当前位置:文档之家› 图像复原

图像复原

图像复原
图像复原

图像复原

1.背景介绍

图像复原是图像处理的一个重要课题。图像复原也称图像恢复,是图像处理的一个技术。它主要目的是改善给定的图像质量。当给定一幅退化了的或是受到噪声污染的图像后,利用退化现象的某种先验知识来重建或恢复原有图像是复原处理的基本过程。可能的退化有光学系统中的衍射,传感器非线性畸变,光学系统的像差,摄影胶片的非线性,打气湍流的扰动效应,图像运动造成的模糊及集合畸变等等。噪声干扰可以有电子成像系统传感器、信号传输过程或者是胶片颗粒性造成。各种退化图像的复原可归结为一种过程,具体地说就是把退化模型化,并且采用相反的过程进行处理,以便恢复出原图像。文章介绍图像退化的原因,直方图均衡化及几种常见的图像滤波复原技术,以及用MATLAB实现图像复原的方法。

2.实验工具及其介绍

2.1实验工具

MATLAB R2016a

2.2工具介绍

MATLAB语言是基于最为流行的C++语言基础上的,因此语法特征与C++语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式。使之更利于非计算机专业的科技人员使用。而且这种语言可移植性好、可拓展性极强。

MATLAB具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。新版本的MATLAB对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB 同样表现了出色的处理能力。同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。

3.图像复原法

3.1含义

图像复原也称图像恢复,是图像处理中的一大类技术。所谓图像复原,是指去除或减在获取数字图像过程中发生的图像质量下降(退化)这些退化包括由光学系统、运动等等造成图像的模糊,以及源自电路和光度学因素的噪声。图像复原的目标是对退化的图像进行处理,使它趋于复原成没有退化的理想图像。成像过程的每一个环节(透镜,感光片,数字化等等)都会引起退化。在进行图像复原时,既可以用连续数学,也可以用离散数学进行处理。其次,处理既可以在空间域,也可以在频域进行。

3.2生活中常见的模糊图像

图a图b图c

4直方图均衡化图像复原

4.1直方图均衡化作用

直方图均衡化一来可以提高图像的对比度,二来可以把图像变换成像素值是几乎均匀分布的图像。

4.2直方图均衡化定义

1定义

一个灰度级在范围[0,L-1]的数字图像的直方图是一个离散函数p(r )=n /k k n

n 是图像的像素总数,n k 是图像中灰度级为r k 的像素个数,r k 是第k 个灰度级,k =0,1,2,…,L-1

2变换

假定r 已经标准化在[0,1]区间内,r=0表示黑色,r=1表示白色,变换函数

s=T(r),01r ≤≤,

满足以下条件:

T(r)是一单值函数,并且在区间[0,1]单调递增;

对01r ≤≤时,0()1

T r ≤≤4.3直方图应用举例——直方图均衡化

1希望一幅图像的像素占有全部可能的灰度级且分布均匀,能够具有高对比度2使用的方法是灰度级变换:s =T(r)

3基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了像素灰度值的动态范围,从而达到增强图像整体对比度的效果

4.4实验步骤

1直方图均衡化处理图片过程

第一、求出给定待处理图像的直方图;

第二、利用累计分布函数对原图像的统计直方图做变换,得到新的图像灰度;

第三、进行近似处理,将新灰度代替旧灰度,同时将灰度值相等或相近的每个灰度直方图合并在一起。

注意:一定要先将图片变为灰度图像!

2实验过程

第一、首先将图像变为灰度图像,代码如下;

a=imread('F:\研究生\研一专业课\图形图像处理\作业\实验图片\456.png');%读入要处理的图像

b=rgb2gray(a);%转化为灰度图像

第二、利用histeq(f,nlev)进行图片均衡化;

histeq(f,nlev)其中f 输入图像(指的是灰度图像);nlev 指的是等区间的适当灰度值的目;向量nlev 应该包括等区间的适当灰度值的数目(就是灰度区间,比方uint8图像,将256个灰度级化为32个区间,每一个区间连续8个灰度级)。灰度值的范围为:双精度图像灰度值范围为[0-1],unit8图像灰度值范围为[0-255],unit16图像的灰度值范围为[0-65535],histeq 自己主动调整hgram 以达到标准图像nlev 的和等于原图像的像素数(即两幅图像的像素数要相等。此时将标准图像的像素数目调整的和原图像像素数目一样)。当规定直方图J 的长度比原图像I 的灰度级数目小时,J 的直方图将会更好的匹配规定直方图nlev 。

第三、直方图测试结果对照

利用3.2图a测试,直方图测试结果如图4-1

图4-1

第一、均衡化之后的图与原图对比

利用3.2图a测试,复原的图像对照,如下图4-2;

图4-2

直方图具体测试的程序见附录1,附录2是对3.2其它图形的测试结果

4.5实验结果

实验结果表明,均衡化之后图片比之前的亮度提升,图片中数目和建筑物比没有均衡化之前稍微清晰一些。

5.空间域滤波图像复原

空间域滤波是指在图像空间中借助模板对图像领域进行操作,处理图像每一个像素值。主要分为线性滤波和非线性滤波两类,根据功能可分为平滑滤波器和锐化滤波器。平滑可通过低通来实现,平滑的目的有两类,一是模糊,目的是在提取较大的目标前去除太小的细节或将目标内的小尖端连接起来;二是去噪。锐化则可用高通滤波来实现,锐化的目的是为了增强被模糊的细节。

定义形式:

在M N

?的图像f上,使用m n

?的滤波器:

(,)(,)(+s,)a b

s a t b g x y w s t f x y t =-=-=

+∑∑其中,m=2a+1,n=2b+1,w(s,t)是滤波器系数,f(x,y)是图像值

空间滤波的简化形式:

11221...mn mn mn i i

i R w z w z w z w z

==+++=∑其中,w 是滤波器系数,z 是与该系数对应的图像灰度值,mn 为滤波器中包含的像素点总数。

本实验所用的空间域滤波有均值滤波、高斯滤波和中值滤波。

5.1线性滤波器(均值滤波)

1均值滤波原理

由fspecial 函数生成的w1是一个大小为3*3的矩形平均滤波器,再用imfilter 这个函数使这个掩模的中心逐个滑过图像的每个像素,输出为模板限定的相应领域像素与滤波器系数乘积结果的累加和。由处理结果可见均值滤波器的效果使每个点的像素都平均到它的领域去了,噪声明显减少了很多,效果较好。2作用

第一:减小图像灰度的“尖锐”变化,减小噪声。

第二:由于图像边缘是由图像灰度尖锐变化引起的,所以也存在边缘模糊的问题。

3定义形式

图a 是标准的像素平均值,图b 是像素的加权平均

(,)(+s,)

(,)(,)a b s a t b a b

s a t b w s t f x y t g x y w s t =-=-=-=-+=∑∑∑∑其中,w(s,t)是滤波器系数,f(x,y)是图像值

5.2高斯滤波

1高斯滤波原理

高斯滤波器是平滑线性滤波器的一种,线性滤波器很适合于去除高斯噪声。而非线性滤波则很适合用于去除脉冲噪声,中值滤波就是非线性滤波的一种。高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波器是带有权重的平均值,即加权平均,中心的权重比邻近像素的权重更大,这样就可以克服边界效应。

图a 图b

2定义形式

高斯滤波若采用3×3掩模的具体公式如下:

g(x,y)={f(x-1,y-1)+f(x-1,y+1)+f(x+1,y-1)+f(x+1,y+1)+[f(x-1,y)+f(x,y-1)+f(x+1,y)+f(x,y+1)]*2+f(x,y)*4}/16

其中,f(x,y)为原图像中(x,y)像素点的灰度值,g(x,y)为经过高斯滤波和的值。

5.3中值滤波

1中值滤波的原理

中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。二维中值滤波输出为g(x,y)=med{f(x-k,y-l),(k,l ∈W)},其中,f(x,y),g(x,y)分别为原始图像和处理后图像。W 为二维模板,通常为3*3,5*5区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。中值滤波对于斑点噪声和椒盐噪声来说尤其有用。保存边缘的特性使它在不希望出现边缘模糊的场合也很有用。

2定义形式

{}|1,2,...,k R mid z k n ==其中k z 表示该区域内第k 个数的值

3用法

用像素领域内的中间值代替该像素

5.4实验结果比较

1首先对原始图像加噪处理,首先加高斯噪声,然后利用中值滤波、均值滤波和高斯滤波进行去噪,结果如图5-1、5-2所示(具体代码见附录一2):

图5-1

图5-2

实验结果表明:高斯噪声去噪不明显,而均值滤波和中值滤波去噪之后和原图相差不大,所以可得出的结论是对于高斯噪声,用中值滤波和均值滤波的效果要比高斯滤波的效果好。2对原图加椒盐噪声,之后并去噪,实验结果如图5-3、5-4所示;

图5-3

图5-4

实验结果表明,加入椒盐噪声之后,高斯滤波的去噪仍然不是很明显,但是中值滤波比均值滤波去噪效果要好很多。所以可得出的结论是中值滤波对于去椒盐噪声效果好。

3原图中同时加入椒盐噪声和高斯噪声,测试所得结果如图5-5、5-6所示

图5-5

图5-6

由上图可以得出,中值的滤波结果是最好的。均值滤波的最后结果把大部分的景物都虚拟化;而且与原图对比之后发现,中值滤波器对于大部分的景物都比较清晰。高斯滤波虽然

对物体没有虚拟化,但是还存在一定的噪声。对物体提取不是很明显。

6.实验结果分析

利用MATLAB软件,使用直方图均衡化和空间域滤波的算法,对图像进行复原来对比实验结果。从图4-2与图5-6、5-6对比可得,中值滤波对图像的复原结果是最好的,直方图均衡化只是把图像的亮度变量,使其所有分布都均匀,并未对物体进行主要的复原,但是滤波操作会把大部分噪音都去掉,是图片变的平滑。

下面我们可以尝试直方图均衡化得到的图像去噪结果如图6-1、6-2所示,具体程序见附录一3

图6-1

图6-2

实验结果与图5-5、5-6对比表明,直方图均衡化之后的图像,紧接着再执行去噪结果不如直方图均衡化前的图像进行去噪,均衡化之后的图像去噪之后变得模糊,物体识别度不高。

7.总结

直方图均衡化对图片复原有一定的作用,有图6-1、6-2结果可得可以利用直方图均衡化的图片进行去噪操作,结果不如直接对图片进行去噪的结果好。所以对比之后得出,去噪用空间域滤波的中值滤波结果相对来说比较好。故由5实验结果可得,对于大部分图像复原,建议分情况使用,比如中值滤波很适合去除椒盐噪声,且效果很好。

附录一

1直方图均衡化程序

%函数histeq()进行直方图均衡化处理

a=imread('F:\研究生\研一专业课\图形图像处理\作业\实验图片\456.png');

b=rgb2gray(a);%转化为灰度图像

J=histeq(b,64);%直方图均衡化

figure,

subplot(121),imshow(uint8(b));

title('原图')

subplot(122),imshow(uint8(J));

title('均衡化后')

figure,

subplot(121),imhist(b,64);

title('原图像直方图');

subplot(122),imhist(J,64);

title('均衡化后的直方图');

2空间域滤波程序

2.1无噪声图加高斯噪声和椒盐噪声,去噪程序

rgb=imread('F:\研究生\研一专业课\图形图像处理\作业\实验图片\2.png');

J1=imnoise(rgb,'salt&pepper',0.02);

J2=imnoise(J1,'gaussian',0,0.01);

subplot(2,3,1);imshow(rgb)

title('原图像');

subplot(2,3,2);imshow(J2)

title('加入噪声后的图像');

I=rgb2gray(J2);%转化为灰度图像

w1=fspecial('average',[33]);

w2=fspecial('gaussian',[33],0.5);

g1=imfilter(I,w1,'replicate');

g2=imfilter(I,w2,'replicate');

g3=medfilt2(I);;

subplot(2,3,3);imshow(g1);title('均值滤波');

subplot(2,3,4);imshow(g2);title('高斯滤波');

subplot(2,3,5);imshow(g3);title('中值滤波');

2.2无噪声图高斯噪声之后去噪

rgb=imread('F:\研究生\研一专业课\图形图像处理\作业\实验图片\2.png');

J2=imnoise(rgb,'gaussian',0,0.01);%若添加椒盐噪声,需把’gaussian’换成’salt&pepper’即可subplot(2,3,1);imshow(rgb)

title('原图像');

subplot(2,3,2);imshow(J2)

title('加入噪声后的图像');

I=rgb2gray(J2);%转化为灰度图像

w1=fspecial('average',[33]);

w2=fspecial('gaussian',[33],0.5);

g1=imfilter(I,w1,'replicate');

g2=imfilter(I,w2,'replicate');

g3=medfilt2(I);;

subplot(2,3,3);imshow(g1);title('均值滤波');

subplot(2,3,4);imshow(g2);title('高斯滤波');

subplot(2,3,5);imshow(g3);title('中值滤波');

2.3原图即为有噪声图

a=imread('F:\研究生\研一专业课\图形图像处理\作业\实验图片\4.png'); I=rgb2gray(a);%转化为灰度图像

w1=fspecial('average',[33]);

w2=fspecial('gaussian',[33],0.5);

g1=imfilter(I,w1,'replicate');

g2=imfilter(I,w2,'replicate');

g3=medfilt2(I);

subplot(2,2,1);imshow(I);title('原图');

subplot(2,2,2);imshow(g1);title('均值滤波');

subplot(2,2,3);imshow(g2);title('高斯滤波');

subplot(2,2,4);imshow(g3);title('中值滤波');

3直方图均衡化之后在用空间域滤波

a=imread('F:\研究生\研一专业课\图形图像处理\作业\实验图片\789.png'); b=rgb2gray(a);%转化为灰度图像

I=histeq(b,64);%直方图均衡化

figure,

subplot(2,3,1),imshow(uint8(b));

title('原图')

subplot(2,3,2),imshow(uint8(I));

title('均衡化后')

w1=fspecial('average',[33]);

w2=fspecial('gaussian',[33],0.5);

g1=imfilter(I,w1,'replicate');

g2=imfilter(I,w2,'replicate');

g3=medfilt2(I);;

subplot(2,3,3);imshow(g1);title('均值滤波');

subplot(2,3,4);imshow(g2);title('高斯滤波');

subplot(2,3,5);imshow(g3);title('中值滤波');

附录二

1直方图均衡化对图片测试结果

2空间域滤波测试图像

图像复原方法综述

图像复原方法综述 1、摘要 图像是人类视觉的基础,给人具体而直观的作用。图像的数字化包括取样和量化两个步骤。数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。 图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。 本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。 关键词:图像退化、图像复原、维纳滤波、正则滤波、LR算法、盲区卷积、 2、图像复原概述 在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。通常,称由于这些因素引起的质量下降为图像退化。 图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1]。 图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。 由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。 图像复原算法是整个技术的核心部分。目前,国内在这方面的研究才刚刚起步,而国外

数字图像实验:图像退化和还原.

%1.使用函数fspecial创建退化滤波器PSF,然后调用imfilter对图像进行卷积运算,就可以 %得到一幅运动退化图像,观察并记录结果。 I=imread('C:\Documents and Settings\Administrator\桌面\16 \fig0222b.jpg'); %读入图像 LEN=31; THETA=11; PSF=fspecial('motion',LEN,THETA); %生成退化函数 blurred=imfilter(I,PSF, 'circular', 'conv'); figure subplot(1,2,1),imshow(I);title('原图像'); subplot(1,2,2),imshow(blurred);title('6.1 运动退化图像'); %2.使用imnoise函数对图像添加随机噪声,观察并记录结果。 fnblurred =imnoise( blurred, 'gaussian',0,0.001); %产生随机噪声图像 figure, imshow(fnblurred);title('6.2 加噪之后'); %3.使用函数deconvwnr对无噪声的运动模糊图像进行复原,观察并记录结果。同时采用不同的 %LEN和THETA参数,进行实验,体会一下退化函数PSF的重要性,观察并记录结果。 LEN=31; THETA=11; PSF=fspecial('motion',LEN,THETA); wnr1=deconvwnr(blurred,PSF); wnr2=deconvwnr(blurred, fspecial('motion',2*LEN,THETA)); wnr3=deconvwnr(blurred, fspecial('motion', LEN, 2*THETA)); figure imshow(wnr1);title('6.3.1 无噪运动模糊图像复原1'); figure subplot(1,2,1),imshow(wnr2);title('6.3.2 无噪运动模糊图像复原2'); subplot(1,2,2),imshow(wnr3);title('6.3.3 无噪运动模糊图像复原3'); %4.使用函数deconvwnr对一幅有噪声的运动模糊图像进行维纳滤波复原,观察并记录结果。 wnr4=deconvwnr(fnblurred,PSF); figure,imshow(wnr4);title('6.4 维纳滤波复原'); %5.为了使维纳滤波复原的效果变好,必须使用deconvwnr函数的可选参数NSR、NCORR和ICORR, %通过改变参数获得不同的复原效果,观察并记录结果。

图像退化与复原

G(u,v) =F(u,v)+N(u, v) ⑶ 实验名称:图像退化与复原 实验目的 1. 了解光电图像的退化原因; 2. 掌握和理解基本的噪声模型,并能对图像进行加噪处理; 3. 了解点扩展函数(PSF)与光学传递函数(OTF)的关系,熟悉几种经典的退化模 型的 模拟试验和OTF 估计方法; 4. 熟悉和掌握几种经典的图像复原方法及其基本原理; 5. 能熟练利用MATLAB 或C/C++工具进行图像的各种退化处理, 并能编程实现 退化 图像的复原。 三. 实验原理 光电成像系统出现图像退化的过程是复杂多变的,为了研究的需要,通常情 况下都把退化简化为化为一个线性移不变过程,见下图 1所示。 障质过稈 | 屯原 图1光电图像退化与复原原理图 因此,在空域中退化过程可以表示如下: g (x,y) = f (x,y) * h(x,y) + h(x,y) (1) 只有加性噪声不存在情况下,退化过程可以模型化如下表达式: g(x,y) = f (x,y) + h(x,y) (2) 其频域表达式为 :

针对这种退化图像的复原,除了周期噪声以外,通常都可以采用空间域滤波 的方法进行图像复原,此时图像复原与图像增强几乎是没有区别的。常见的空间 域滤波方法有均值滤波器和统计排序滤波器。 当退化图像存在线性移不变退化时, 图像的复原不能采用简单空间域滤波器 来实现,要实现线性移不变退化图像的复原, 必须知道退化系统的退化函数,即 点扩展函数h(x,y)。在点扩展函数已知的情况下,常见图像复原方法有逆滤波 和维纳滤波两种。 在考虑噪声的情况下,逆滤波的原理可以表示如下: 通常情况下,N (u,v)是未知的,因此即使知道退化模型也不能复原图像 此外,当H (u,v )的任何元素为零或者值很小时,N (u,v )/H (u,v )的比值决定 着复原的结果,从而导致图像复原结果出现畸变。对于这种情况, 通常采用限制 滤波频率使其难以接近原点值,从而减少遇到零值的可能性。 维纳滤波则克服了逆滤波的缺点,其数学模型表示如下: 然而,为退化图像的功率谱很少是已知的,因此常常用下面表达式近似: 因此,本实验的内容就是利用上述经典图像复原的原理,对降质退化图像进 行复原。 四. 实验步骤 本次实验主要包括光电图像的退化模型和复原方法实现两大部分内容。 (一)图像的退化图像 1、大气湍流的建模 ° F(u,v) = G(u,v) U F(u,v) = G(u,v) H(u,v) F(u,v) + N(u,v) H(u,v) ° 犏 F (u,v)=犏 J _________ (u,v) H (u,v) H *(u,v)2 + S h (u,v)/S f (u,v) G(u,v)

图像复原处理技术

实验五图像复原处理技术 实验目的 1 了解图像降质退化的原因,并建立降质模型。 2 理解反向滤波图像复原的原理 3 理解维纳滤波图像复原的原理实验原理图像复原处理一定是建立在图像退化的数学模型基础上的,这个退化数学模型应该能够 反映图像退化的原因。图像降质过程的模型如图5-1所示,其表达式为 g(x,y)=h (x,y)*f (x,y) +n (xy) (5.1) 图5-1图像降质模型 1、 滤波图像复原 逆滤波法是最简单的图像恢复方法。对5.1式两边作二维傅立叶变换,得到 G (u , v ) =H (u ,v) F (u ,v) + N (u ,v) H (u ,v) 为成像系统的转移函数。估算得到的恢复图像的傅立叶变换F ? (u ,v) 为 ()()()()()() ,,?,,,,G u v N u v F u v F u v H u v H u v ==+ (5.2) 若知道转移函数H (),u v ,5.2式经反变换即可得到恢复图像,其退化和恢复的全过程用图5-2表示。 图5-2频域图像降质及恢复过程

逆滤波恢复法会出现病态性,若H (),u v ,而噪声N(u,v) ≠0,则()(),,N u v H u v 比F (x,y)大很多,使恢复出来()?,f x y 与(),f x y 相差很大,甚至面目全非。一种改进的方法是在H (u , v ) =0 的频谱点及其附近,人为仔细设置()1,H u v -的值,使得在这些频 谱点附近,()(),,N u v H u v 不会对()?,F u v 产生太大影响。二种方法是考虑到降质系统的转移函数(),H u v 的带宽比噪声要窄的多,其频率特性也具有低通性质,因此可令逆滤波的转移函数()1,H u v 为 ()()()()1 222 11 2220 1,,0H u v u v D H u v u v D ?+≤?=??+>? (2)维纳滤波复原 逆滤波简单,但可能带来噪声的放大,而维纳滤波对逆滤波的噪声放大有抑制作用。 维纳滤波是寻找一个滤波器,使得复原后图像()?,f x y 与原始图像(),f x y 的方差最小,即 ()(){ }2 ?min ,,E f x y f x y ??=-?? 如果图像(),f x y 和噪声(),n x y 不相关,且(),h x y 有零均值,则可导出维纳滤波器的传递函数为 ()() () () () 2 2 ,1 ,,,,,w n f H u v H u v P u v H u v H u v P u v = ? + 式中(),n P u v 和(),f P u v 分别为噪声和原始图像的功率谱。实际上(),n P u v 和(),f P u v n 往往是未知的,这时常用常数K 来近似 () () ,,n f P u v P u v 。 【实验】产生一模糊图像,采用维纳滤波图像复原的方法对图像进行处理。 clear; %清除变量 d=15 %设定长度

数字图像处理图像复原实验报告

图像复原信息132李佳奇1304010311 一、实验目的 1、熟悉并掌握MATLAB图像处理工具箱的使用; 2、理解并掌握常用的图像的恢复和分割技术。 二、实验内容 close all;clear all;clc; I=imread('d:/zhien.jpg'); I=im2double(I); I=imnoise(I,'gaussian',0.05);%添加高斯噪声 PSF=fspecial('average',3); J=imfilter(I,PSF); K=exp(imfilter(log(I),PSF)); figure; subplot(131);imshow(I); subplot(132);imshow(J); subplot(133);imshow(K); 维纳滤波 I=imread('d:/zhien.jpg'); H=fspecial('motion',50,45); J=imfilter(I,H,'circular','conv'); subplot(221);imshow(J); title('运动模糊后的lena.bmp(角度为45)'); J1=imnoise(J,'gaussian',0,0.01); subplot(222); imshow(J1); title('加噪模糊的lena.bmp');%figure; J2=deconvwnr(J1,H); subplot(223) imshow(J2); title('模糊噪声图像的维纳滤波复原'); noise=imnoise(zeros(size(I)),'gaussian',0,0.01); NSR=sum(noise(:).^2)/sum(im2double(I(:)).^2); J3=deconvwnr(J1,H,NSR);

图像复原处理技术样本

实验五图像复原解决技术 实验目 1 理解图像降质退化因素,并建立降质模型。 2 理解反向滤波图像复原原理 3 理解维纳滤波图像复原原理实验原理图像复原解决一定是建立在图像退化数学模型 基本上,这个退化数学模型应当可以 反映图像退化因素。图像降质过程模型如图5-1所示,其表达式为 g(x,y)=h (x,y)*f (x,y) +n (xy) (5.1) 图5-1图像降质模型 1、 滤波图像复原 逆滤波法是最简朴图像恢复办法。对5.1式两边作二维傅立叶变换,得到 G (u ,v ) =H (u ,v) F (u ,v) + N (u ,v) H (u ,v) 为成像系统转移函数。估算得到恢复图像傅立叶变换F ? (u ,v) 为 ()()()()()() ,,?,,,,G u v N u v F u v F u v H u v H u v ==+ (5.2) 若懂得转移函数H (),u v ,5.2式经反变换即可得到恢复图像,其退化和恢复全过程用图5-2表达。

图5-2频域图像降质及恢复过程 逆滤波恢复法会浮现病态性,若H (),u v ,而噪声N(u,v) ≠0,则()(),,N u v H u v 比F (x,y)大诸多,使恢复出来()?,f x y 与(),f x y 相差很大,甚至面目全非。一种改进办法是在H (u ,v ) =0 频谱点及其附近,人为仔细设立()1,H u v -值,使得在这些频谱点附 近,()(),,N u v H u v 不会对()?,F u v 产生太大影响。二种办法是考虑到降质系统转移函数(),H u v 带宽比噪声要窄多,其频率特性也具备低通性质,因而可令逆滤波转移函数 ()1,H u v 为 ()()()()1 222 11 2220 1,,0H u v u v D H u v u v D ?+≤?=??+>? (2)维纳滤波复原 逆滤波简朴,但也许带来噪声放大,而维纳滤波对逆滤波噪声放大有抑制作用。维纳 滤波是寻找一种滤波器,使得复原后图像()?,f x y 与原始图像(),f x y 方差最小,即 ()(){ }2 ?min ,,E f x y f x y ??=-?? 如果图像(),f x y 和噪声(),n x y 不有关,且(),h x y 有零均值,则可导出维纳滤波器传递函数为 ()() ()()()() 2 2 ,1 ,,,,,w n f H u v H u v P u v H u v H u v P u v = ? + 式中(),n P u v 和(),f P u v 分别为噪声和原始图像功率谱。事实上(),n P u v 和(),f P u v n 往往是未知,这时惯用常数K 来近似 () () ,,n f P u v P u v 。

实验四噪声图像的复原

实验四噪声图像的复原 -、运动模糊与维纳滤波 1?实验方式 通过对图像添加运动模糊模拟实际拍照的延时效应,并且利用维纳滤波方式对图像进行滤波,观察维纳滤波对运动模糊的过滤效果,并对照其他几种滤波方式对运动模糊的影响。 实验代码: close all;clear all;clc; i=imread('E:\Matlabimage\book.jpg'); 匸rgb2gray(i); I = im2double(l); LEN = 21; THETA = 11; PSF = fspecial('motion', LEN, THETA); blurred = imfilter(I, PSF, 'conv', 'circular'); wnr2 = dec onvwn r(blurred, PSF); subplot(2,2,1);imshow(i);title('原图') subplot(2,2,2);imshow(l);title('灰度图') subplot(2,2,3);imshow(blurred);title('运动模糊图像') subplot(2,2,4);imshow(wnr2);title('恢复图像') 代码解释:程序首先读取一幅JPG格式的彩色图片,然后将此图片转化为双精 度灰度图片,然后产生运动模糊算子PSF,其中参数LEN和THETA表示摄像物体逆时针方向一THETA方向运动了LEN个像素,并且通过imfilter实现运动模糊效果,将返回的结果放入blurred,然后通过deconvwnr实现滤波,并将滤波前后的图像显示出来。 实验结果:

二、利用MATLAB 实现频域滤波的程序 1、频域sobel 滤波 实验根据公式设计高通或低通滤波器对图像进行处理,并观察频域滤波的效果 实验代码: close all;clear all;clc; f=imread('camerama n.tif); F=fft2(f); %对图像进行傅立叶变换 %对变换后图像进行对数变化,并对其坐标平移,使其中心化 %将频谱图像标度在0-256的范围内 %显示频谱图像 %产生空间‘ sobe '模版 %查看相应频域滤波器的图像 %产生滤波时所需大小的矩阵 S=fftshift(log(1+abs(F))); S=gscale(S); figure,imshow(S) h=fspecial('sobel'); figure;freqz2(h) PQ=paddedsize(size (f)); 几种滤波方式对运动模糊的滤除效果对比: 运动模糊+维纳滤波: 运动模糊+中值滤波: 运动模糊+平均值滤波 由对比结果可知维纳滤波对运动模糊有很好的处理效果。

基于MATLAB的运动模糊图像恢复技术

基于MATLAB的运动模糊图像恢复技术 王洪珏 (温州医学院,浙江,温州) 摘要:MATLAB是当今流行的科学计算软件,它具有很强的数据处理能力。在其图像处理工具箱中有四个图像复原函数,本文就这些函数的算法原理、运用和恢复处理效果结合实力效果作简要对比讨论。 0前言 图像复原时图像处理中一个重要的研究课题。图像在形成、传输和记录的过程中,由于传感器的噪声、摄像机未对好焦、摄像机与物体相对运动、系统误差、畸变、噪声等因素的影响,使图像往往不是真实景物的完善影像。这种图像在形成、传输和记录过程中,由于成像系统、传输介质和设备的不完善,使图像质量下降的过程称为图像的退化。图像复原就是通过计算机处理,对质量下降的图像加以重建或恢复的过程。 图像复原过程一般为:找退化原因→建立退化模型→反向推演→图像复原 1算法产生概述 开发算法时,首先要创建图像退化的线性数学模型,接着选择准则函数,并以适当的数学形式表达,然后进行数学推演。推演过程中通常要进行表达形式(即空域形式、频域形式、矩阵-矢量形式或变换域形式)的相互转换,最后得到图像复原算式。 退化数学模型的空域、频域、矢量-矩阵表达形式分别是: g(x,y)=d(x,y)*f(x,y)+n(x,y) G(u,v)=D(u,v)〃F(u,v)+N(u,v) g=HF+n 其中:g(x,y)、d(x,y)、f(x,y)、n(x,y)分别为观测的退化图像、模糊函数、原图像、加性噪声,*为卷积运算符,(x=0,1,2,…,M-1),(y=0,1,2,…,N-1)。 2运动模糊的产生 景物与相机之间的相对运动通常会使相机所成的像存在运动模糊。对于线性移不变模糊,退化图像u0可以写成,u0=h*u+n,其中h为模糊核,*表示卷积,n为加性噪声。 由du/dt=0,文献[5]将这种运动模糊过程描述为波动方程:

数字图像处理图像复原实验报告

图像复原 信息132 李佳奇 1304010311 一、实验目的 1、熟悉并掌握MATLAB 图像处理工具箱的使用; 2、理解并掌握常用的图像的恢复与分割技术。 二、实验内容 空域滤波复原 close all;clear all;clc; I=imread('d:/zhien 、jpg'); I=im2double(I); I=imnoise(I,'gaussian',0、05);%添加高斯噪声 PSF=fspecial('average',3); J=imfilter(I,PSF); K=exp(imfilter(log(I),PSF)); figure; subplot(131);imshow(I); subplot(132);imshow(J); subplot(133);imshow(K); 维纳滤波 I=imread('d:/zhien 、jpg'); H=fspecial('motion',50,45); J=imfilter(I,H,'circular','conv'); subplot(221);imshow(J); title('运动模糊后的lena 、bmp(角度为45)'); J1=imnoise(J,'gaussian',0,0、01); subplot(222); imshow(J1); title('加噪模糊的lena 、bmp');%figure; J2=deconvwnr(J1,H); subplot(223) imshow(J2); title('模糊噪声图像的维纳滤波复原'); noise=imnoise(zeros(size(I)),'gaussian',0,0、01); NSR=sum(noise(:)、^2)/sum(im2double(I(:))、^2); J3=deconvwnr(J1,H,NSR); subplot(224) imshow(J3); title('引入SNR 的维纳滤波复原'); 分析:空域滤波就就是在待处理图像中逐点地移动掩模。在每一点(x,y)处,滤波器在该点的响应通过事先定义的关系来计算。对于线性空间滤波,其响应由滤波器系数与滤波掩模扫过区域的相应像素值的乘积之与给出

matlab模糊图像恢复数字图像处理

实验六 模糊图像恢复 一、实验目的 本实验是一个综合性实验,要求学生巩固学习多个知识点和内容,主要有: 1、理解掌握运动图像的退化模型; 2、掌握维纳滤波法的原理和实现方法; 3、在不同的噪声和点扩散函数参数下进行恢复,并比较结果; 4、通过分析和实验得出相应的结论。 二、实验准备 1、运动模糊退化模型:运动模糊是图像退化的一种,可以用数学表达式刻画出来。对线性移(空)不变系统,退化模型可表示为:g(x,y)=h(x,y)*f(x,y)+n(x,y)。对匀速直线运动而言,退化图像为: ()()()[]?--=T dt t y y t x x f y x g 000,, 其中x 0(t)和y 0(t)分别表示x 和y 方向的运动分量。并假设退化系统是线性移不变的,光学成像过程是完善的,快门开关是瞬间完成的。 对上式进行傅立叶变换,则得频域表达式为 ()()()[]()()[]()[]()()()[]{}) ,(),(2exp ,2exp ,2exp ,,000000v u H v u F dt t vy t ux j v u F dt dxdy vy ux j t y y t x x f dxdy vy ux j y x g v u G T T =+-=???? ????+---=+-=??????+∞∞-+∞∞-+∞∞-+∞ ∞-πππ 其中 ()()()[]{}dt t vy t ux j v u H T ?+-=0002exp ,π 假设景物只在x 方向匀速运动,在T 时间内共移动距离是a ,即x 0(t)=at/T ,y 0(t)=0,则 ()()[]ua j ua ua T dt T at u j v u H T ππππ-=?? ???? -=?exp sin 2exp ,0 在Matlab 中可用滤波器卷积的方法仿真出运动模糊图像。

数字图像复原技术中运动模糊图像相关问题研究

数字图像复原技术中运动模糊图像相关问题研究【摘要】随数字图像复原处理技术是当前数字图像处理领域的重要研究课题之一,运动模糊图像的复原是数字图像复原处理技术中较常见也是较难解决的一类问题。本论文的研究工作正是围绕运动模糊图像复原技术展开。分析运动模糊图像的成因以及成像过程;建立运动模糊退化模型;用维纳滤波复原方法对模糊图像进行复原;根据维纳滤波运动模糊图像复原方法中的不足之处,引入介绍了一种新的方法,降低了原有算法的复杂度,改进了维纳滤波。本文主要研究了维纳滤波复原方法并对其进行了改进,其他复原方法有待我们进一步研究。 【关键词】数字图像复原处理技术;运动模糊图像复原;维纳滤波复原;改进维纳滤波复原 图像成像的过程中存在很多的退化源,数字图像在获取、传输和存储过程中受各种原因的影响,会造成图像质量的退化,典型的表现有图像模糊、失真、有噪声等。运动模糊图像是由于相机和被拍摄对象之间的相对运动而造成的模糊现象,这一现象在日常生活中经常遇到,因此运动模糊图像复原技术便成为目前图像复原技术的研究热点之一,运动模糊图像复原是数字图像处理中的一个重要课题。它研究的主要目的是改善给定的图像质量并尽可能复原图像。图像复原的目的就是尽可能恢复被退化图像的本来面目。 运动模糊图像的复原方法研究非常具有现实意义。无论在日常生活还是在国防军工领域,运动造成图像模糊现象普遍存在,这给人

们生活和航空侦察等造成很多不便,所以很有必要对运动模糊图像的恢复做深入研究。在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦查和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。通过对于运动模糊图像的复原,使图像变的清晰,便于更好地提取相应信息。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 一、图像复原的基本概念 图像复原技术,也称为图像去卷积技术,它是按着图像模糊的反过程进行,其目的是获取清晰的,未被污染的图像的近似值,从而我们可以使用相关信息来正确解读图像所包含的有效信息。要想复原图像,其中必须要知道的是模糊是空域不变的还是空域变化的:空域不变意味着模糊和位置无关。也就是说,一个模糊的物体无论从图像的那个位置看都是一样的。空域变化意味着模糊和位置有关。也就是说,模糊图像中的物体因位置变化而看起来有所不同。 二、维纳滤波图像复原 从噪声中提取信号波形的各种估计方法中,维纳滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号,而不只是它的几个参量。 设维纳滤波器的输入为含噪声的随机信号。期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。因此均方误差越小,噪声滤除效果就越好。为使均方误差最小,关键在于求冲

图像复原方面的实验代码

图像复原方面的实验: 2、最小二乘类(有约束的)复原: 程序: I1=imread('lena.bmp'); %读取原始图像 I=rgb2gray(I1); LEN=31; %图像的模糊化 THETA=11; PSF1=fspecial('motion',LEN,THETA); PSF2=fspecial('gaussian',10,5); Blurred1=imfilter(I,PSF1,'circular','conv'); Blurred2=imfilter(I,PSF2,'conv'); %模糊化图像加噪 V=.002; BlurredNoisy1=imnoise(Blurred1,'gaussian',0,V); BlurredNoisy2=imnoise(Blurred2,'gaussian',0,V); figure, subplot(1,3,1);imshow(I) title(' lena ') %用真实的PSF函数和噪声强度作为参数进行图像复原NP=V*prod(size(I)); reg1=deconvreg(BlurredNoisy1,PSF1,NP); reg2=deconvreg(BlurredNoisy2,PSF2,NP); figure; subplot(1,3,2);imshow(reg1); title('Restored1 with NP') figure; subplot(1,3,3) ;imshow(reg2); title('Restored2 with NP') 得到的结果如下: 原图:

“motion”复原图像:

五,图像恢复和重建

五,图像恢复和重建 2007-3-5

5.1 概述和分类 5.2 退化模型和对角化5.3 无约束恢复 5.4 有约束恢复 5.5 交互式恢复 5.6 几何失真校正 5.7 投影重建

概述和分类 图象恢复也称图象复,原图象恢复与图象增强相同之处是,它们都要得到在某种意义上改进的图象,或者说都希望要改进输入图象的视觉质量。图象恢复与图象增强不同之处是,图象增强技术一般要借助人的视觉系统的特性以取得看起来较好的视觉结果,而图象恢复则认为图象是在某种情况下退化或恶化了(图象品质下降了),现在需要根据相应的退化模型和知识重建或恢复原始的图象。换句话说,图象恢复技术是要将图象退化的过程模型化,并据此采取相反的过程以得到原始的图象。由此可见,图象恢复要根据一定的图象退化模型来进行。 在给定模型的条件下,图象恢复技术可分为无约束和有约束的两大类。根据是否需要外来于预,图象恢复技术又可分为自动和交互的两大类。另外根据处理所在域,图象恢复技术还可分为频域和空域两大类。许多图象恢复技术借助频域处理的概念,但越来越多的空域处理技术得到应用。 从广义的角度上来看图象恢复,它还可包括对在图象采集过程中产生的几何失真(畸变)进行校正以及根据对物体的多个投影重建图象的技术。前一种情况里将图象的几何失真看成一种退化,对其校正则看作是一种恢复过程。后一种情况里将图象的投影看作一种退化过程,而将重建图象作为一种恢复手段。

退化模型和对角化 5.2.1 退化模型 H 可有如下4个性质: (1)线性:如果令k1和k2为常数,f1(x,y)和f2(x,y)为2幅输入图象,则: (2)相加性:式(5.2.2)中如果kl=k2=1,则变成: (3)一致性:式(5.2.2)中如果f2(x,y)=0,则变成: 上式指出线性系统对常数与任意输入乘积的响应等于常数与该输入的响应的乘积, (4)位置(空间)不变性:如果对任意f(x,y)以及a和b,有: 线性系统的响应只与在该位置的输入值有关而与位置本身无关。

图像增强和复原

图像增强和复原image enhancement and restora-tion 利用数字图像处理技术可以将图像中感兴趣部分加以强调,对不感兴趣的部分予以抑制,强调后的部分对使用者更为清晰,甚至能给出一定的数量分析或不同颜色的表示。这种技术常称为图像增强。图像复原是通过图像滤波实现的。 图象增强方法 图像增强常用的方法包括直方图均衡化法、图像平滑法、图像尖锐化法和伪彩色法。直方图指的是一幅图像亮暗的分布情况,均衡化就是将一幅分布极不均匀的图像使其均匀化,从而改善图像的质量;平滑化和尖锐化是针对图像的细节和轮廓,平滑化使图像变得柔和,尖锐化使图像变得清晰;伪彩色法是将原为黑白颜色的图像转变为彩色图像,不同灰度用不同的颜色表示,从而可以更明显地分辨出图像中灰度变化的细节。 增强图像中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。 中文名图像增强外文名image enhancement 类型频率域法和空间域法 目的改善图像的视觉效果 image enhancement 图像增强可分成两大类:频率域法和空间域法。 频率域法把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。 空间域法空间中具有代表性的算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。 图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。基于空域的算法处理时直接对图像灰度级做运算,基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某

图像降质及复原

题目:图像降质与复原 学院:信息工程与自动化学院专业: 姓名: 学号: 导师:

图像降质与复原 摘要:图像复原是一种改善图像质量的处理技术。该技术将降质了的图像恢复成原来的图像,它根据降质过程的先验知识建立“降质模型”,再针对退化过程,采取某些技术手段恢复或重建原图像。图像的降质因素可分为以下几种:成像过程的相对运动、外界因素的干扰以及噪声等。运动模糊图像的复原是图像复原中较常见也是较难的一类,针对复杂成像情况下的运动模糊图像复原工作,着重解决了含噪运动模糊图像的复原问题。开发了运动模糊,逆滤波退化,加噪退化及相关复原的系统,该系统能初步有效的降质与复原。 关键字:图像逆滤波退化与复原;运动模糊;加噪退化;运动模糊复原;维纳滤波复原 Abstract:Image restoration is a processing technology to improve the image quality. The technology will degrade the image back into the original image, A priori knowledge of the degraded process to establish a "degraded model for the degradation process, take some of the technical means to restore or rebuild the original image. The lowering of the image quality factors can be divided into the following: the relative motion of the imaging process, external factors of interference and noise etc. The motion blur image restoration is more common and more difficult to image restoration for a class, Movement in the case of complex imaging fuzzy image restoration and focus on solving the problem of containing the noise motion blur image restoration. Developed motion blur, degradation of inverse filtering, noise degradation and recovery system, the system the preliminary effectively degraded and recovery. Keywords:Degradation and restoration of the image inverse filtering; motion blur; adding noise degradation; motion blur restoration; Wiener filtering for restoration 引言 图像是人们获取信息的重要来源,据统计约有80%的信息是通过视觉系统获取的[1]。一幅图像所包含的信息量和直观性是其它途径如声音、文字所无法比拟的。同时,图像在生物医学、遥感、工业生产、军事公安、视频多媒体等领域有着广泛的不可替代的应用[2]。尤其是近三十年来,图像处理成为信号处理研究的热点和难点。

图像复原

图像复原 1.背景介绍 图像复原是图像处理的一个重要课题。图像复原也称图像恢复,是图像处理的一个技术。它主要目的是改善给定的图像质量。当给定一幅退化了的或是受到噪声污染的图像后,利用退化现象的某种先验知识来重建或恢复原有图像是复原处理的基本过程。可能的退化有光学系统中的衍射,传感器非线性畸变,光学系统的像差,摄影胶片的非线性,打气湍流的扰动效应,图像运动造成的模糊及集合畸变等等。噪声干扰可以有电子成像系统传感器、信号传输过程或者是胶片颗粒性造成。各种退化图像的复原可归结为一种过程,具体地说就是把退化模型化,并且采用相反的过程进行处理,以便恢复出原图像。文章介绍图像退化的原因,直方图均衡化及几种常见的图像滤波复原技术,以及用MATLAB实现图像复原的方法。 2.实验工具及其介绍 2.1实验工具 MATLAB R2016a 2.2工具介绍 MATLAB语言是基于最为流行的C++语言基础上的,因此语法特征与C++语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式。使之更利于非计算机专业的科技人员使用。而且这种语言可移植性好、可拓展性极强。 MATLAB具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。新版本的MATLAB对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB 同样表现了出色的处理能力。同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。 3.图像复原法 3.1含义 图像复原也称图像恢复,是图像处理中的一大类技术。所谓图像复原,是指去除或减在获取数字图像过程中发生的图像质量下降(退化)这些退化包括由光学系统、运动等等造成图像的模糊,以及源自电路和光度学因素的噪声。图像复原的目标是对退化的图像进行处理,使它趋于复原成没有退化的理想图像。成像过程的每一个环节(透镜,感光片,数字化等等)都会引起退化。在进行图像复原时,既可以用连续数学,也可以用离散数学进行处理。其次,处理既可以在空间域,也可以在频域进行。 3.2生活中常见的模糊图像 图a图b图c

实验五 图像复原

信息工程学院实验报告 课程名称:数字图像处理Array 实验项目名称:实验五图像复原实验时间: 班级:姓名:学号: 一、实验目的 1.了解图像退化/复原处理的模型; 2. 掌握图像复原的原理及实现方法; 3. 通过本实验掌握利用MATLAB编程实现图像的恢复。 4. 掌握matlab代码的调试方法,熟悉常见代码错误及改正方法。 二、实验步骤及结果分析 MATLAB图像处理工具箱包含四个图像复原函数,请参照教材第126页例6.8编程实现图像复原。 1.用点扩散(PSF)函数创建运动模糊图像,修改参数改变模糊程度。 a) 无噪声运动模糊图像 b) 有噪声运动模糊图像 程序代码: I=imread('cameraman.tif'); %读取图像 subplot(1,3,1); imshow(I,[]);%显示图像 title('原始图像'); PSF=fspecial('motion',25,11); %运动模糊函数,运动位移是25像素,角度是11 Blurred=imfilter(I,PSF,'conv','circular'); %对图像运动模糊处理 subplot(1,3,2); imshow(Blurred,[]);title('无噪声运动模糊图像'); %显示无噪声运动模糊图像 Noise=0.05*randn(size(I)); %正态分布的随机噪声 BlurredNoisy=imadd(Blurred,im2uint8(Noise));%对退化后的图像附加噪声 subplot(1,3,3); imshow(BlurredNoisy,[]);title('有噪声运动模糊图像'); %显示运动模糊且加噪声后图像 执行结果:

图像的增强与复原算法毕业设计论文

毕业设计(论文) 题目:图像的增强与复原算法

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

摘要 图像处理是一门迅速发展的学科,在大量领域有着极其广泛的应用。在景物成像的过程中可能出现的模糊、失真或噪声还有变形,会导致图像质量下降,从而降低了图形的科学性,也造成了经济损失。 数字图像处理是一个跨学科的前沿科技领域,在各个学科中得到广泛的应用,并显示了广阔的前景,成为计算机科学、信息科学、生物学、医学等学科的研究热点。而图像增强与复原作为数字图像的基本内容,有着更高的研究价值。 图像增强是指按一定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息,使之改善图像质量,加强图像判读和识别效果的处理技术。基于空间域的图像增强是图像处理的一个重要分支,它能有效改善图像整体或局部特征。直方图是图像处理中最重要的基本概念之一,它用于显示图像的灰度值分布状况,并且能有效地用于图像增强。本文论述了图像灰度调整实现、直方图均衡化、直方图规定化图像增强技术,并给出了相关的基本原理。并在介绍图像频域增强原理的基础上,讨论了频域内通过对低通滤波器、高通滤波器的图像增强以及基于小波变换的图像增强,介绍了相关的理论,并给利用MATLAB工具进行实现。实验证明,在质量较差的图像中,选择不同的算法对图像的增强在准确性上均有不同。 数字图像复原(简称图像复原)是数字图像处理的一个基本的和重要的课题,它是后期图像处理(如图像分析,图像理解)的前提。图像复原主要目的在于消减或减轻在图像获取及传输过程中造成的图像品质下降即退化现象,恢复图像的本来面目。本文论述了采用近似的方法应用线性系统的理论解决图像复原的问题,并用MATLAB语言实现了维纳滤波、规则化滤波、Lucy-Richardson复原程序、盲去卷积复原,实验证明相同的图像采用不同的复原方法产生的效果不同,可以根据自己的实际需要来选择所要使用的复原方法。 关键词:图像处理、图像增强、图像复原、滤波、MATLAB

相关主题
文本预览
相关文档 最新文档