当前位置:文档之家› 用PLC和变频器实现电机的变频调速和远程控制

用PLC和变频器实现电机的变频调速和远程控制

用PLC和变频器实现电机的变频调速和远程控制
用PLC和变频器实现电机的变频调速和远程控制

湖南工程学院应用技术学院毕业设计说明书

题目:用PLC和变频器实现电机的变频调速和远程控制

专业班级:自动化0481

学生姓名:学号:

完成日期:2008年6月

指导教师:

评阅教师:

2008年 6月

湖南工程学院应用技术学院毕业设计(论文)

诚信承诺书

本人慎重承诺和声明:所撰写的《用PLC和变频器实现电机的变频调速和远程控制》是在指导老师的指导下自主完成,文中所有引文或引用数据、图表均已注解说明来源,本人愿意为由此引起的后果承担责任。

设计(论文)的研究成果归属学校所有。

学生(签名) 2008年6 月8 日

湖南工程学院应用技术学院

毕业设计(论文)任务书

设计(论文)题目:用PLC和变频器实现电机的变频调速和远程控制

姓名王松涛专业自动化班级0481 学号

200413110103

指导老师赵葵银职称教授教研室主任赵葵银李晓秀

一、基本任务及要求:

随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流调速取代直流调速已成为现代电气传动的主要发展方向之一。电机由变频器来控制,变频器带有PROFIBUS-DP 通讯接口,通过PROFIBUS网络由主站对变频器进行远程控制,可在触摸屏上生成组态画面实现远程控制,也可通过工业以太网在上位机PC实现远程控制。

具体要求有:

1. 采用西门子的可编程控制器、触摸屏及有关的应用软件,实现对电动机调节控制。

2. 在触摸屏上生成组态画面由触摸屏来实现远程控制。

3. 采用PROFIBUS-DP总线,通过组态王生成画面由PC机来实现远程控制

二、进度安排及完成时间:

1、(2~4周)接受任务、准备资料、拟定方案,写出开题报告

2、(5周)根据题目要求及已知条件,确定控制方案及所选用的控制器件

3、(6~7周)控制程序的设计

4、(8周)毕业实习,撰写毕业实习报告

5、(9~12周)程序的现场调试

6、(13~14周)相关图纸的设计

7、(15周)完成设计、撰写论文

8、(16周)修改完善论文,准备答辩

目录

摘要.............................................................. I Abstract: ........................................................ I I 第1章绪论.. (1)

1.1 概论 (1)

1.2 设计论文的主要内容和要求 (1)

1.3相关技术的发展展望 (2)

1.3.1变频调速系统的发展展望 (2)

1.3.2 组态软件 (3)

1.3.2.1. 发展概况 (3)

1.3.3变频器的应用与发展概况 (7)

1.3.4.PLC的应用与发展概况 (8)

1.4 变频调速理论 (10)

1.4.1 异步电动机调速方式 (10)

1.4.2 变频调速原理 (10)

1.4.3 变频调速的特点及发展 (11)

第2章确定设计方案和系统的构成 (13)

2.1 方案确定 (13)

2.2 主电路的设计 (14)

2.3 网络系统组成及说明 (14)

2.3.1 系统说明 (15)

2.3.2 以太网络及组成 (16)

2.3.3 系统DP拓扑结构及说明 (17)

2.3.4 工业通讯网络SIMATIC NET性能 (20)

2.3.5 Profibus-DP现场总线 (20)

第3章系统硬件设计 (22)

3.1 变频调速单元的构成及其功能 (22)

3.1.1 变频调速单元的构成 (22)

3.1.2 变频器的选择与参数设定 (23)

3.2 PLC的选型与功能说明 (26)

3.2.1 西门子PLC的基本组成 (26)

3.2.2 S 7-400PLC及其相关模块 (27)

3.3 MP270B触摸屏 (28)

3.4 系统设计元器件汇总表(见附录3) (29)

第4章系统软件设计 (30)

4.1 Step7及其特点 (30)

4.1.1 Step7应用 (30)

4.1.2 使用STEP7完成一个项目 (30)

4.2软件设计 (32)

4.2.1 系统硬件组态 (32)

4.2.2 创建网络组态 (33)

4.2.3 PLC程序设计 (34)

4.2.4 梯形图及功能说明 (34)

4.3 组态王软件控制系统的设计 (44)

4.3.1 组态王软件控制 (44)

4.3.2 建立本系统工程应用项目的基本方法 (45)

第5章系统调试及结果 (47)

5.1 系统操作中的注意事项 (47)

5.1.1 系统上电 (47)

5.1.2 变频器的操作注意事项 (47)

5.1.3 画面操作中的注意问题 (47)

5.2 系统调试及结果 (48)

第6章总结 (52)

参考文献 (53)

致谢 (55)

附录 (56)

附录A:变频调速控制电气图 (56)

附录B:多功能PLC网络控制屏电气图 (57)

附录C:系统设计元器件明细表 (58)

用PLC和变频器实现电机的变频调速和远程控制

摘要:在本设计任务中,为了实现能源的充分利用和生产的需要,需要对电机进行转速调节,考虑到电机的启动、运行、调速和制动的特性,采用高功能性v/f控制的通用变频器西门子SIMTIC MANGER,此变频器能很好的解决转速之间的切换和启动问题。系统中由PLC完成数据的采集和对变频器、电机等设备的控制任务。基于S7-400 PLC的编程软件SimaticS7-CFC采用模块化的程序设计方法,大量采用功能模块重用,减少软件的开发和维护。利用组态软件Wince,Protool/Pro良好的人机界面和通信能力和Profibus总线技术,使工程师、操作人员可以在中央控制室的工控机上方便的浏览现场的工业流程、实现变频器的参数设置、故障诊断和电机的启动和停止的控制;同时可以在现场进行电机的启动、停止及增减速等的操作。

关键词: PLC;变频器;变频调速;组态软件

Realize the electrical machinery frequency conversion velocity modulation and the long-distance control with PLC and the frequency changer

Abstract:In this system, we need to adjust the speed of electromotor. In order to make full use of energy and satisfy the need of Production, considering the adjustment of speed, starting, running and braking. We use the SIMOVERT MASTERDRIVES of Siemens transducer. Whose functions of adding or decreasing speeding with high S form and torque promoting can solve the adjustment of speed and starting .In this system, PLC is used to collect data from fields and control equipments such as electromotor and transducer. Because the STEP7 as S7 400 PLC ’s Programming software adopts the modularization design method of structure and code reusing, subsequently decrease the exploitation and maintenance of software .By the virtue of HMI and strong communication ability, User can browse the flowchart of Production adjust the speed of electromotor, fault diagnose, start and stop the

electromotor.

Key words:PLC; Transducer; AC frequency conversion for speed adjustment;

Configuration software

第1章绪论

1.1 概论

科学技术的发展,对于改变社会的生产面貌,推动人类文明向前发展,具有极其重要的意义。电气自动化技术是多种学科的交叉综合,特别在电力电子、微电子及计算机技术迅速发展的今天,电气自动化技术日新月异。随着电力电子技术、微电子技术和计算机控制技术的飞速发展,交流变频调速技术的发展也十分迅速。电动机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境,推动技术进步的一种主要手段。变频调速以其优异的调速性能和起制动平稳性能、高性能、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。本次设计是以电梯控制技术为背景,针对以前的拖曳电梯的一些缺点,采用现在流行的PLC 控制技术、变频调速技术、现场总线技术来实现电梯的各种控制。在本课题的系统中,需要对电机进行转速调节,考虑到电机的启动、运行、调速和制动的特性,采用高功能性控制的通用变频器,此变频器的S型加减速功能和转矩提升功能,能很好的解决转速之间的切换和启动问题。系统中由PLC完成数据的采集和对变频器、电机等设备的控制任务。基于S7-400 PLC的编程软件采用模块化的程序设计方法,大量采用功能模块重用,减少软件的开发和维护。利用组态软件良好的人机界面和通信能力及PROFIBUS总线技术,使工程师、操作人员可以在中央控制室的工控机上方便的浏览现场的工业流程、实现变频器的参数设置、故障诊断和电机的启动和停止的控制;同时可以在现场进行电机的启动、停止及增减速等的操作。

1.2 设计论文的主要内容和要求

用变频器来实现电动机的启动和调速1控制,变频器带有PROFIBUS-DP通讯接口,通过PROFIBUS网络由主站对变频器进行远程控制,可在触摸屏上生成组态画面实现远程控制,也可通过工业以太网在上位机PC实现远程控制。具体要求有:

1. 采用西门子的可编程控制器、触摸屏及有关的应用软件,实现对电动机转速或频率调节控制;

2. 在触摸屏上生成组态画面由触摸屏来实现远程控制;

3. 采用PROFIBUS-DP总线,通过组态王生成画面由PC来实现远程控制。

PROFIBUS是德国国家标准DIN19245和欧洲标准EN50170的现场总线标准,是一种国际化、开放式、不依赖于设备生产的现场总线,是一种用于工厂自动化车间级监控和现场设备通信网络,从而为实现工厂综合自动化和现场设备智能化提供了可行的新控制

技术。

本毕业设计的任务为:

1. 阐述通用变频器的工作原理,交流调速系统的基本组成;

2. 设计出PROFIBUS现场总线的总体拓扑结构图;

3. 设计出变频器调速控制系统与总线网络的连接,并分析它们之间的通讯机理,设计出通讯程序;

4. 确定变频器和其他控制设备的型号,并设定变频器的功能参数;

5. 在实验室进行实验。

1.3相关技术的发展展望

1.3.1变频调速系统的发展展望

随着PROFIBUS现场总线的发展和推广,基于PROFIBUS现场总线网络的变频调速系统在我国工业自动化等各个领域将会有广泛的应用前景,并将发挥越来越大的作用。这种系统具有开放性和可扩充性,为系统实现遥控,遥视及综合自动化提供了可能,有效地降低系统的故障率,它大大提高了工业自动化水平,最大限度地提高了生产效率,实现了工厂管理与控制一体化,以其自身的特点和优势必将成为自动控制领域的主流方向,为信息时代的制造工业带来更大的经济效益。通用变频器的发展是世界高速经济发展的产物。其发展的趋势大致为:(1)低电磁噪音、静音化:新型通用变频器除了采用高频载波方式的正弦波SP WM调制实现静音化外,还在通用变频器输入侧加交流电抗器或有源功率因数校正电路APFC (Active Power FactorCorrection. APFC),面在逆变电路中采取Soft-PWM控制技术等,以改善输入电流波形、降低电网谐波,以及逆变桥采取电流过零的开关技术,在抗干扰和抑制高次谐波方面符合EMC国际标准,实现所谓的清洁电能的变换。而控制电源用的开关电源将推崇半谐振方式,这种开关控制方式在30-50MHz时的噪声可降低IS--20Db;(2)专用化:新型通用变频器为更好地发挥变频调速控制技术的独特功能,并尽可能满足现场控制的需要,派生了许多专用机型如风机水泵空调专用型、起重机专用型、恒压供水专用型、交流电梯专用型、纺织机械专用型、机械主轴传动专用型、电源再生专用型、中频驱动专用型、机车牵引专用型等。通用变频器中出现专用型家族是近年来的事。其目的是更好发挥变频器的独特功能并尽可能地方便用户;(3)集成化、系统化:通用变频器除了发展单机的数字化、智能化、多功能化外,还向集成化、系统化方向发展;(4)网络化:新型通用变频器可提供多种兼容的通信接口,支持多种不同的通信协议,内ONWORKS,Ethernet装85485接C,可由个人计算机向通用变频器输入运行命令和设定功能码数据等,通过选件可与现场总

线:Profibus-DP, Interbus-S、Device Net、Modbus Plus, CC-Link,Lt, CAN Open, T -LINK等通讯。近期接口开发的可能性包括USS.固件和以太网,Internet将继续推出开发软件,以提供新型和改进用户现有接口功能,实现更有效和更有影响力的通信连通解决方案;(5)内置式应用软件:新型通用变颇器可以内置多种应用软件,以满足现场过程控制的需要,如PID控制软件、张力控制软件、速度级链、速度跟随、电流平衡、变频器功能设置软件、通讯软件等。变频器功能设置软件可以在WINDOWS95/S8环境下设置变频器的功能及数据通讯;(6)分布式应用:现代自动化工程趋于分布式方案,这就要求智能化设备必须是模块化、分布化,并且能与现代机器设备集成。这样不仅会在生产、机器设备调试和维护方面带来成本优势,而且为设备扩展带来高灵活性;(7)高速度的数字控制:以32位高速微处理器为基础的数字控制模板有足够的能力实现各种控制算法,Windows操作系统的引入使得可自由设计,图形编程的控制技术也有很大的发展;(8)模拟与计算机辅助设计(CAD)技术:电机模拟器、负载模拟器以及各种CAD 软件的引入对变频器的设计和测试提供了强有力的支持[11][12]。1.3.2 组态软件

1.3.2 组态软件

1.3.

2.1. 发展概况

组态的概念最早来自英文configuration,含义是使用软件工具对计算机及其软件的各种资源进行配置,达到使计算机和软件按照预先设置,自动执行特定任务,满足使用者要求的目的。组态软件是面向监控和数据采集(super visors control and data acquisition> SCADA)的软件平台工具。具有丰富的设置项目,使用方式灵活,功能强大。组态软件最早出现时,HMI (human machine interface)或MMI(man machine interface)是其主要内涵,即主要解决人机界面的问题。随着它的快速发展,实时数据库、实时控制、SCADA、通信及联网、开放数据接口、对I/0设备的广泛支持已经成为它的主要内容。随着时代的发展,组态软件将不断的被赋予新的内容。

组态软件是伴随着计算机技术的突飞猛进发展起来的。20世纪50年代虽然计算机开始涉足工业过程控制,但由于计算机技术人员缺乏工厂仪表和工业过程的知识,导致计算机工业过程系统在各行业的推广速度比较缓慢。20世纪70年代初,微处理器的出现,促进了计算机控制技术走向成熟。首先,微处理器在提高计算能力的基础上,大大降低了计算机的硬件成本,缩小了计算机的体积,很多从事控制仪表和原来一直就从事工业控制计算机的公司先后推出了新型控制系统,其中具有代表性的是美国Honeywell 公司于1975年推出的世界上第一套DCS,即TDC-2000。在随后的20年中,DCS及其计算机控制技术日趋成熟,并得到了广泛应用,市场发展迅速。但当时的DCS软件是专用和封闭的,且成本居高不下。80年代中后期,随着个人计算机的普及和开放系统(open

system)概念的推广,基于个人计算机的监控系统开始进入市场并发展壮大。基于个人监控系统呈现出智能化、小型化、网络化、PC化的发展趋势,并逐渐形成了各种标准的网络结构、硬件规范。组态软件在自动化系统的“水平”和“垂直”集成中起着桥梁和纽带的作用,已成为自动化系统中的重要组成部分。计算机的监控系统开始进入市场,为组态软件提供了发展空间。目前自动化产品呈现出智能化、小型化、网络化、PC化的发展趋势,并逐渐形成了各种标准的网络结构、硬件规范。组态软件作为个人计算机监控系统的重要组成部分,比PLC监控的硬件系统具有更为广阔的发展空间。这是因为,第一,很多DCS和PLC厂家主动公开通信协议,加入“PLC监控”的阵营;第二,由于PLC监控大大降低了系统成本,使得市场空间得以扩大,从无人值守的远程监视(如防盗报警、江河汛情监视、环境监控、电信线路监控、交通管制与监控、矿井报警等)、数据采集与计量(如居民水电气表的自动抄表、铁道信号采集与记录等)、数据分析(如汽车和机车自动测试、机组和设备参数测试、医疗化验仪器设备实时数据采集、虚拟仪器、生产线产品质量抽检等)到过程控制,几乎无处不用。第三,各类智能仪表、调节器和PLC可与组态软件构筑完整的低成本自动化系统,具有广阔的市场空间。第四,各类嵌入式系统和现场总线的异军突起,把组态软件推到了自动化系统主力军的位置,组态软件越来越成为工业自动化系统中的灵魂。

1.3.

2.2. 组态软件的构成

1) 以使用软件的工作阶段划分

从总体上讲,组态软件是由系统开发环境和系统运行环境两大部分构成。系统开发环境它是自动化工程设计工程师为实施其控制方案,在组态软件的支持下进行应用程序的系统生成工作所必须依赖的工作环境。通过建立一系列用户数据文件,生成最终的图形目标应用系统,供系统环境运行时使用。

系统开发环境由若干个组态程序组成,如图形界面组态程序,数据库组态程序等。系统运行环境在系统运行环境中,由系统开发环境下生成的各种应用程序无论是图形或者数据库,可以结合现场的数据实时地运行,同时可以各种关联关系也可以得到体现。系统运行环境由若干个运行程序组成,如图形界面运行程序和实时数据库运行程序等。

自动化工程设计师最先接触的一定是系统开发环境,通过一定工作量的系统组态和调试,最终将目标应用程序在系统运行环境投入实时运行,完成一个工程项目。

2) 按照成员构成划分

组态软件因为功能强大,而每个功能相对来说又具有一定的独立性,因此其组成形式是一个集成软件平台,由若干程序组件构成。组态软件必备的典型组件包括以下部分:应用程序管理器;

图形界面开发程序;

图形界面运行程序;

实时数据库系统组态程序;

实时数据库系统运行程序;

I/0 驱动程序;

组态软件扩展可选组件包括:

通用数据库接口(ODBC接口)组态程序;通用数据库接口组件用来完成组态软件的实时数据库与通用数据库(如oracle,Sybase,FoxPro,DB2,SQL,Server等)。

通用数据库接口(ODBC接口)运行程序。

策略(控制方案)编辑组态程序;它是以PC为中心的实现低成本监控的核心软件,具有很强的逻辑、算术运算能力和丰富的控制算法。它以工EC-1131-3标准为使用者提供标准的编程环境,共有四种编程方式:梯形图、结构化编程语言、指令助记符、功能化模块。实用通信程序组件。极大的增强了组态软件的功能,可以实现与第三方程序的数据交换。实用通信组件可以使用以太网、RS485,PSTN等多种通信介质和网络来实现数据的远程访问和传输。

1.3.

2.

3. 组态软件的功能特点

组态软件有以下功能:

与采集、控制设备之间的进行数据交换;

使来自设备的数据与计算机图形界面上的各元素关联起来;

处理数据报错和系统报错;

存储历史数据并支持历史数据的查询;

各类报表的生产和打印输出;

为使用者提供灵活、灵活的组态工具,可以适应不同应用领域的需求;

最终输出的应用系统运行稳定可靠;

具有与第三方程序的接口,方便数据共享。

组态软件的特点:实时多任务是最大特点。例如数据采集与输出、数据处理与算法实现、图形显示及人机对话、实时数据的存储、检索管理、实时通信等多个任务要在同一台计算机上同时运行。程序设计人员在组态软件中只需要填写一些事先设计的表格,再利用图形功能把被控对象(如温度计、电动机、趋势曲线、报表)形象的画出来,通过内部数据连接把被控对象的属性与工/0设备的实时数据进行逻辑连接。当由组态软件生成的应用系统投入运行后,与被控对象相连的工/0设备数据发生变化会直接带动被控对象的属性变化。

1.3.

2.4. SIMATIC PROTOOL组态软件性能介绍

SIMATIC PROTOOL/Pro Runtime即是一种基于用户标准PC的软件,理想用于各种工业领域中机器或小型系统的操控:通用,灵活,高效,SIMATIC PROTOOL/Pro Runtime 是一种基于先进Windows的可视化软件,为了实现直观、友好的可视化界面,PROTOOL /Pro Runtime提供有多种现成图片对象,诸如幻灯片控件、条形图、模拟显示、时钟、开关、状态显示等;通过配方管理,数据记录(相关数据)可以从PROTOOL/Pro站同步传送PLC,反之亦然。例如机器设置数据或生产参数。每个配方都可在线管理、保存和编辑大量的数据记录;预组态报警系统可自动采集错误信息和系统状态信息,并使之清晰可视化。例如:对于不同的报警状态,可采用不同的颜色或指示灯闪烁。所有的报警事件随时即可获得并打印。当前信息可显示故障位置和时间。根据特定的报警信息,调用支持信息,操作者可以快速排队故障,过程画面(“Loop in Alarm”)可以提供机器或系统的当前状况的详细信息;PROTOOL /Pro可以通过监控PLC内的数据范围产生报警。如果一个位发生变化,PROTOOL /Pro Runtime会随之显示相应的报警信息。如果与SIMATIC S7连接使用,PLC可主动发送报警信号进行可视化(Alarm多),减轻通讯负荷;为了实现质量控制或过程优化,报警或过程值可以暂时或长期存档。不管是标准存储格式US还是ODBC数据库,不管是本地可视化PC还是网络数据服务器,测量值档案都可直接通过趋势分析曲线(版本b以上还有一条读线)或标准工具(如:Microsoft Excel)在机器中进行分析:使用分页和缩放功能,可以很方便地查看趋势;在报告系统中,过程数据和报警文件可以单独创建。例如:质量控制或班次报告。

PROTOOL/Pro Runtime采用Windows标准,全面支持OLE-Automation,ODBC或OPC,实现了全面开放,具有如下优点:

1) 开放性:标准PC硬件,Windows操作系统,全面支持Windows标准,更灵活,更独立,更富投资保证。

2) 外向型:提供有在线语言转换功能。

3) 无缝解决方案,不同选项级别:PROTOOL /Pro是全套产品系列的操作和监控部分。项目一经创建,即应用于各种HMI平台。

4) 全集成自动化:SIMATIC系列的全线集成,即意味着营造了一种通讯、数据管理及组态或编程的无缝环境。

5) 组态简单、快速:丰富的在线帮助功能,直观的界面环境及面向对象的设计,一经启动,即可运行。

6) 各种控制器,轻松相连: PROTOOL /Pro Runtime为各种不同的自动化系统提供有驱动程序,全面集成开放。

7) 卓越的系统性能:快速数据采集和存储,响应时间短,即使在点动模式,也可确保过程控制的可靠性。

1.3.3变频器的应用与发展概况

本世纪70年代初,变频技术迅速发展,已经成为集电力、电子、计算机技术于一体的高科技产品。全球一些著名的电气公司像西门子、ABB、东芝、三菱等,在这一领域的开发与研究都取得了巨大成就,使得变频调速技术迅速发展并日渐成熟,它较直流调速系统及其它类型的调速系统有以下3个最突出的特点:

1) 省电节能,可使电耗降低。这是因为,一方面,一个常识性的问题就是交流电机的效率比其它类型的电机都要高。另一方面,一般的电机控制回路中都有过流过压失相等安全保护元件,而“变频器一电机”控制回路则没有这些耗能元件,更不需要像直流调速系统所必备的励磁电源变压器等。

2) 系统造价低。同直流传动系统相对比,异步电机的价格要比直流电机的价格低130%-350%;另外,技术的发展使得变频器成本逐年下降,现市场价格约为1000元/千瓦,而直流整流设备110kw容量以下平均每套的价格约为21000元。因此对于纸机电气传动系统,单机容量不超过160kw,在同样装机容量下,交流传动系统的造价要比直流传动系统低5%-15%。针对中低档纸机,装机容量不太大交流调速具有大的价格优势。

3) 维护工作量小。变频器普遍采用大规模、超大规模集成电路,设有附加的外围元器件,因此从某种意义上说,变频器是免费维护设备。直流电机的维护周期为1个月,而交流电机的维护周期为3个月以上,且维护工作量要小的多。

随着时间的推移,产品不断更新换代,矢量控制(Vector control)、IGBT(双极绝缘可关断晶闸管)、操作面板(OPRATE PANEL)等新技术不断在变频领域采用,最明显的特征是变频器的体积在变小,同时功能逐渐增强,维护操作更为方便。这一时期的代表产品有ABB公司的ACS400系列,日本三肯公司的MF,IF系列,富士公司的500系列等型号的变频器,此时控制系统多为双闭环结构,并开始采用模拟量速度链技术。由于此时数字技术未在操作控制回路采用,所以变频器的抗干扰能力较以前没有太大的改善,通讯能力也比较差。

数字化技术的采用及模块化结构设计风格的出现使得更为高级的变频器诞生,内部采用模块化的结构,使得参数的配置与修改及各功能的实现乃至连接更为方便,速度链上传递的为数频信号,使系统的抗干扰能力更强,故障的诊断,信号的检查也很方便。数频处理、速度设定、马达控制等模块的链接位置让操作者修改参数比较直观、简洁。

1.3.4.PLC的应用与发展概况

第一台可编程控制器(以下简称PLC)的设计规范是美国通用汽车公司提出的。当时的目的是要求设计一种新的控制装置以取代继电器盘,在保留了继电器控制系统的简单易懂。操作方便、价格便宜等优点的基础上,同时具有现代化生产线所要求的时间响应快、控制精度高、可靠性好、控制程序可随工艺改变、易于与计算机接口、维修方便等诸多高品质与功能。这一设想提出后,美国数字设备公司(DEC)于1969年研制成第一台PLC,型号为PDP-14,投入通用汽车公司的生产线控制中,取得了令人满意的效果,从此开创了PLC的新纪元。在短时间内,PLC在其他工业部门也得到应用。到20世纪70年代初,食品、金属和制造等工业部门相继使用PLC代替继电器控制设备,迈出其实用化阶段的第一步。

70年代中期,由于大规模集成电路的出现,使8位微处理器和位片处理器相继问世,在逻辑运算功能的基础上,增加了数值运算。闭环控制,提高了运算速度,扩大了输入输出规模。在这个时期,日本、西德(原)和法国相继研制出自己的PLC,我国在1974年也开始研制。

70年代末由于超大规模集成电路的出现,使PLC向大规模、高速性能方向发展,形成了多种系列化产品。进入八九十年代后,PLC的软硬件功能进一步得到加强,PLC已发展成为一种可提供诸多功能的成熟的控制系统,能与其他设备通信,生成报表,调度产出,可诊断自身故障及机器故障。PLC未来的发展不仅依赖于对新产品的开发,还在于PLC与其他工业控制设备和工厂管理技术的综合。无疑, PLC将在今后的工业自动化中扮演重要角色。在未来的工业生产中,PLC技术和机器人、CAD/CAM将成为实现工业生产自动化的三大支柱。

1. 目前PLC朝以下几个方向发展

1) 大型网络化:主要朝DCS方向发展,网络化和强通信能力是PLC发展的一个主要的方面,向下与多个智能装置相连,向上与工业计算机、以太网等相连构成特殊的控制任务。

2) 多功能:为了适应特殊功能的需要,连续推出多种智能模块,如模拟量输入输出、回路控制、通信控制、机械运动控制、高速技术、中断输入等。这些智能模块以微处理器为基础,其CPU与PLC的CPU并行工作,占用主机CPU时间很少,有利于提高PLC扫描速度和完成特殊的控制任务。

3) 高可靠性、好兼容性:由于现代控制系统的可靠性和兼容性日渐受到人们的重视,一些公司强自诊断技术、冗余技术、容错技术广泛应用到现有产品中,推出了高可靠的冗余系统。

4) 编程语言向高级语言发展:PLC的编程语言在原有梯形图语言、顺序功能块和指令表语言基础上,推出了可运行与计算机windows环境下,界面友好的强劲的梯形图和语句表两种形式的编程、调试、诊断等功能。SIMATIC则使用C/C++等高级语言进行编程,体现了面向未来的种种特征。

2. PLC的特点

PLC是一种用于工业自动化控制的专用计算机,实质上属于计算机控制方式。PLC与普通微机一样,以通用或专用CPU作为字处理器,实现通道(字)的运算和数据存储,另外还有位处理器(布尔处理器),进行点(位)运算与控制。PLC控制一般具有可靠性高、易操作、维修、编程简单、灵活性强等特点。

1) 可靠性:对可维修的产品,可靠性包括产品的有效性和可维修性

? PLC不需要大量的活动元件和接线电子元件,它的接线大大减少,与此同时,系统的维修简单,维修时间短。

? P LC采用了一系列可靠性设计的方法进行设计,例如,冗余设计,断电保护,故障诊断和信息保护及恢复等,提高了MTBF,降低了MTTR,使可靠性提高。

? PLC有较高的易操作性,它具有编程简单,操作方便,维修容易等特点,一般不易发生操作的错误。

? PLC是为工业生产过程控制而专门设计的控制装置,它具有比通用计算机控制更简单的编程语言和更可靠的硬件。采用了精简化的编程语言,编程出错率大大降低,而为工业恶劣操作环境设计的硬件使可靠性大大提高。

? 在PLC的硬件方面,采用了一系列提高可靠性的措施。例如:采用可靠性的元件;采用先进的工艺制造流水线制造;对干扰的屏蔽、隔离和滤波等;对电源的断电保护;对存储器内容的保护等。

? PLC的软件方面,也采取了一系列提高系统可靠性的措施。例如:采用软件滤波;软件自诊断;简化编程语言等。

2) 易操作性,PLC的易操作性表现在下列几个方面:

? 操作方便对PLC的操作包括程序输入和程序更改的操作。大多数PLC采用编程器进行输入和更改的操作。编程器至少提供了输入信息的显示,对大中型的PLC,编程器采用了CRT屏幕显示,因此,程序的输入直接可以显示。更改程序的操作也可直接根据所需要的地址编号或接点号进行搜索或顺序寻找,然后进行更改。更改的信息可在液晶屏或CRT上显示。

? 编程方便PLC有多种程序设计语言可供使用。对电气技术人员来说,由于梯形图与电气原理图较为接近,容易掌握和理解。采用布尔助记符编程语言时,十分有助于编

程人员的编程。

? 维修方便PLC具有的自诊断功能对维修人员维修技能的要求降低。当系统发生故障时,通过硬件和软件的自诊断,维修人员可以很快的找到故障的部位,以便维修。

3) 灵活性,PLC的灵活性表现在以下几个方面:

? 编程的灵活性。PLC采用的编程语言有梯形图、布尔助记符、功能表图、功能模块和语句描述编程语言。编程方法的多样性使编程方便、应用面拓展。

? 扩展的灵活性。PLC的扩展灵活性是它的一个重要特点。它可根据应用的规模不同,即可进行容量的扩展、功能的扩展、应用和控制范围的扩展。

? 操作的灵活性。操作十分灵活方便,监视和控制变得十分容易。

1.4 变频调速理论

1.4.1 异步电动机调速方式

根据电机学和电力拖动基础中提供的结论,异步电动机转速n的转速方程为:

n=n

1(1-S)=60f

1

(1-S)/p (1.1)

式(1.1)中: n—电动机的实际转速;

f

1

—电动机定子绕组的供电频率;

p—旋转磁场的磁极对数;

S—转差率,表示定子旋转磁场的同步转速n.与n的关系。

由上述交流电动机的转速公式(1.1)可以知道要改变转速可以采取以下三种基本措施:(1)改变转差率S; (2)改变磁极对数p; (3)改变电动机的定子供电频率。调节转差率调速的实质是将输入功率的一部分转化为转差功率以削减轴上输出功率的大小,迫使电动机运行速度下降。改变电动机的定子供电频率f(即变频调速),可使电机始终运行在高效率区,并保证良好的动态性能,是目前最为广泛使用的调速方式。

1.4.2 变频调速原理

由电机学理论,在忽略定子漏阻抗的情况下,三相异步电动机定子每相电压U;有以下关系式:

U 1≒E

1

=4.44f

1

N

1

k

1

ф

m

(1.2)

式中:U

1

—定子相电压;

E

1

—定子相电动势;

N

1

—定子相绕组总匝数;

K

1

—基波绕组系数;

фm—每极气隙磁通。

由上式可以知道:为了保持电动势的平衡关系,当电源频率f

1改变时,如果电源U

1

保持不变,那么必然引起气隙磁通ф

m 的变化,但是ф

m

的变化都会给异步电动机的运行

性能带来不良影响。所以要必须保持主磁通不发生改变。由(1.2)式可以看出,ф

m

是由

E 1和f

1

来共同决定的,对E

1

和f

1

进行适当控制,就可以保持ф

m

保持额定值不发生改变。但

是这种控制受到基频f

1(电机额定频率)的影响,在f

1

< f

N

(即基频以下调速控制方式)

和f

1 > f

N

(即基频以上调速控制方式)时,E

1

的变化规律不一样。

1.4.3 变频调速的特点及发展

交流变频调速技术是强弱电混合、机电一体的综合性技术,既要处理巨大电能的转换(整流、逆变),又要处理信息的收集、变换和传输,因此它的共性技术必定分成功率和控制两大部分。前者要解决与高压大电流有关的技术问题和新型电力电子器件的应用技术问题,后者要解决(基于现代控制理论的控制策略和智能控制策略)的硬、软件开发问题(在目前状况下主要全数字控制技术)。接近我们生活的高速电力机车、汽车、电梯、音乐喷泉、冰箱、洗衣机、空调等,采用变频控制的越来越多。

1. 交流变频调速具有以下特点:

1) 可以使普通异步电动机实现无级调速;

2) 启动电流小,减少电源设备容量;

3) 启动平滑,消除机械的冲击力,保护机械设备;

4) 对电机具有保护功能,降低电机的维修费用;

5) 具有显著的节电效果。

2. 其主要发展方向有如下几项:

1) 实现高水平的控制。基于电动机和机械模型的控制策略,有矢量控制、磁场控制、直接传矩控制和机械扭振补偿等;基于现代理论的控制策略,有滑模变结构技术、模型参考自适应技术、采用微分几何理论的非线性解耦、鲁棒观察器,在某种指标意义下的最优控制技术和逆奈奎斯特阵列设计方法等;基于智能控制思想的控制策略,有模糊控制、神经元网络、专家系统和各种各样的自优化、自诊断技术等。

2) 开发清洁电能的变流器。所谓清洁电能变流器是指变流器的功率因数为1,网侧和负载侧有尽可能低的谐波分量,以减少对电网的公害和电动机的转矩脉动。对中小容量变流器,提高开关频率的PWM控制是有效的。对大容量变流器,在常规的开关频率下,可改变电路结构和控制方式,实现清洁电能的变换。

3) 缩小装置的尺寸。紧凑型变流器要求功率和控制元件具有高的集成度,其中包括智能化的功率模块、紧凑型的光耦合器、高频率的开关电源,以及采用新型电工材料

制造的小体积变压器、电抗器和电容器。功率器件冷却方式的改变(如水冷、蒸发冷却和热管)对缩小装置的尺寸也很有效。

4) 高速度的数字控制。以32位高速微处理器为基础的数字控制模板有足够的能力实现各种控制算法,Windows操作系统的引入使得可自由设计,图形编程的控制技术也有很大的发展。

5) 模拟与计算机辅助设计(CAD)技术。电机模拟器、负载模拟器以及各种CAD软件的引入对变频器的设计和测试提供了强有力的支持。

第2章确定设计方案和系统的构成

2.1 方案确定

交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。随着现代化工厂的自动化程度不断提高,不仅要求控制系统的各个部件具有强大的通讯功能,实现同类控制器间的数据交换,还要和目前应用广泛的PLC、工控机、变频器等按一定的通讯协议进行数据交换。PLC技术,通讯技术,变频器技术的飞跃发展,为我们实现现代化传动控制系统,达到对控制系统在不同情况下的不同要求,提供了良好的技术基础和理论基础。

虽然以前也学习过变频调速的理论知识,对变频器和可编程控制器也比较了解,但是要想很好的完成这次的毕业设计,我知道自己的能力和知识还差很远,尤其是对于PROFIBUS-DP总线和组态软件确实知之甚少,几乎没什么概念,所以刚开始的时候,心里一点底都没有,找资料又不知道该从何入手,于是找到了赵老师诉说自己的心情,想放弃这个课题。听了我的诉说,赵老师没有责怪我,而是耐心的劝说我,帮我建立起必胜的信心,然后又细心的指导我该如何的查找收集资料,如何的筛选有用的资料,而且还给了好一些比较好的有用的资料。于是每天去图书馆查找资料。从网站上下载了很多有关PLC、变频器、电动机、变频调速和网络系统的资料,于是自己大概有了一个头绪。接下来的任务就是抓紧时间阅读手头上的资料,及时把握相关信息,为以后的课题设计、论文写作做好铺垫。本课题的关键是PLC的构成、原理、接线及其网络系统,所以我们最基本的工作就是从PLC入手,学好掌握好PLC 的原理及使用方法,只有打好基础,才会有高楼大厦。于是我从图书馆借了关于西门子PLC系列的教材,如《深入浅出西门子S7-300PLC》等,我们虽然用的主要是S7-400,但西门子系列的都是相容相通,它的基本指令都是一样的,只要抓住核心内容就行了。在开始几周的时间里,大部分时间就是用来熟悉相关软件,如Step7、组态软件等,以前基本上没有涉及到这方面的知识,所以初学起来感觉比较吃力。但在赵老师和我自己的努力下,经过反复的练习和摸索,最后终于掌握了基本的操作、编程等。最后剩下来的任务就是方案的确定和系统的调试以及论文的书写。经过一两个月的准备工作,结合课题任务要求,确定了本课题的方案。

基于变频调速控制系统的种种优点,我们采用基于西门子PLC的变频调速的网络控制系统,通过S7-400与工业以太网上的工程师站或操作员站进行通讯,上位机通过软件设计编程可以实现对电动机进行实时远程监控。S7-400与PROFIBUS-DP总线进行通讯,

利德华福高压变频器

利德华福高压变频器 Document number:PBGCG-0857-BTDO-0089-PTT1998

利德华福高压变频器 应用范围 近年来,我国年工业生产总值不断提高,但是能耗比却居高不下,高能耗比已成为制约我国经济发展的瓶颈,为此国家投入大量资金支持节能降耗项目,其中高压变频调速技术已越来越广泛的应用在各行各业,它不仅可以改善工艺,延长设备使用寿命,提高工作效率等,最重要的是它可以“节能降耗”,这一点已被广大用户所认可,且深受关注。 从1998年开始,利德华福人通过一年开发,一年开局试验,一年市场考验,其研发制作的HARSVERT-A系列高压变频调速系统,完全具有自主知识产权,适合国内电网特性,符合国内用户使用习惯。该系列高压变频调速系统自2000年投入国内市场后,在市政供水、电力、冶金、石油、石化、水泥、煤炭等行业陆续投入运行。由于安装便捷、操作简单、运行稳定、安全可靠、维护方便,并在节能、节电、省人、省力、自动控制、远程监控等方面效果显着,以及优异的产品性价比和周到的服务,受到用户的广泛欢迎。 火力发电:引风机、送风机、吸尘风机、压缩机、排污泵、锅炉给水泵等 冶金:引风机、除尘风机、通风机、泥浆泵、除垢泵等 石油、化工:主管道泵、注水泵、循环水泵、锅炉给水泵、电潜泵、卤水泵、引风机、除垢泵等 市政供水:水泵等 污水处理:污水泵、净化泵、清水泵等

水泥制造:窑炉引风机、压力送风机、冷却器吸尘风机、生料碾磨机、窑炉供气风机、冷却器排风机、 分选器风机、主吸尘风机等 造纸:打浆机等 制药:清洗泵等 采矿行业:矿井的排水泵和排风扇、介质泵等 其他:风洞试验等 系统原理 HARSVERT-A系列高压变频调速系统采用单元串联多电平技术,属高-高电压源型变频器,直接3、6、10KV输入,直接3、6、10KV高压输出。变频器主要由移相变压器、功率模块和控制器组成。 系统结构 功率模块结构 功率模块为基本的交-直-交单相逆变电 路,整流侧为二极管三相全桥,通过对IGBT 逆变桥进行正弦PWM控制,可得到单相交流 [功率单元电路结构] 输出。 每个功率模块结构及电气性能上完全一 致,可以互换。(备件种类单一) 输入侧结构 输入侧由移相变压器给每个功率模块供电,移相变压器的副边绕组分为三组,根据电压等级和模块串联级数,一般由24、30、42、48脉冲系列等构成多

基于PLC的交流电机变频调速系统

目录 1 绪论 (1) 1.1课题的背景 (1) 1.1.1 电机的起源和发展............................. 错误!未定义书签。 1.1.2 变频调速技术的发展和应用..................... 错误!未定义书签。 1.2本文设计的主要内容............................... 错误!未定义书签。 2 变频调速系统的方案确定 (4) 2.1变频调速系统 (4) 2.1.1 三相交流异步电动机的结构和工作原理 (4) 2.1.2 变频调速原理 (4) 2.1.3 变频调速的基本控制方式 (5) 2.2系统的控制要求 (6) 2.3方案的确定 (6) 2.3.1 电动机的选择 (6) 2.3.2 开环控制的选择 (7) 2.3.3 变频器的选择 (7) 4 变频调速系统的硬件设计 (8) 4.1S7-200PLC (8) 4.2M ICRO M ASTER420变频器 (8) 4.3外部电路设计 (9) 4.3.1 变频开环调速 (9) 4.3.2 数字量方式多段速控制 (11) 4.3.3 PLC、触摸屏及变频器通信控制 (12) 5 变频调速系统的软件设计 (14) 5.1编程软件的介绍 (14)

5.2变频调速系统程序设计 (15) 6 触摸屏的设计 (23) 6.1触摸屏的介绍 (23) 6.2MT500系列触摸屏 (25) 6.3触摸屏的设计过程 (26) 6.3.1 计算机和触摸屏的通信 (26) 6.3.2 窗口界面的设计 (27) 6.3.3 触摸屏工程的下载 (31) 7 PLC系统的抗干扰设计 (33) 7.1 变频器的干扰源 (33) 7.2干扰信号的传播方式 (33) 7.3 主要抗干扰措施 (34) 7.3.1 电源抗干扰措施 (34) 7.3.2 硬件滤波及软件抗干扰措施 (34) 7.3.3 接地抗干扰措施 (34) 结论 (36) 致谢 ................................................ 错误!未定义书签。参考文献 .. (37)

通用变频器调试步骤和参数设置

通用变频器调试步骤和参数设置快速调试 当选择P0010=1(快速调试)时,P0003(用户访问级)用来选择要访问的参数。这一参数也可以用来选择由用户定义的进行快速调试的参数表。在快速调试的所有步骤都已完成以后,应设定P3900=1,以便进行必要的电动机数据的计算,并将其它所有的参数(不包括P0010=1)恢复到它们的缺省设置值。

一、快速调试步骤和参数设置

二、功能调试 1、开关量输入功能 2、开关量输出功能 可以将变频器当前的状态以开关量的形式用继电器输出,通过输出继电器的状态来监控变频器的内部状 的每一位更改。 3、模拟量输入功能

1电压信号2~10V作为频率给定,需要设置: 以模拟量通道2电流信号4~20mA作为频率给定,需要设置: 注意:对于电流输入,必须将相应通道的拨码开关拨至ON的位置。 4、模拟量输出功能 MM440变频器有两路模拟量输出,相关参数以in000和in001区分,出厂值为0~20mA输出,可以标定为4~20mA输出(P0778=4),如果需要电压信号可以在相应端子并联一支500Ω电阻。需要输出的物理量可以 5、加减速时间 加速、减速时间也称作斜坡时间,分别指电机从静止状态加速到最高频率所需要的时间,和从最高频率

设置过小可能导致变频器过电流。P1121设置过小可能导致变频器过电压。 6、频率限制 多段速功能,也称作固定频率,就是设置参数P1000=3的条件下,用开关量端子选择固定频率的组合,实现电机多段速度运行。可通过如下三种方法实现: 1)直接选择(P0701~ P0706 = 15) 在这种操作方式下,数字量输入既选择固定频率(见上表),又具备起动功能。 3)二进制编码选择+ON命令(P0701~P0704 = 17)

罗宾康高压变频器介绍

我主要写的是应用场合及功能介绍 罗宾康高压变频器介绍 一、产品介绍 1、罗宾康系列变频调速系统特点 1.1高效率、无污染、高功率因数 第宾康系列高压变频调速系统采用的是功率单元串联的高-高方案,采用了多绕组高压 移相变压器,二次侧绕组中流过的电流,在变压器一次侧叠加时,形成非常逼近正弦波的电流波形。经 过实际测试,50Hz运行时,网侧电流谐波<2 %,电机侧输岀电压谐波 <1.5 % (即使在40Hz时,仍然<2 % ),成套装置的效率>97 %,功率因数>0.96。完全满足了 IEEE519 —1992对电压、电流谐波含量的要求; *通过采用自主开发的专用PWM空制方法,比同类的其它方法可进一步降低输岀电压 谐波1?2% 。1.2先进的故障单元旁路运行(专业核心技术) *为了提高系统的可靠性,整个变频调速系统中考虑了一定的输出电压裕量,并在各功率单元中增加了旁路电路。当某个功率单元岀现故障时,可以自动监测故障并启动旁路电路,使得该单元不再投入运行,同时程序会自动进行运算,调整算法,使得输出的三个线电压仍然完全对称,电机的运行不受任何影响; *以6kV高压变频调速系统为例,每相有6个单元时,预置好参数,当某一相中有2 个功率单元岀现故障时,故障单元将自动旁路,系统仍然可以满负荷运行;即使某一相中所有6个单元 故障,全部被旁路,系统输岀容量仍可高达额定容量的57.7 %。这种控 制方法处于国际先进,国内领先水平,将大大提高系统的可靠性。 .3高性能的控制技术 *罗宾康系列高压变频调速系统率先实现了简易矢量控制技术,可以实现恒转矩快速动态响应,并且具有加、减速自适应功能,即可根据运行工控参数的实际情况,自动调整加、减速时间,在不超过最大允许电流的情况下,快速达到设定频率或转速。同时,系统可以自动识别电机转速,用户可以不考虑电机目前的运行状态,电机不需要停止运行时,可直接实现电机的启动、加速、减速或停止操作; *罗宾康系列高压变频调速系统还可以实现反馈能量自动限制功能。 1.4高可靠性 *控制电源可实现外部220V供电和高压电源辅助供电双路电源自动切换,同时配置了UPS即使两路电 源都岀现故障时,控制系统仍然可以工作足够长的时间,控制整个系统安全停机,发岀报警,并记录故障时的所有状态参数; *高压主电路与低压控制电路采用光纤传输,安全隔离,使得系统抗干扰能力强; ?当单元故障数目超过设定值,系统可自动切换到工频运行(自动旁路柜); ?移相变压器有完善的温度监控功能;

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

变频调速电机的选型

变频调速电机的选型

————————————————————————————————作者:————————————————————————————————日期:

变频调速电机的选型 变频调速电机一般均选择4级电机,基频工作点设计在50Hz,频率0-50Hz(转速0-1480r/min)范围内电机作恒转矩运行,频率50-100Hz(转速1480-2800r/min)范围内电机作恒功率运行,整个调速范围为(0-2800r/min),基本满足一般驱动设备的要求,其工作特性与直流调速电机相同,调速平滑稳定。如果在恒转矩调速范围内 要提高输出转矩,也可以选择6级或8级电机,但电机的体积相对要大一点。 由于变频调速电机的电磁设计运用了灵活的CAD 设计软件,电机的基频设计点可以随时进 行调整,我们可以在计算机上精确的模拟电机在各基频点上的工作特性,由此也就扩大了 电机的恒转矩调速范围,根据电机的实际使用工况,我们可以在同一个机座号内把电机的 功率做的更大,也可以在使用同一台变频器的基础上将电机的输出转矩提的更高,以满足 在各种工况条件下将电机的设计制造在最佳状态。变频调速电机可以另外选配附加的转速 编码器,可实现高精度转速、位置控制、快速动态特性响应的优点。也可配以电机专用的 直流(或交流)制动器以实现电机快速、有效、安全、可靠的制动性能。由于变频调速电 机的基频可调性设计,我们也可以制造出各种高速电机,在高速运行时保持恒转矩的特性 ,在一定程度上替代了原来的中频电机,而且价格低廉。变频调速电机为三相交流同步或 异步电动机,根据变频器的输出电源有三相380V或三相220V,所以电机电源也有三相380V 或三相220V的不同区别,一般4KW以下的变频器才有三相220V可,由于变频电机是以电机 的基频点(或拐点)来划分不同的恒功率调速区和恒转矩调速区的,所以变频器基频点和 变频电机基频点的设置都非常重要。 同步变频与异步变频调速电机的区别 异步变频调速电机是由普通异步电机派生而来,由于要适应变频器输出电源的特性,电机在转子槽型,绝缘工艺 ,电磁设计校核等作了很大的改动,特别是电机的通风散热,它在一般情况下附加了一个独立式强迫冷却风机, 以适应电机在低速运行时的高效散热和降低电机在高速运行时的风摩耗。变频器的输出一般显示电源的输出频率 ,转速输出显示为电机的极数和电源输出频率的计算值,与异步电机的实际转速有很大区别,使用一般异步变频 电动机时,由于异步电机的转差率是由电机的制造工艺决定,故其离散性很大,并且负载的变化直接影响电机的 转速,要精确控制电机的转速只能采用光电编码器进行闭环控制,当单机控制时转速的精度由编码器的脉冲数决 定,当多机控制时,多台电机的转速就无法严格同步。这是异步电机先天所决定的。 同步变频调速电机的转子内镶有永磁体,当电机瞬间起动完毕后,电机转入正常运行,定子旋转磁场带动镶有永 磁体的转子进行同步运行,此时电机的转速根据电机的极数和电机输入电源频率形成严格的对应关系,转速不受 负载和其他因数影响。同样同步变频调速电机也附加了一个独立式强迫冷却风机,以适应电机在低速运行时的高 效散热和降低电机在高速运行时的风摩耗。由于电机的转速和电源频率的严格对应关系,使得电机的转速精度主 要就取决于变频器输出电源频率的精度,控制系统简单,对一台变频器控制多台电机实现多台电机的转速一致, 也不需要昂贵的光学编码器进行闭环控制。 TYP 变频调速永磁同步电机具有的三大优点: 1、高效节能与异步变频调速电机相比,高效节能。同规格相比,该系列电机效率比异步变频电机效率高 3~10个百分点。以1.5kW为利,两者效率差近7个百分点; 2、可精确调速与异步变频系统相比,无需编码器即可进行准确的速度控制; 3、高功率因数既可减少无功能量的消耗,又能降低变压器的容量

如何给电机选择合适的变频器

如何给电机选择合适的变频器 摘要:变频器让电机传动系统实现了两个愿望,一是让电机实现了更高效率的运行;二是让电机可以做到工况可控,避免大牛拉小车的问题。但摆在工程师面前的问题是:电机负载类型那么多,对所配变频器的性能要求也是千差万别,如何给电机选择合适的变频器呢? 变频器的英文译名是VFD(Variable Frequency Drive),这可能是现代科技由中文反向翻译为英文的为数不多实例之一。变频器是应用在变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。 而为整个电机运动系统选择合适的变频器,已是让工程师一个头痛的问题。 总的来说,变频器的选用,应按照被控对象的类型、调速范围、静态速度精度、启动转矩等来考虑,使之在满足工艺和生产要求的同时,既好用,又经济。 一般性的经验是: ●多大的电机就选择多大的变频器,有时也可大一个规格。 ●大功率的变频器功率因数较低最好在变频器的进线端加装交流电抗器。这样一是提高 功率因数,二是抑制高频谐波。如果经常频繁启动,制动,要安装制动单元和制动电阻。 ●如果需要降低噪音,可用选择水冷型变频器; ●如果需要制动,需选配制动斩波器以及制动电阻。或可用选择四象限产品,可以向电 网回馈能量,节省电能; ●如果现场仅有直流电源的话,可以选择单纯的逆变产品(使用直流电源)用以驱动电 动机。

变频器选型的最终依据,是变频器的电流曲线包罗机械负载的电流曲线。 这里罗列了一些选择变频器时,我们需要关注的实际问题。 1.采用变频的目的;恒压控制或恒流控制等。 2.变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定 了应用时的方式方法。 3.变频器与负载的匹配问题; ●电压匹配;变频器的额定电压与负载的额定电压相符。 ●电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负 载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 ●转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 4.在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流 值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。 5.变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免 变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 6.对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量 要放大一挡。 对一些电机运动控制系统要求严格的场合,需要准确检测变频器的选配效果如何,直接方法就是通过电机测试系统进行测试。但要想完成变频器与电机系统的整体测试,对电机测试系统也就提出了更高的要求,比如高带宽、高精度的电参数测量,多通道同步测试等。

风机水泵高压变频调速系统技改项目合同协议书范本模板

需方(以下简称甲方):________________________ 供方(以下简称乙方):________________________ 甲乙双方就________________有限公司________________风机用高压变频器使用一事与甲方对该工程项目签订相关技术协议,并遵循深圳市安邦信电子有限公司企业产品标准和相关国家标准,协议内容如下: 一、工程内容 1、电机设备性能

3 过流、过压、欠压、过载、缺相、电机过载、主器件保护等保护功能。 4 供货范围 二、AMB-HVI高压变频器主器件的选用及来源

三、工程项目的技术要求 3.1控制方式: 远程/就地控制方式: 当控制柜操作板上的“远程/就地”转换开关位置置远程或就地位置时,即在变频主控柜界面或通过客户的DCS信号(要求4-20mA模拟信号)控制电动机的转速。 3.2高压变频器显示的要求: 高压变频器本机具有输入电压、输入电流、输出电流,输出频率、频率设定值(现场/DCS)以及保护名称显示,输出频率(4~20mA)接口等,同时界面具有运行、停止、故障指示、故障复位等功能。 3.3高压变频器的环境要求: 3.3.1、没有腐蚀性气体和粉尘,没有直射阳光。 3.3.2、温度-10℃-35℃。 3.3.3、湿度:20-90%RH不结露。 3.3.4、海拔1000米以下。 3.3.5、每套高压变频器的所有柜体紧密顺序排列在一起,不可分割放置。 3.3.6、高压变频器房间需密封,房间门和窗进风口处必须装有阻挡粉尘进入的滤尘网。 3.3.7、高压变频器房间侧墙体上部需有散热出风口。

3.3.8、高压变频器房间内必须安装适配降温用的空调。 3.3.9、高压变频器柜体下电缆沟干净、干燥,并有防腐、防水、防鼠等防护措施。 3.4高压变频器的其它要求: 高压变频器的防护等级IP20 高压变频器的谐波含量:输入≤4%,输出:≤3% 商务合同生效后且设计完成后,甲乙双方应就设计方案进行讨论与确认,供方提供设计资料一份,中途若有其它要求,本着应从大局出发,进行合理调整。 3.5高压变频器的安装位置 根据甲方实际情况和实地测量,确定安装地点 3.6主回路结构示意图 本协议的________台高压变频器均采用一拖一方式运行,选用________KV安邦信高压变频器,同时配备工频旁路系统。 (原客户水电阻系统备用,以备在必要的情况下,电机能在工频下运行) 注:电机采用变频调速后原有的水电阻需要切换不用。如果电机需要工频启动必须采用水电阻。对于________KW/________KV设备,QF为上级用户高压柜开关。其中QS1,QS2,QS3为隔离柜的手动隔离开关;KM1,KM2,KM3为工频旁路柜的高压真空接触器,QS2,QS3或KM2,KM3之间机械或电气互锁。 说明: 对于需要水电阻启动(笼型)的高压风机由原来的单一工频电源供电改造为工频、变频双电源供电,两者可以随时进行手动切换。 A)鼠笼型高压电机改造如下: 图一:标准型变频器(手动切换型) 图二:特殊型变频器(电气切换型) 标准型高压变频器配置为三个高压隔离开关,均为手动操作方式控制,如图一所示。QS1,QS2控制变频运行;QS3控制工频运行,QS2,QS3机械互锁。 特殊型高压变频器配置为二个高压隔离开关和三个高压真空接触器,为电气操作方式控制,可实现本地或远程DCS控制,如图二所示。QS1,QS2,KM1,KM2控制变频运行;KM3控制工频运行,

永磁同步电动机PWM变频调速系统的建模与仿真

永磁同步电动机PW M变频调速系统 的建模与仿真 夏玲(黄石建筑设计研究院第4所,湖北黄石435001) 摘 要:介绍了PW M控制技术的特点,并在MAT LAB环境下,构造永磁同步电动机PW M控制的仿真模型。通过对永磁同步电动机的动态过程进行仿真,分析永磁同步电动机采用PW M控制技术的瞬态运行特征以及瞬态过程中各电磁量的变化规律。同时,也验证了仿真模型的正确性。 关键词:永磁同步电动机;仿真;PW M Modeling and Simulating of PWM Frequency I nverter System for I nterior Permanent Magnet Synchronous Motor XI A Ling(Huangshi Institute of Architectural Design&Research,Huangshi Huibei,435001,China) Abstract:T his paper introduces the characteristics of PW M control technology,and it found the simulating m od2 el for interior permanent magnet synchron ous m otor PW M control in M A T LA B environment.Via the simulation of dynamic process for interior permanent magnet synchronous m otor,it analyzes the instan2 taneous characteristics and change law of PW M control technology for interior permanent magnet syn2 chron ous m otor.And the validity of the simulation m odel is tested and verified via the simulations. K ey w ords:interior permanent magnet synchronous m otor;simulation;PW M 1 前言 永磁同步电动机转子使用永磁材料励磁,使电动机的体积和重量大大减小,电机结构简单、维护方便、运行可靠、损耗较小,效率和功率因数都比较高。然而,永磁同步电机存在启动困难、失步等缺点,变频调速技术的应用能很好地解决这些问题。同步电机控制系统常见有如下几种: (1)无换向器电机控制系统 采用交-直-交电流型逆变器给普通同步电机供电,整流及逆变部分均由晶闸管构成,利用同步电机电流可以超前电压的特点,使逆变器的晶闸管工作在自然换相状态。同时检测转子磁极的位置,用以选通逆变器的晶闸管,使电机工作在自同步状态,故又称自控式同步电机控制系统。其特点是直接采用普通同步电机和普通晶闸管构成的系统,容量可以做得很大,电机转速也可做得很高,如法国地中海高速列车即采用此方案,技术比较成熟。其缺点是由于电流采用方波供电,而电机绕组为正弦分布,低速时转矩脉动较大。 (2)交—交变频供电同步电机控制系统 逆变器采用交—交循环变流电路,由普通晶闸管组成,提供三相正弦电流给普通同步电机。采用矢量控制后可对励磁电流进行瞬态补偿,因此系统动态性能优良,已广泛应用在轧机主传动控制系统中。其特点是容量可以很大,但调速范围有一定限制,只能从同步速往下调。 (3)正弦波永磁同步电机控制系统 电机转子采用永磁材料,定子绕组仍为正弦分布绕组。如通以三相正弦交流电,可获得较理想的旋转磁场,并产生平稳的电磁转矩。采用矢量控制技术使d轴电流分量为零,用q轴电流直接控制转矩,系统控制性能可以达到很高水平。缺点是需要使用昂贵的绝对位置编码器,采用普通增量式码盘实现上述要求虽有一些限制,但采取一定措施后仍是可能的。目前研究的重点放在如何消除齿谐波及PW M控制等造成的转矩脉动。 (4)方波永磁同步电机控制系统 又称为无刷 74 2004年第4期 电机电器技术 计算机与自动控制

如何选用变频电动机

如何选用变频电动机 2008年11月17日星期一 08:52 应用负载容量曲线准确选用变频电动机 频道:变频电机 在使用变频调速的工程机械中,变频电机选择的正确与否,直接影响到工程机械实际使用效率。只有正确地选择了变频电机的功率、极数、转矩,然后确定变频器的规格,即根据所要求的过载容量选择变频器的容量等级,变频器容量等级分为:一般应用的110%短时过载容量等级和150%峰值过载容量重载应用容量等级。将变频电机与合适的变频器组合成调速系统,其难点是要根据负载容量曲线来选择电机容量。 1 用常规方法选用变频电机的缺陷 常规选用电机的方法是,先按负载性质及环境条件选择电动机的类型,然后按负载转矩及转速初选电机功率、转矩,最后校验电动机最小起动转矩、允许的最大飞轮力矩及过载转矩、电动机的发热等。如起重机起升电机,其电机静 功率 式中 为了满足电动机起动时间和不过热的要求,电机实际功率P≥KN (K为重复短时工作制系数,JC = 25,K=0.8~0.9;JC=40,K=0.9~1.0; JC=60, K=1.1~1.2)。通过计算能得出变频电机的功率,但不能准确选出最适合生产机械电机极数、负载容量的变频电机,显然这种方法对选择变频电机有缺陷。 2 正确选用变频电机的方法 根据负载容量曲线选择电机容量,是一种高效、切实可行的方法。利用负载容量曲线选择电机容量时,特别要注意在低频率段,连续负载容量曲线减弱是电机的冷却容量减少的结果。在弱磁点范围内f> 50 Hz),变频器的输出电压不能增加是负载容量减少的因素。 适当选择电机额定转速,使电机在整个运行速度范围内,连续负载容量尽可能高。这样可使机械设备稳定可靠地工作,避免出现不稳定因素。 如某机械设备需恒转矩,要求速度范围:510-1 750 r/min。可选电机:4极电机,额定转速1 500 r/min; 2极电机,额定转速3 000 r/min; 6极电机,

变频器和电机的选型

变频器和电机的选型 一、电机的选择: 首先应该根据负载运动时所需要的平均功率、最高功率,折算到电机轴侧(可能有减速机、皮带轮等减速装置)选择电机的功率,同时也要考虑电机的过载能力。电机厂商可以提供电机的力矩特性曲线,不同温度下电机特性会变化。 顺便说:选型的顺序当然是先选电机再根据电机选择变频器,因为控制的最终目的不是变频器也不是电机,而是机械负载。 二、变频器的选型: 第一应该强调的是,应该根据电流选型。对于一般负载,可以根据电机的额定电流选择变频器,即变频器额定电流(即常规环境下的最大持续工作电流)大于电机额定电流即可。但是必须要考虑极限状况的出现。因此变频器还需要可以提供短时间的过载电流。 (注意:电机的电流是由机械负载决定的) 变频器有一条过载电流曲线,是一条反时限曲线,描述了过载电流和时间的关系。这就是变频器厂商经常说得过载能力可以达到150%额定电流2秒、180%额定电流2秒云云,实际上是一条曲线。因此,只要电机的电流曲线在变频器的过载电流曲线之内,就是正确的选型。这就是为什么有时候变频器功率要大于电机功率1档或2档(比如起重应用),有时候小功率变频器仍然可以驱动大功率电机(比如输送带)的原因。 另一个必须注意的:在非正常环境下,比如高海拔、高环境温度(例如大于50度小于60度环境)、并排安装方式(有些变频器并排安装不降容,有些要降容,根据变频器设计决定)等情况下,要考虑变频器的降容。这方面的资料变频器厂商都可以提供。 结果是:变频器的额定功率可能大于电机功率,也可以小于电机功率,事实上变频器的选型也是根据机械负载决定的。 结论:变频器选型的最终依据,是变频器的电流曲线包罗机械负载的电流曲线。 三、Y型电机和变频电机 Y型电机,应该就是普通异步电机(印象中是,不太确定)。 变频器的根本功能就是改变电源频率,从而改变电机转速。因此理论上讲,不管是什么电机,只要可以通过改变频率调速的,都可以使用变频器。 如上面某位朋友所说,变频电机有着特殊的设计,更适合变频使用,我同意。 因此,并不是有个独立风扇就是所谓变频电机了。 普通异步电机使用变频器控制时,需要注意的是: 1、低频时(一般小于25hz),由于电机采用同轴风扇,低速时散热效果会很差,电机发热后,力矩特性变软,从而出现速度不稳、电流大等问题。

最新高压变频器技术协议

__________有限公司 _____风机、___水泵 变频调速系统技改项目 技术协议 需方:__________有限公司 供方:深圳市安邦信电子有限公司时间:二00__年___月___日

技术协议 需方(以下简称甲方):_______ __ _有限公司 供方(以下简称乙方):深圳市安邦信电子有限公司 甲乙双方就________有限公司_______风机用高压变频器使用一事与甲方对该工程项目签订相关技术协议,并遵循深圳市安邦信电子有限公司企业产品标准和相关国家标准,协议内容如下: 一、工程内容 1、电机设备性能 2高压变频器技术性能

3高压变频器具有的保护功能 过流过压欠压过载缺相电机过载主器件保护等保护功能。 4 供货范围 二、AMB-HVI高压变频器主器件的选用及来源 三:工程项目的技术要求 3.1控制方式: 远程/就地控制方式: 当控制柜操作板上的“远程/就地”转换开关位置置远程或就地位置时,即在变频主控柜界面或通过客户的DCS信号(要求4-20mA模拟信号)控制电动机的转速。 3.2高压变频器显示的要求: 高压变频器本机具有输入电压、输入电流、输出电流,输出频率、频率设定值(现场/DCS)以及保护名称显示,输出频率(4~20mA)接口等,同时界面具有运行、停止、故障指示、故障复位等功能。 3.3高压变频器的环境要求: 3.3.1、没有腐蚀性气体和粉尘,没有直射阳光。 3.3.2、温度-10℃-35℃。

3.3.3、湿度:20-90%RH不结露。 3.3.4、海拔1000米以下。 3.3.5、每套高压变频器的所有柜体紧密顺序排列在一起,不可分割放置。 3.3.6、高压变频器房间需密封,房间门和窗进风口处必须装有阻挡粉尘进入的滤尘网。 3.3.7、高压变频器房间侧墙体上部需有散热出风口。 3.3.8、高压变频器房间内必须安装适配降温用的空调。 3.3.9、高压变频器柜体下电缆沟干净、干燥,并有防腐、防水、防鼠等防护措施。 3.4高压变频器的其它要求: 高压变频器的防护等级IP20 高压变频器的谐波含量:输入≤4%,输出:≤3% 商务合同生效后且设计完成后,甲乙双方应就设计方案进行讨论与确认,供方提供设计资料一份,中途若有其它要求,本着应从大局出发,进行合理调整。 3.5高压变频器的安装位置 根据甲方实际情况和实地测量,确定安装地点 3.6主回路结构示意图 本协议的____台高压变频器均采用一拖一方式运行,选用____KV安邦信高压变频器,同时配备工频旁路系统。 (原客户水电阻系统备用,以备在必要的情况下,电机能在工频下运行) 注:电机采用变频调速后原有的水电阻需要切换不用。如果电机需要工频启动必须采用水电阻。 对于____KW/___KV设备,QF为上级用户高压柜开关。其中QS1,QS2,QS3为隔离柜的手动隔离开关;KM1,KM2,KM3为工频旁路柜的高压真空接触器,QS2,QS3或KM2,KM3之间机械或电气互锁。 说明: 对于需要水电阻启动(笼型)的高压风机由原来的单一工频电源供电改造为工频、变频双电源供电,两者可以随时进行手动切换 A)鼠笼型高压电机改造如下:

变频器和电机匹配方法

变频器和电机匹配方法 变频器的正确选择对于控制系统的正常运行是非常关键的。选择变频器时必须要充分了解变频器所驱动的负载特性。人们在实践中常将生产机械分为三种类型:恒转矩负载、恒功率负载和风机、水泵负载。 1.1 恒转矩负载 负载转矩TL与转速n无关,任何转速下TL总保持恒定或基本恒定。例如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载都属于恒转矩负载。变频器拖动恒转矩性质的负载时,低速下的转矩要足够大,并且有足够的过载能力。如果需要在低速下稳速运行,应该考虑标准异步电动机的散热能力,避免电动机的温升过高。 1.2 恒功率负载 机床主轴和轧机、造纸机、塑料薄膜生产线中的卷取机、开卷机等要求的转矩,大体与转速成反比,这就是所谓的恒功率负载。负载的恒功率性质应该是就一定的速度变化范围而言的。当速度很低时,受机械强度的限制,TL 不可能无限增大,在低速下转变为恒转矩性质。负载的恒功率区和恒转矩区对传动方案的选择有很大的影响。电动机在恒磁通调速时,最大允许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大允许输出转矩与速度成反比,属于恒功率调速。如果电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相一致时,即所谓“匹配”的情况下,电动机的容量和变频器的容量均最小。 1.3 风机、泵类负载 在各种风机、水泵、油泵中,随叶轮的转动,空气或液体在一定的速度范围内所产生的阻力大致与速度n的2次方成正比。随着转速的减小,转矩按转速的2次方减小。这种负载所需的功率与速度的3

次方成正比。当所需风量、流量减小时,利用变频器通过调速的方式来调节风量、流量,可以大幅度地节约电能。由于高速时所需功率随转速增长过快,与速度的三次方成正比,所以通常不应使风机、泵类负载超工频运行。 用户可以根据自己的实际工艺要求和运用场合选择不同类型的变频器。在选择变频器时因注意以下几点注意事项: 选择变频器时应以实际电机电流值作为变频器选择的依据,电机的额定功率只能作为参考。另外,应充分考虑变频器的输出含有丰富的高次谐波,会使电动机的功率因数和效率变坏。因此,用变频器给电动机供电与用工频电网供电相比较,电动机的电流会增加10%而温升会增加20%左右。所以在选择电动机和变频器时,应考虑到这种情况,适当留有余量,以防止温升过高,影响电动机的使用寿命。 变频器若要长电缆运行时,此时应该采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不够。所以变频器应放大一、两档选择或在变频器的输出端安装输出电抗器。 对于一些特殊的应用场合,如高环境温度、高开关频率、高海拔高度等,此时会引起变频器的降容,变频器需放大一档选择。 使用变频器控制高速电机时,由于高速电动机的电抗小,会产生较多的高次谐波。而这些高次谐波会使变频器的输出电流值增加。因此,选择用于高速电动机的变频器时,应比普通电动机的变频器稍大一些。 使用变频器驱动齿轮减速电动机时,使用范围受到齿轮转动部分润滑方式的制约。润滑油润滑时,在低速范围内没有限制;在超过额定转速以上的高速范围内,有可能发生润滑油用光的危险。因此,不要超过最高转速容许值。

变频器选型---如何正确选择中小型断路器

如何正确选择中小型断路器 配电(线路)、电动机和家用电器等的过电流保护断路器,因保护对象(如变压器、电线电缆、电动机和家用电器等)的承受过载电流的能力(包括电动机的起动电流和起动时间等)有差异,选用的断路器的保护特性不同。 1.1配电用断路器的选择 配电用断路器是指在低压电网中专门用于分配电能的断路器,包括电源总断路器和负载支路断路器。在选用这一类断路器时,需特别注意下列选用原则: (1)断路器的长延时动作电流整定值≤导线容许载流量。对于采用电线电缆的情况,可取电线电 (2)3 (3) 式中 k Ied (4) 式中 Iedm (5) 时差为0.1 1.2 )进行保护。 电流设定为5~10倍Ied,可以保证在电动机起动时避过浪涌电流。 但对热保护来讲,其过载保护的动作值整定于1.45Ied,也就是说电动机要承受45%以上的过载电流时MCB才能脱扣,这对于只能承受<20%过载的电机定子绕组来讲,是极容易使绕组间的绝缘损坏的,而对于电线电缆来讲是可承受的。因此,在某些场合如确需用MCB对电机进行保护,可选用ABB 公司特有的符合IEC947-2标准中K特性的MCB,或采用MCB外加热继电器的方式,对电动机进行过载和短路保护。 1.3家用保护型断路器的选择 MCB是建筑电气终端配电装置中使用最广泛的一种终端保护电器。 应当像选用塑壳断路器和框架断路器一样,计算最大短路容量后再选择。

MCB的设计和使用是针对50~60Hz交流电网的,如用于直流电路,应根据制造厂商提供的磁脱扣动作电流同电源频率变化系数来换算;当环境温度大于或小于校准温度值时,必须根据制造厂商提供的温度与载流能力修正曲线来调整MCB的额定电流值。 低压配电线路的短路电流与该供电线路的导线截面、导线敷设方式、短路点与电源距离长短、配电变压器的容量大小、阻抗百分比等电气参数有关。 一般工业与民用建筑配电变压器低压侧电压多为0.23/0.4kV,变压器容量大多为1600kVA及以下,低压侧线路的短路电流随配电容量增大而增大。对于不同容量的配变,低压馈线端短路电流是不同的。一般来说,对于民用住宅、小型商场及公共建筑,由于由当地供电企业的低压电网供电,供电线路的电缆或架空导线截面较细,用电设备距供电电源距离较远,选用4.5kA及以上分断能力的MCB 即可。 ,应选 用6kA 压总母排) 10kA下端子 因,MCB 性根据 用场合, 护;B 与A MCB不动作,C;D 2 2.1 (1) (2)线路应保护的漏电电流应小于或等于断路器的规定漏电保护电流; (3)断路器的极限通断能力应大于或等于电路最大短路电流; (4)过载脱扣器的额定电流大于或等于线路的最大负载电流; (5)有较短的分断反应时间,能够起到保护线路和设备的作用。 2.2四极断路器的选用 是否选用四极断路器可遵循以下原则: (2)带漏电保护的双电源转换断路器应采用四极断路器。两个上级断路器带漏电保护,其下级的电源转换断路器应使用四极断路器;

系列智能高压变频调速系统用户手册

Zinvert 系列智能高压变频调速系统 用户手册 广州智光电机有限公司 GUANGZHOU ZHIGUANG POWER ELECTRONICS Co.,Ltd. 2004年7月 目录 前言 (3) 第1章安全须知 (4) 1.1 标志约定 (4) 1.2安全规则 (4) 第2章简介 (7) 2.1产品特点 (7) 2.2应用领域 (8) 2.3功能简介 (8) 第3章技术参数与规格型号 (10) 3.1系统型号说明 (10) 3.2组件与配置 (10) 3.3选型与外形尺寸 (11) 3.4产品通用技术参数 (12) 第4章系统组成结构与工作原理 (14) 4.1 系统组成与原理 (14) 4.2控制系统 (15) 第5章操作 (17) 5.1运行前准备工作 (17) 5.2启动 (17) 5.3改变频率给定值 (17) 5.4减速停机 (18) 5.5断电 (18) 5.6自由停机 (18) 5.7运行状态监视 (18)

5.8变频调速系统运行到旁路运行的转换(如果选配旁路柜) (19) 5.9旁路运行转换到变频调速系统运行(如果选配旁路柜) (19) 5.10 变频调速系统检修 (19) 第6章人机接口和参数设置 (21) 6.1 显示与键盘介绍 (21) 6.2基本界面显示和操作 (22) 6.3液晶显示和面板按键具体操作方法 (24) 6.4控制器功能参数列表 (38) 第7章变频调速系统接口 (42) 7.1变频调速系统基本接口 (42) 7.2控制器基本I/O信号接口表 (42) 第8章安装说明 (48) 8.1安装的安全注意事项 (48) 8.2地基、空间和周围环境的要求 (48) 8.3高压部分安装 (48) 8.4设备接地 (49) 8.5 辅助电源及电缆 (49) 8.6控制信号用电缆 (50) 8.7 电缆布线 (50) 8.8机械安装 (50) 8.9电气安装 (51) 第9章调试 (54) 9.1调试常规预备工作 (54) 9.2调试人员配合 (54) 9.3验收 (54) 第10章维护 (55) 10.1 安全须知 (55) 10.2维护的标准程序 (55) 10.3维护计划 (56) 10.4维护项目 (57) 10.5维护日志 (58) 第11章故障的检测与排除 (59) 11.1故障分类 (59) 11.2故障指示 (59) 11.3故障记录 (59) 11.4 故障检测的标准程序 (59) 11.5报警和故障信息及其可能原因、处理解决措施60

相关主题
文本预览
相关文档 最新文档