制以及V A V空调箱等环节,设备控制上的造价会有所提高。但由于变风量空调系统可以根据冷热负荷的分布,使送风量在建筑物内各个控制区域间平衡转移,从而使系统的设计总送风量减少,因此可以减小空调系统的设备容量,系统综合性初投资不一定会增加,甚至可以降低。 9、变风量空调系统结构简单,维修工作量小,使用寿命长。 二、变风量空调系统(V A V)控制原理变风量控制器和房间温控器一起构成室内串级控制,采用室内温度为主控制量,空气流量为辅助控制量。变风量控制器按房间温度传感器检测到的实际温度,与设定温度比较差值,以此输出所需风量的调整信号,调节变风量末端的风阀,改变送风量,使室内温度保持在设定范围。同时,风道压力传感器检测风道内的压力变化,采用PI或者PID调节,通过变频器控制变风量空调机送风机的转速,消除压力波动的影响,维持送风量。 三、变风量空调系统(V A V)常用控制方式 1、定静压控制工作原理:保证系统风道内某一点(或几点平均)静压一定的前提下,室内所需风量由V A VBOX风阀调节;系统送风量由风道内静压与该点所设定值的差值控制变

通风与空调系统调试[详细]

4—13通风与空调系统调试工艺标准 (413—1998) 1 范围 本工艺标准适用于通风与空调系统调试及运行. 2 施工准备 2.1 仪器仪表要求及主要仪表工具: 2.1.1 通风与空调系统调试所使用的仪器仪表应有出厂合格证明书和鉴定文件. 2.1.2 严格执行计量法,不准在调试工作岗位上使用无检定合格印、证或超过检定周期以及经检定不合格的计量仪器仪表. 2.1.3 必须了解各种常用测试仪表的构造原理和性能,严格掌握它们的使用和校验方法,按规定的操作步骤进行测试. 2.1.4 综合效果测定时,所使用的仪表精度级别应高于被测对象的级别. 2.1.5 搬运和使用仪器仪表要轻拿轻放,防止震动和撞击,不使用仪表时应放在专用工具仪表箱内,防潮湿防污秽等. 2.1.6 测量温度的仪表;测量湿度的仪表;测量风速的计仪表;测量风压的仪表;其它常用的电工仪表、转数表、粒子计数器、声级仪、钢卷尺、手电钻、活扳子、改锥、克丝钳子、铁锤、高凳、手电筒、对讲机、计算器、测杆等. 2.2 作业条件 2.2.1 通风空调系统必须安装完毕,运转调试之前会同建设单位进行全面检查,全部符合设计、施工及验收规范和工程质量检验评定标准的要求,才能进行运转和调试. 2.2.2 通风空调系统运转所需用的水、电、汽及压缩空气等,应具备使用条件,现场清理干净. 2.2.3 运转调试之前做好下列工作准备: 2.2. 3.1 应有运转调试方案,内容包括调试目的要求,时间进度计划,调试项目,程序和采取的方法等; 2.2. 3.2 按运转调试方案,备好仪表和工具及调试记录表格; 2.2. 3.3 熟悉通风空调系统的全部设计资料,计算的状态参数,领会设计意图,掌握风管系统、冷源和热源系统、电系统的工作原理. 2.2. 3.4 风道系统的调节阀、防火阀、排烟囱、送风口和回风口内的阀板、叶片应在开启的工作状态位置. 2.2.4 通风空调系统风量调试之前,先应对风机单机试运转,设备完好符合设计要求后,方可进行调试工作. 3 操作工艺 3.1 调试工艺程序如下:

空调房间送风状态的确定及送风量的计算

3.7空调房间送风状态的确定及送风量的计算 在已知空调区冷(热)、湿负荷的基础上,确定消除室内余热、余湿,维持室内所要求的空气参数所需的送风状态及送风量,是选择空气处理设备的重要依据。 3.7.1空调房间送风状态的变化过程 在空调设计中,经常采用空气质量平衡和能量守恒定律来进行空调系统的一些能量问题分析 图3-10表示一个空调房间的热湿平衡示意图,房间余热量(即房间冷负荷)为Q (kW),房间余湿量(即房间湿负荷)为W (kg /s),送入m q (kg/s)的空气,吸收室内余热余湿后,其状态由O(h O ,d O )变为室内空气状态N(h N ,d N ),然后排出室外。 图3-10 空调房间的热湿平衡 当系统达到平衡后,总热量、湿量均达到了平衡,即 总热量平衡 ?? ???-==+O N m N m O m h h Q q h q Q h q (3-43) 湿量平衡 ?? ???-==+O N m N m O m d d W q d q W d q (3-44) 式中 m q ——送入房间的风量(kg/s ); Q ——余热量(kW ); W ——余湿量(kg/s ); O O d h ,——送风状态空气的比焓值(kJ/ kg )和含湿量(kg/kg ); N N d h ,——室内空气比焓值(kJ/ kg )和含湿量(kg/kg )。 同理,可利用空调区的显热冷负荷和送风温差来确定送风量。 )(O N p m t t C Q q -= (3-45) 式中 Q ——显热冷负荷(kW ); C p ——空气的定压比热容[ 1.01 kJ/ (kg ?K)]。 上述公式均可用于确定消除室内负荷应送入室内的风量,即送风量的计算公式。图3-11 为送入室内的空气(送风)吸收热、湿负荷的状态变化过程在h-d 图上的表示。图中N 为室内状态点,O 为送风状态点。热湿比或变化过程的角系数为 s R O N d d h h W Q --==)(ε (3-46) 由上可得,送风状态O 在余热Q ,余湿W 作用下,在h-d 图上沿着过室内状态点N 点且/Q W ε=的过程线变化到N 点。

空调风量计算方法解析

空调风量计算方法 新风量计算方法 某计算机房面积:S=65(㎡)净高h=3(米),人员n=25(人); 每人所需新风量:[取每人所需新风量q=30(m3/h)]; 总新风量:Q1=n×q=25×30=750(m3/h); 房间新风换气次数计算:[取房间新风换气次数盘p =4(次/h)],则新风量 Q2=p.s.h=4×65×3=780(m3/h); 由于Q2>Q1故取Q2作为设备选项型的依据; 注:房间体积计算公式:体积=长×宽×送风口以下的高度 房间体积×要求换风次数应选用的新风热交换器台数或送排风机台数= 单台全热交换器额定新风量

新风量推荐值510152533最小值36102522 新风换气次数参考表 房间类型 不吸烟少量吸烟大量吸烟 公寓 /别墅 商场计算机房体育馆病房 公寓 /别墅 办公室餐厅 KTV /酒吧 /宾馆 会议室 房间新风换气次数0.4~0.71.6~3.91.1~2.72.5~6.30.5~1.30.5~1.01.1~2.71.3~3.11.9~4.72.1~7.8空调环境不同类型建筑新风量标准(新风量:m3/h.人) 宾馆类建筑空调室娱乐建筑类空调室办公建筑类空调室民居类建筑空调室房间类型新风量房间类型新风量房间类型新风量房间类型新风量宾馆/客房30~50练功房/健身房60~80一般办公室30一般别墅公寓30接待室30~50壁球/网球40高级办公室30~50高级别墅公寓50餐厅/宴会厅15~30棋牌室/台球室40~50会议/接待室30~50商场15~25咖啡厅20~50游泳池50电话总机房30病房50多功能厅15~25游戏机房40~50计算机房30教室11~30商务中心10~20休闲/录像厅20复印机房30展览馆20~30门厅/大堂10按摩室30实验室20~30影剧院15~25美容室35更衣室30 歌厅/KTV30~50酒吧17~50 舞厅30夜总会20 典型安装示意图:

VAV变风量空调系统难点解析要点

VAV变风量空调系统难点解析 第一节 VAV空调系统概述 变风量VAV 中央空调是指空调系统根据区域负荷变化和要求,自动调整送风量的一种空调系统。其最大优点是节能显著,素有“节能之王”的美称;同时还具有使用舒适灵活,可用新风作冷源等优点。 变风量空调系统60年代起源于美国,自80年代开始在欧美、日本等国得到迅速发展,最重要的原因是变风量空调系统巨大的节能优势。经过十几年的普及和发展,目前变风量空调系统已占据了欧、美、日集中空调系统约30%的市场份额,并在世界上越来越多的国家得到应用。 变风量空调系统由变风量空气处理机组、新风/排风/送风/回风管道、变风量末端、房间温控器等组成,其中变风量末端是该系统最重要部分。 末端各区域的新风均由空气处理机组提供,为了保持室内空气清新,使用VAV的办公楼一般均禁止吸烟,也禁止随意打开窗户,以防破坏室内风平衡。 由于本项目办公区域采用吊顶回风,故在内装时需考虑回风顺畅、保证空气循环,不要将空间绝对封闭,应留出回风口。 第二节 VAV空调系统的特点及优势 变风量空调系统区别于其它空调形式的优势主要在以下几个方面: 1.节能 由于空调系统在全年大部分时间里是在部分负荷下运行,而变风量空调系统是通过改变送风量来调节室温的,因此可大幅度减少送风风机的动力耗能;同时在确定系统总风量时,还可以考虑一定的同时使用情况,所以能够节约风机运行能耗和减少风机装机容量。对不同的建筑物同时使用系数可取0.8 左右可以节约空调系统的总装机容量10%—30% 左右。有关文献介绍VAV 系统与定风量系统相比大约可以节能30%—70%,据实际测算当风量减少到80% 时,风机耗能将减少到约51% ;当风量减少到50% 时,风机耗能将减少到约15%;若全年空调负荷率只有60% 时,变风量空调系统可节约风机动力耗能75%。例如对于商场以空调机组每周运行100小时计,单位装机容量的节电量一年可达4000 度/Kw;对于写字楼以每周运行60小时计,单位装机容量的节电量也可达2300度/kW。节电效果相当可观,同时还延长了机组使用寿命。 2.舒适性高能实现各局部区域的灵活控制 可以根据负荷的变化或个人的要求自行设置环境温度,与一般空调系统相比能更有效地调节局部区域的温度,实现温度的独立控制,避免在局部区域产生过冷或过热现象,并由此可以减少制冷和供热负荷15%—30%。

中央空调计算公式

房间面积、层高(吊顶后)和房间换气次数三者的乘积即为房间的循环风量。利用循环风量对应风机盘管高速风量,即可确定风机盘管型号。 根据单位面积负荷和房间面积,可得到房间所需的冷负荷值。利用房间冷负荷对应风机盘管的高速风量时的制冷量即可确定风机盘管型号。 波纹补偿器也称伸缩节、膨胀节、补偿器,主要分为:波纹补偿器、套筒补偿器、旋转补偿器、方形自然补偿器等几大类型,其中以波纹补偿器较为常用,主要为保障管道安全运行,具有以下用途: 1.补偿吸收管道轴向、横向、角向热变形。 2.吸收设备振动,减少设备振动对管道的影响。 3.吸收地震、地陷对管道的变形量。 注意:注意不能用波纹补偿器来调节管道安装误差! 管道工程常用的补偿器有自然补偿器、波形补偿器、方形和Ω型补偿器、填料式补偿器、球形补偿器。 膨胀节属于方形补偿器,软管不属于补偿器范围。 金属软管用于需要减少震动的场合,广泛用于中央空调泵、消防泵、生活给水泵的进出口,有效地减少主机震动、吸收管道噪音、保护设备、延长设备使用寿命,具有:耐用、耐高温、耐高压、防腐、环保等优点。一定长度的金属软管还可以有效的横向位移,可用于沉降或伸缩的场合。管径:DN15- DN12000 (无推力减震波纹软接头也可以用) 不锈钢减震波纹补偿器是首航公司经过多年的研究,结合市场的需要,将不锈钢与橡胶进 行优化结合,形成一种刚柔相济,耐用环保的新型专利产品。广泛用于中央空调泵、消防泵、生活给水泵的进出口,有效地减少主机震动、吸收管道噪音、保护设备、延长设备使用寿命,具有:耐用、耐高温、耐高压、防腐、环

保等优点。有效地解决了老式橡胶软接头所带来的不卫生,易老化,耐压不稳定、易脱层撕裂、爆破等不良因素,解决了泵房的后顾之忧。 二、应用范围: 1.各类泵、阀、空压机的进出口; 2.各类消防配管、空调配管、蒸汽配管等; 3.一般工厂配管和需要柔性连接的场合; 4.生活用水配管和需要卫生的场合; 5.机械设备配管需要减震和补偿热位移的场合。 三、结构特点: 1.波纹管形为“S”形波,柔性大,刚性大,无应力集中; 2.本产品从DN32—DN80一边松套法兰,特别是DN100以上采用无环焊接结构,从而避免冷作硬化。有效解决波纹管焊接点的脆性所造成的易破、易漏等问题。延长波纹管的使用寿命; 3.法兰边缘有三——四个均匀分布的碗状凸耳,并配以拉杆,从而增强波纹管的工作压力; 4.每个碗状凸耳内装上一个优质减震橡胶垫,避免震动波经过拉杆传导,从而提高产品吸收管道噪音,减少震动的性能; 5.拉杆结构:两边带螺帽的螺丝向中间的管形螺母连接,从而起到调节波纹管长短、限制波纹管伸缩量的使用。易于安装。 四、选型说明: 1.本产品适用于各类泵、阀进出口和管道的柔性连接; 2.本产品是替代橡胶避震喉(软接头)的首选产品;安装、使用、维修方便;3.工作温度-196~450℃,如温度超过这个范围,订货时请注明;

新风系统设计方案和新风量计算方法详解

新风系统设计方案和新风量计算方法详解

4 风管设置情况一般情况下如办公室、住宅 等只设新风管,管路较简 单,餐厅、会议室等新风量 较大的场合需设排风管 设新风管、排风管,管路较 复杂;要求不高时,也可采 用走廊回风 一般情况下如办公室、住 宅等只设新风管,管路较 简单,餐厅、会议室等新 风量较大的场合需设排风 5 使用寿命零部件及整机进行了全面的 检测,寿命长达20年 热交换元件是以多孔纤维性 材料加工的纸作为基材制成 的,寿命较短 寿命较长 6 造价及运行费用需设置室外机,新风系统的 造价较高,但空调系统(不 包括新风系统)的造价较 低,运行费用稍高 新风系统的造价比①低,但 空调系统的造价比①高,运 行费用低 新风系统的造价最低,但 空调系统的造价最高,运 行费用稍低 7 使用范围制冷: 20℃~43℃,低于2 0℃自动转换为通风; 制热: -5℃~15℃,高于 15 ℃自动转换为通风;低 于-5℃,系统停机 在空气焓湿图上,室内、室 外两个状态点的连线与饱和 曲线相交时,冷凝水会形成 在热交换元件上,此时,不 宜使用,因此,(1)当室 外温度低于-10℃~-15℃ 时,有可能会出现凝水、结 霜,设计时必须仔细校核, 必要时应在新风进风管上设 空气预热器;(2)当室内 空气的相对湿度较大(如浴 室)且室外温度较低时,有 可能会出现凝水,此时,不 宜使用 当室内机不使用时,直接 送新风易造成室内温度过 高或过低,特别在冬季, 由于室内温度过低,室内 机不易开启,室内达到空 调设定温度的时间加长, 影响空调效果 另外,显热交换器有时也会采用,与全热交换器相比,其优点为:热交换元件 是以交叉叠放的铝箔波纹板作为基材制成的,寿命长;其缺点为:只能回收显热,不能回收潜热,焓效率较低。 (3)通过以上对比,可以看出,“风机箱直接送风”这种新风方案,处理不当会造成室内舒适度下降,实际工程中应用较少;对于新风处理机和全热交换器这两种方案,应首选新风处理机,因为该方案将室外新风处理到室内设计状态,处理效果最好,最规范。 1.3 除以上三种外,其它新风方案有: (1)选用风冷热泵水机和水盘管的新风机组;

冷梁空调系统简介汇总

冷梁空调系统
主动型冷梁空调系统 巴科尔主动型冷梁系统是一种集制冷、供热和通风功能为一体的空调系统,它能够提供良好的室内气候 环境及单独区域的控制。一次风主要用来对消除室内湿负荷,同时也可以供热、供冷和保证新风;末端 换热盘管用来进行室内热/冷负荷的处理。图 1 为主动型冷梁空调系统示意图。冷梁系统集高舒适度、低 噪音、节能和低维护的优点于一体。主要包括标准主动型冷梁、多功能组合式冷梁、玄关吊顶式安装的 水平诱导单元、地板式诱导单元等几种型式,以满足不同建筑美观及功能的需求。 图 2 为主动型冷梁末端工作原理图。从中央空气处理机组(AHU)送到主动型冷梁末端的空气被称之 为一次风。一次风以恒定风量和相对较低的静压条件被送至冷梁末端。一次风通过末端单元内的一排喷 嘴(可调节)送入混合腔体内,通过喷嘴的高速气流在混合腔内产生负压区域,从而诱导室内空气经过 换热盘管后与一次风混合,然后经出风口送入房间内。
图 1 主动型冷梁空调系统示意图
图 2 主动型冷梁末端工作原理图
系统能得到实实在在的能源节约,因为在换热盘管中使用相对较高温度的冷水,这可以在初投资和 冷水主机的运行成本上得到很大的节约。同时它能保证末端换热盘管在干工况下工作,避免出现和其它 系统一样因为冷凝水而带来的维护和卫生方面的问题,譬如风机盘管系统的冷凝水问题。输送的风量大 大减少从而节省了风机能量,因为该系统不依靠空气来弥补显热负荷,这可以使得一次风的需求量可以 减少到仅用来进行通风、湿度控制和诱导室内回风气流。因为它节能的特点,这个系统在欧洲变得越来 越普及。 同时还因为它气流需求量很低, 所以能使用 100%的新风作为一次送风来源, 可以提高空气品质, 因此该系统很适合用于医院或者医疗场所等需要减少空气流通而交叉感染的场所。 巴科尔有全系列的主动型冷梁, 它们的名义标准宽度为 300mm 和 600mm, 长度为 1200~3000mm, 能与市场大多数的吊顶天花配置互相匹配。巴科尔的冷梁使用特殊喷嘴组合技术来使得每个冷梁的制冷 能力可以单独改变。

变风量空调系统控制_杨国荣

暖通空调自动控制暖通空调HV&AC 2012年第42卷第11期15  变风量空调系统控制 华东建筑设计研究院有限公司 杨国荣☆ 摘要 简述了变风量末端装置控制的功能和传感器设置。详细阐述了变风量空气处理机组基本控制要求、控制原理图及风量控制方法。介绍了新风的控制要求、控制原理图及最小新风量的控制要求。 关键词 变风量空调系统 末端 空气处理机组 控制 方法 原理 最小新风量Control of variable air volume air conditioning system By Yang Guorong★ Abstract Briefly describes the function of VAV terminals and sensor setting.Expounds the basiccontrol requirement,control principle chart and air volume control methods of VAV air handling units.Represents the control requirement and control principle chart of outdoor air and the minimum outdoor airrate demand. Keywords VAV air conditioning system,terminal,air handling unit,control,method,principle,minimum air rate ★East China Architectural Design &Research Institute Co.,Ltd.,Beijing,China 0 引言 自20世纪90年代上海13栋高层及超高层办公建筑采用变风量空调系统[1]起,变风量空调系统逐渐在高级办公建筑中得到应用。到21世纪初,变风量空调系统已普遍应用在高级、高层办公建筑。近年来,变风量空调系统开始应用到别墅等非办公类民用建筑中。 变风量空调技术的发展与其控制技术的发展同步进行,自控技术的突破与发展引领了变风量空调技术的发展。自变风量空调系统在我国应用以来,暖通空调和楼宇控制方面许多专家对该系统的控制策略和控制方式进行了大量研究,得到了丰硕的成果,推进了变风量空调技术的发展。《变风量空调系统设计》全面介绍了变风量末端装置及其系统的控制原理和要求[2]。童锡东等人在分析变风量末端装置和空调方式的基础上总结了各种变风量系统的控制特点[3]。陈武等人根据变风量空调系统的热力模型,通过仿真研究建立变风量空调系统的动态模型和风机控制方法[4]。刘涛及胡益雄等人根据变风量空调系统的基本特点,研究了该系统及末端的模糊控制策略[5-6]。李超等人与钱以明等人结合全空气系统特点研究了变风量空调系统新风控制要求的控制策略[7-8]。 在工程实践方面,我国基本建立起从末端装置、控制系统到运行调试的整个变风量空调系统供应体系。数百栋办公建筑采用了变风量空调系统。但是,就已建成的采用变风量空调系统的办公建筑而言,运行和控制效果良好的建筑物不是很多,节能的建筑物很少。究其原因,主要可归纳为以下几方面。 1)设计方面:空调系统设计不合理,不能满足或难以满足空调使用和运行要求;变风量末端装置选型不合理,偏大或偏小;空气处理机组的组合方式不合理,其功能不能满足使用要求,机组的风量或机外余压偏大或偏小;控制策略和控制要求不明确,没有向自控承包商提供要求明确的控制需求信息。 2)业主方面:将变风量系统中的末端装置采购与控制系统采购分开进行,没有一个承包商对整个系统负责;重视末端装置与控制器等硬件设备,轻视调试等软件服务,采购合同中服务部分所占费用比例较低,难以保证系统调试质量。 *☆杨国荣,男,1957年6月生,工学硕士,教授级高级工程师,机电中心主任兼总工程师 200002上海市江西中路246号6楼 (021)63217420-6043 E-mail:guorong_yang@ecadi.com 收稿日期:2012-07-20

空调方案风量计算及风管设计

4.2系统风量计算 4.2.1 FCU+OA系统 对于房间多、层数多的建筑,全由集中空调机房输送处理后的空气进入建筑物去承担热湿负荷虽然可行,但因风道庞大,占空间多而影响建筑物整体的设计,因此可以考虑同时使用空气和水(或冷剂)以负担室内热湿负荷。此时,集中输送的部分仅为热湿处理后的新鲜空气(室外空气),故风道较小。故对于体育馆和多功能会议厅小面积区域采用风机盘管+新风这种半集中式空调系统,详见4.1.2节系统分区结果。 (1)夏季处理过程 具有独立新风系统的风机盘管机组的夏季处理过程有下列两种: 1、新风处理到室内空气焓值,不承担室内负荷; 2、新风处理到低于室内空气的焓值,并低于室内空气的含湿量,承担部分室 内负荷。 如果采用方案一,FCU 处理全部的室内负荷,包括潜热负荷和显热负荷。 如果采用方案二,此时,风机盘管做成显热冷却盘管(又称干盘管),即部分室内显热冷负荷与房间所有湿负荷是由新风负担的。相当于FCU 只需要处理室内的显热负荷。 综上,采用方案二,FCU 压力过大;。因此最终选择方案一,也即将新风处理到与室内等焓的状态点,与处理后的室内空气混合,之后到送入室内,带走室内负荷。 参考图4.1 体育比赛馆一层系统分区示意图,对体育馆一层一区FCU+OA系统进行风量计算,空气处理方案见图4.2 图4.2 体育馆一层一区夏季空气处理过程图

由于本设计方案中采用了新风热回收,因此在风量计算时的新风状态参数应当取经过热回收后的值。根据室内空气n h 线、新风处理后机器露点的相对湿度和风机温升t ?即可定出新风处理后的机器露点L 及温升后的K 点。过室内状态点N 点作热湿比线ε与90%?=线相交(按最大限度提高送风温度考虑),即得送风点O ,新风管道温升取0℃。空气在焓湿图上处理过程如图 4.2所示,这里的W1点为经过热回收装置后的新风状态点(W1点确定见10.1节)。房间风量 () N O G Q h h =-∑,连接L (K )、O 两点,并连接到M 点,使 W F G OM KO G = 式中 W G ——新风量,/kg s ; F G ——风机盘管风量,/kg s 。 故房间总送风量F W G G G =+,而M 点即风机盘管的出风状态点,为了使新风与风机盘管出风有较好的混合效果,应使新风送风口紧靠风机盘管的出风口。 主要参数见表4.3: 表4.3 夏季空气处理过程主要参数 (2) 冬季处理过程 空气处理方案见图4.3

空调房间送风状态的确定及送风量的计算.doc

3.7 空调房间送风状态的确定及送风量的计算 在已知空调区冷 ( 热 ) 、湿负荷的基础上,确定消除室内余热、余湿,维持室内所要求的空气参数所需的送风状态及送风量,是选择空气处理设备的重要依据。 3.7.1 空调房间送风状态的变化过程 在空调设计中,经常采用空气质量平衡和能量守恒定律来进行空调系统的一些能量问题分析 图 3-10 表示一个空调房间的热湿平衡示意图,房间余热量 ( 即房间冷负荷 ) 为 Q (kW) ,房间余湿 量 ( 即房间湿负荷 ) 为 W (kg / s) ,送入 q m (kg/s) 的空气,吸收室内余热余湿后,其状态由 O(h O ,d O ) 变为室内空气状态 N(h N ,d N ) ,然后排出室外。 图 3-10 空调房间的热湿平衡 当系统达到平衡后,总热量、湿量均达到了平衡,即 q m h O Q q m h N 总热量平衡 q m Q (3-43) h N h O q m d O W q m d N 湿量平衡 q m W (3-44) d N d O 式中q m ——送入房间的风量( kg/s ); Q ——余热量( kW ); W ——余湿量( kg/s ); h O , d O ——送风状态空气的比焓值( kJ/ kg )和含湿量( kg/kg ); h N , d N ——室内空气比焓值( kJ/ kg )和含湿量( kg/kg )。 同理,可利用空调区的显热冷负荷和送风温差来确定送风量。 q m Q (3-45) C p (t N t O ) 式中Q ——显热冷负荷( kW ); p ——空气的定压比热容[ 1.01 kJ/ (kg K)] 。 C 上述公式均可用于确定消除室内负荷应送入室内的风量,即送风量的计算公式。图 3-11 为送 入室内的空气 ( 送风 ) 吸收热、湿负荷的状态变化过程在 h-d 图上的表示。图中 N 为室内状态点, O 为送风状态点。热湿比或变化过程的角系数为 Q (h N h O ) (3-46) W d R d s 由上可得, 送风状态 O 在余热 ,余湿 作用下, 在 h-d 图上沿着过室内状态点 N 点且 Q / W Q W 的过程线变化到 N 点。

空调房间送风状态的确定及送风量的计算

空调房间送风状态的确定及送风量的计算

3.7空调房间送风状态的确定及送风量的计算 在已知空调区冷(热)、湿负荷的基础上,确定消除室内余热、余湿,维持室内所要求的空气参数所需的送风状态及送风量,是选择空气处理设备的重要依据。 3.7.1空调房间送风状态的变化过程 在空调设计中,经常采用空气质量平衡和能量守恒定律来进行空调系统的一些能量问题分析 图3-10表示一个空调房间的热湿平衡示意图,房间余热量(即房间冷负荷)为Q (kW),房间余湿量(即房间湿负荷)为W (kg /s),送入m q (kg/s)的空气,吸收室内余热余湿后,其状态由O(h O ,d O )变为室内空气状态N(h N ,d N ),然后排出室外。 图3-10 空调房间的热湿平衡 当系统达到平衡后,总热量、湿量均达到了平衡,即 总热量平衡 ?? ???-==+O N m N m O m h h Q q h q Q h q (3-4 3)

湿量平衡 ?????-==+O N m N m O m d d W q d q W d q (3-44) 式中 m q ——送入房间的风量(kg/s ); Q ——余热量(kW ); W ——余湿量(kg/s ); O O d h ,——送风状态空气的比焓值(kJ/ kg )和含湿量(kg/kg ); N N d h ,——室内空气比焓值(kJ/ kg )和含湿量(kg/kg )。 同理,可利用空调区的显热冷负荷和送风温差来确定送风量。 )(O N p m t t C Q q -= (3-45) 式中 Q ——显热冷负荷(kW ); C p ——空气的定压比热容[ 1.01 kJ/ (kg ?K)]。 上述公式均可用于确定消除室内负荷应送入室内的风量,即送风量的计算公式。图3-11 为送入室内的空气(送风)吸收热、湿负荷的状态变化过程在h-d 图上的表示。图中N 为室内状态点,O 为送风状态点。热湿比或变化过程的角系数为 s R O N d d h h W Q --==)(ε (3-46) 由上可得,送风状态O 在余热Q ,余湿W 作用下,在h-d 图上沿着过室内状态点N 点且/Q W ε=的过程线变化到N 点。

(完整版)定风量空调系统与变风量空调系统有什么区别

定风量空调系统与变风量空调系统有什么区别? xjshuang520258回答的很专业,所谓的变风量空调系统也就是我们通常所称的VAV(Variable Air Volume)空调系统,该系统于60年代在美国诞生,其基本原理是通过改变送入房间的风量来满足室内变化的负荷。在当今特别提倡节能和舒适性的条件下,变风量空调系统正在逐渐被人们接收并得到应用。变风量空调系统主要有以下几个优点: 1、由于变风量空调系统是通过改变送入房间的风量来适应负荷的变化,而空调系统大部分时间的部分负荷下运行,所以风量的减少带来了风机能耗的降低。 2、区别于常规的定风量或风机盘管系统,在每一个系统中的不同朝向房间,它的空调负荷的峰值出现在一天的不同时间,因此变风量空调器的容量不必按全部冷负荷峰值叠加来确定,而只要按某一时间各朝向冷负荷之各的最大值来确定。这样,变风量空调器的冷却能力及风量比定风量可风机盘管系统减少10-20% 。 3、变风量空调系统属于全空气系统,与风机盘管系统相比有明显的好处是冷冻水管与冷凝水管不进入建筑吊顶空间,因而免除了盘管凝水和霉变问题。 ?变风量空调就是“变频空调”,它根据调整的环境温度自动变换出口的风量大小,从而达到在要求的温度范围左右。同时又节约了电。定风量的空调是不可以自动调节的,是用开开停停的方式来保持所调整环境温度范围左右的。 变风量与定风量空调系统之比较 (1)可以根据不同房间的使用要求来独立控制同一风系统中的各房间的温度。而不是象定风量系统中 只能控制总的回风温度。其每个VAV未端装置可自配温度控制,随着所控制区域的温度变化,自动调 节送风量。 (2)综合能效比高,这主要体现在两点: ①同一风系统中,不同房间一般是不可能同时达到最大负荷值,因此尽管每个VAV未端的最大送风量 可按房间最大负荷来选择,但空调机组总送风量应按各房间的逐时负荷之和的最大值来计算而不是象 定风量机组那样送风量为各房间最大送风量之和,因此,从设计上, VAV系统空调机组的送风量的选 择就比定风量空调机组低,使机组尺寸减小,所占机房面积也有所减少;同时,其设计的用电安装容量 下降,电气报装费也将下降。 ②在运行时,随着负荷的降低,VAV未端的风量减少,其空调机组的送风量也相应减少(通常以变频 调速的方式通过出口静压来控制风机转速)。由于一幢建筑的空调负荷(尤其是冷负荷)在全年中只有 大约5%的时间内出现满负荷情况,其余时间均是在低负荷工况下运行,因此,其全年运行的能耗大大降低,这也是VAV系统的一个主要优点。 ③对房间的灵活分隔有利,目前的办公搂多采用大开间设计,而用户通常会按自己的使用要求进行二次 分隔及装修,只要VAV未端的风量与其所在的每个房间的负荷相匹配即可。 与风机盘管加新风空调系统相比,VAV系统有以下特点: (1)室内无水管。众所周知,大陆的施工比发达国家有较大的差距,一幢建筑完工交付使用后,其水 管漏水及冷水管保温不严产生凝结水的现象相当普遍,对房间的使用者极为不利,用风机盘管,水管必然要进入室内,而VAV系统属于全空气系统,这一弊病就自然消除了。 (2)检修工作量减少。数量众多的风机盘管对检修来说是极为困难的,就本工程来说,如果全部采用 风机盘管,需千台以上,而采用VAV系统,仅有几十台空调机组,且其检修都集中在空调机房内进行,

相关主题
文本预览
相关文档 最新文档