当前位置:文档之家› 大学物理上章节小结

大学物理上章节小结

大学物理上章节小结
大学物理上章节小结

第一章 质点运动的描述 小结

一、运动学特点:瞬时性、矢量性、相对性。 二、基本概念:

1、位矢:k z j y i x r

++=

位矢大小:2

22z y x r r ++==

r

方向:由坐标原点指向质点。

2、速度:j v i v j dt

dy i dt dx dt r d v y x

+=+==

v

的大小:

2y 2x 2

2v v dt dy dt dx dt r d v +=??

? ??+??? ??==

v

的方向:所在位置的切线向前方向。

3、速率:dt

ds

v v ==

4、加速度:

j a i a j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222y x +=+=+==

a

的大小:

2

222

222

y 2

x 2

y 2x dt y d dt x d dt dv dt dv a a a ???

? ??+???? ??=???? ??+??? ??=+= 或自然坐标系中,n n t t t t e a e a dt

e d v e dt dv dt v d a

+=+==

大小:

2

22

2

n 2t r v dt dv a a a ???

? ??+??? ??=+= 方向:t

n

a a tg =

θ

三、运动描述

1、运动方程:⑴矢量式:k )t (z j )t (y i )t (x )t (r

++=

⑵标量式:)t (x x =,)t (y y =,)t (z z = 2、轨迹方程:0)y ,x (F =

3、圆周运动的角量描述:

(1)角坐标 (2)角速度dt

d θ

=ω(3)角加速度22dt d dt d θ=ω=α 4、角量与线量的关系:

①ω=r v ②α=r a t

③2

n r a ω=

四、相对运动

ME PM PE v v v +=

五、运动类型

1、直线运动→≡0a n ,一维情况下,标量式代替矢量式。

2、曲线运动→≠0a n

第二章牛顿定律、第三章动量守恒定律和能量守恒定律 小结

一、牛顿运动三定律 二、常见力

①弹性力②万有引力 :保守力 ③摩擦力 :非保守力 三、重要物理量

①动量v m P =

②冲量()t F t t F dt F I t t ??=-==?

1221

③动能2k mv 2

1

E =

④功??=b a

S d F W

合力功等于各分力功之和。一维情况下,力的功等于力曲线与坐标轴所

围面积的代数和。 ⑤势能

)势能零点取在无限远处万有引力势能:(r

mM

G

E p -=面上)势能零点取在某一水平重力势能:(mgh E p =,h 为物体m 相对势能零点的竖

直坐标。

处)

势能零点取在弹簧原长弹性势能:(kx 2

1E 2

p =

四、定理、原理及定律 1、定理

(1)动能定理 ①质点的动能定理2

122

mv 2

1mv 21W -=

②质点系的动能定理1k 2k E E W W -=+内外 (2)动量定理

①质点的动量定理12p p I

-=

②质点系的动量定理12p p I

-=合外力冲量

2、原理:功能原理()()121p 1k 2p 2k E E E E E E W W -=+-+=+非保守外

3、守恒定律

(1)动量守恒定律条件0=合外力F ,惯性系

(2)机械能守恒条件:0W W =+非保守外

第四章刚体运动 小结

一、物理量

力矩M →力F 角动量(ω=

J L )→动量(v m p

=) 角速度ω →速度v

转动动能(2k J 21E ω=)→质点动能(2k mv 2

1

E =) 角加速度α →加速度a

力矩功(?θθ

θ=2

1

Md W )→力对质点的功

转动惯量J →质量m 冲量矩?2

1

t t

dt M →?21

t t dt F 冲量

二、

定律

转动定律α=J M →a m F

=

角动量守恒定律:0M ≡合外 ,L

=常矢

动量守恒定律:0F ≡合外 ,P

=常矢

三、定理 角动量定理(

ω-ω=? 122t t

J J dt M 2

1

)→质点或质点系的动量定理12t t p p dt F 21

-=?

转动动能定理(2122J 21J 21W ω-ω=)→质点的动能定理2122mv 2

1mv 21W -=

第十七章狭义相对论 小结

一、爱因斯坦的两个基本假设:相对性原理和光速不变原理 二、坐标变换

1、 伽利略变换(经典)

2、 洛伦兹变换(相对论) 22'''2

'

1x c v t t z z y

y 1vt

x x β--=

==β-+= 或 ?????

?

??

???-+===-+=2'2'

''2'

'11ββx c v t t z z y y vt x x

式中,2

2

c v =

β

3、 狭义相对论时空观

(1) 同时的相对性 (2) 长度缩短2c

v 1l l 20

-= ,0l 为固有长度。

(3) 时间膨胀(或时间延缓或运动时钟变慢)2

2

c v

1t t -'?=

? ,t '?为固有时。

4、 相对论力学

(1) 基本方程dt

v

d m v dt dm )v m (dt d dt p d F +===

(2) 质量2

2

0c v

1m m -=

(3) 动量v c v 1m v m p 2

20

-=

=

(4) 能量22

2

2

c c v 1m mc E -

=

= (5) 动能2020k c m mc E E E -=-= (2

00c m E =为静止能量)

第十二章气体动理论(运动论) 小结

一、理想气体的压强公式

2

v nm 31P =_k n 32ε=,2_

k v m 21=εkT 2

3=(分子的平均平动动能)

nkT P =

二、能量均分定理 分子:=_

平动

εkT 23kT 2t =,=_转动εkT 2r ,__内能动能ε=εkT 2

i

=(i 为分子自由度) 三、理想气体内能

RT i

M m RT i E 2

2'==ν

四、麦克斯韦速率分布律

1、()v f 、()dv v f 的物理意义,归一化条件:()1dv v f 0=?∞

2、三种统计速率

M RT 2m kT

2v p ==

,M RT 8m kT 8v π=π=,M

RT 3m kT 3v 2

==

m '为理想气体的质量,m 为分子质量,M 为物质的摩尔质量,k 为玻尔兹曼常数,R 为普

适常数。

第十三章热力学基础小结

一、基本概念

功、内能、热量、热容量(等体摩尔热容量和等压摩尔热容量)、循环、熵 二、基本定律

1、热力学第一定律()W E W E E Q 12+?=+-=(各个物理量正负号的意义)

2、热力学第二定律的两种表述

以及开尔文表述和克劳修斯表述等效

五、基本原理:熵增原理 六、公式 1、 热容量R 2i C m ,v =

,R 22

i C m ,p +=,1i

2i C C m ,v m ,p >+==γ,R C C m ,v m ,p += m ,v m ,p C C >的原因(等压过程除了增加内能还要对外做功),摩尔热容量是过程量。

2、 等值以及绝热过程中W E Q 、、?和过程方程的表达式(见表一和表二)

3、 循环

(1) 正循环 热机 效率1

21Q Q 1Q W

-==

η W 为循环一次对外做的净功,1Q 为纯吸热的分过程吸热之和,2Q 为纯放热的分过程放热之和的绝对值。

特例:卡诺热机1

2

T T 1-

=η卡 (2) 逆循环 制冷机 制冷系数()2

12

2Q Q Q W Q e -==

吸热

特例:卡诺制冷机2

12

T T T e -=

4、 熵及熵增原理

熵为态函数,

0S ≥? “=”代表绝热可逆过程;“>”代表绝热不可逆过程,即一个孤立系统的熵永远不会减少。

孤立系统内的自发过程(即不可逆过程)熵增加。

表一 过程 W E ?

Q

过程方程

等容 0 ()

12m ,v T T C E -υ=?

()12m ,v v T T C E Q -υ=?=

1

c T

P

'= 等压

)V V (P W 12-= 同上

()W

E T T C Q 12m ,p p +?=-ν=

2c T

V '= 等温 2

1

12P p

ln RT V V ln RT W υ=υ= 0

W Q =

3c V P '= 绝热 ()

E V P V P 11

W 1122?-=-γ

-=

()12m ,v T T C E -υ=?

1C PV =γ 21C T V =γ- 31C T P =γγ--

表二

过程 E ?

W Q 等容升压 + 0 + 等容降压 - 0 - 等压膨胀 + + + 等压压缩 - - - 等温膨胀 0 + + 等温压缩 0 - - 绝热膨胀 - + 0 绝热压缩 +

-

注:表二中“+、-”分别表示正、负。

第五章 静电场 小结

一、电场的形象化描述:电场线

二、电场的性质描述:电场强度矢量和电势 三、基本规律

1、库仑定律r

r q q 41F 3

210

πε=

F

为1q 对2q 的作用力,r 是由1q 指到2q 的矢量 2、高斯定理

真空中:∑?ε=

?内

S 0

s

q 1

S d E

介质中:∑?

=

?内

S 0S

q s d D

(自由电荷)

3、静电场的环路定理0=??l d E l

(说明静电场是保守力场)

四、有关计算 1、电场强度通量

(1)平面匀强电场:S E cos ES e

?=θ=Φ (2)任意非闭合曲面任意电场:??=Φs

e S d E

(3)闭合曲面任意电场:??=Φs

e S d E

2、场强

(1)点电荷r r 4q E 3

πε=

(2)叠加原理

①点电荷系=E r r 4q E n 1

i 3

i

0i

=πε= ②连续带电体??

πε=

=q

30r r 4dq E d E

(3)高斯定理

①球对称(均匀带电球面、球体、球壳)

②柱对称(无限长均匀带电圆柱体、圆柱面、圆筒) ③面对称(无限大均匀带电平面、平板)

(4)场强与电势的关系:k z

U j y U i x U V E

??-??-??-=-?=

3、电势 (1)叠加法 ①点电荷系:∑

==

n

i i

i a r πεq U 1

04(取无穷远处电势为零)

②连续带电体:?=

q

a r

πεdq U 04

(2)对场强E

积分:?∞

?=

a

a r d E U

(取无穷远处电势为零)

4、电势差:→

?=-=?r d E V V U c a c a ac

5、电场力的功[]

ab pa pb b

a

ab qU E E r d E q W =--=?=?

5、典型问题结果

(1)无限长均匀带电直线

r

2E 0πελ

=

方向:0>λ,E 垂直带电直线指向考察点;0<λ,E

由考察点垂直指向带电直线。

(2)无限大均匀带电平面

2E εσ=

方向:0>σ,E 由平面垂直指向考察点;0<σ,E

由考察点垂直指向平面。 (3)无限长均匀带电薄圆筒

??

?????

?<λ>λ>πελ

<=沿半径向里

沿半径向外:0:0)R r (r

2)

R r (0E 0

(3) 均匀带电球面

??

??????<>>πε<=沿半径向里沿半径向外:0q :0q )R r (r 4q

)

R r (0E 2

0 ?????

?

?>≤=)(4)(400R r r

πεq R r R

πεq

U

第六章 静电场中的导体与电介质 小结

一、静电平衡

静电平衡条件、静电平衡时电荷分布情况、静电平衡时导体表面附近场强的大小、电荷面密度与曲率的关系 二、介质中高斯定理

∑?=?内

S 0S

q s d D (自由电荷),E r E D 0 εε=ε=

三、电容器的电容 电容AB

U Q

C =

特别注意:典型电容器电容计算(平行板电容器、柱形电容器、球形电容器) 四、电场的能量

1、电容器能量QU 2

1

CU 21C Q 21W 22e ===

2、电场能量密度DE E w e 2

1

212==

ε 3、电场能量dV E dV w We V

V

e 2

21ε??

=

=

大学物理上册重点小结

大学物理要点提示 第一章 (1)不同参照系中速度的关系完全等同于矢量的合成关系,矢量下标的 封闭等同于矢量相加的三角形法则。 D B CD A C A B r r r r ++= 如图 将上式两边微分 D B CD AC AB r d r d r d r d ++= 则dt r d dt r d dt r d dt r DB CD AC AB ++=d 即D B CD AC AB V V V V ++= A B C D

第二章 由于有运动的绝对性和相对性,所以牛顿第二定律的出现就伴随着非惯性系的出现。 并且牛顿第一定律就是针对惯性系成立的,当物体的运动轨迹是空间的固定曲线时,就用自然坐标系描述,此时它的加速度有切向分量和法向分量。在求解牛顿方程时,一定要使方程两边各有一个变量:

如kx dt dv m -=一定要将dt dv 变成v dx dv ? 又KQ dt dw m =要将dt dw 变成W dQ dW dt dQ dQ dW =?

1.必须记住w 与转向的关系,这样就能记住F r M ?=的定义理由 由t d v d m F =两边叉乘r 则dt r d dt v d m r F r )(ρ ?=?=? 即dt W d J dt L d M == 2.要充分利用转动惯性量的平行轴定理和垂直轴定理。 3.计算转动惯量就是要找出dJ 与dm r i 2的关系,尤其是i i r dm 与的关系。 依次类推 面计算dq dE dq du 与,与的关系时,也是找出i r dq 与的关系。

1.伽利略变换是洛仑兹变换的极限情况,因此用伽利略变换可帮助辨析洛仑兹变换的正确性。 2.在相对论中的“长度缩短”和“时钟延缓”都只具有相对意义,即B看到或感到A的“长度缩短”或“时钟延缓”A也会看到或感到B 的“长度缩短”和“始终延缓”。

大学物理学习心得体会(2020年整理).pdf

大学物理学习心得体会 摘要本文主要介绍了物理学有关知识和我们对于大学物理解题方法课程中所学到的方法的论述以及对大学物理实验的一些感慨和学习体会。 关键词物理学解题方法物理实验 Abstract This article is mainly about the knowledge of physics ,the methods of sloving physics questions and our felling about the college physics。 Key words physics; the methods of sloving physics questions; the experience of physics 从初中正式开始学习物理到现在已经接触物理近七年了,这期间对物理这门学科有了一定的认识和了解。首先物理是研究物质结构、物质和运动规律的,是一门以实验为基础的自然科学。 物理学分为:经典力学及理论力学(Mechanics)——研究物体的基本规律的规律;电磁学及电动力学(Electromagnetism and Electrodynamics)——研究、物质的电磁运动规律及电磁辐射等规律;热力学与统计物理学(Thermodynamics and Statistical Physics)——研究物质的统计规律及其表现;和(Relativity)——研究物体的高速运动效应,相关的规律以及关于时空相对性的规律;量子力学(Quantum mechanics)——研究微观现象以及基本运动规律等 此外,还有: 、、原子分子物理学、、、、、、、、、电磁学、、无线电物理学、、、、、、、、、和空气动力学等等。 通常还将、、热力学与统计物理学、量子力学统称为四大力学。 而大学的物理学习让我对物理有了更深刻的理解和认识。 “大学物理学”是理工科院校学生必修的一门重要基础理论课程,在培养创新人才方面,该课程具有其他学科无法替代的作用。该课程所讲授的基本概念,基本理论和基本方法是构成学生科学的重要组成部分,是一个科学工作者和工程技术人员必须的,也是创新人才成长所必须掌握的。 大学物理的学习包括物理课程的学习,物理解题方法的学习以及物理实验的学习。 通过物理解题方法的学习,使我们对于大学物理题的解法有了统一的认识。 下面简要介绍几种解题中常用的方法: 一、简谐振动的描述方法:1.解析法2.旋转矢量法3.图线法。 二、简谐波波函数的计算方法:1.从沿波的传播方向振动时间落后角度求简谐波波函数的计算方法。2.从沿波的传播方向相位落后角度求简谐波波函数的计算方法。3.根据简谐波波函数的一般表达式求出波函数的计算方法。

(学习心得体会)大学物理学习心得

大学物理学习心得 大学物理是工科院校学生必修的一门重要基础课、学位课程。它对培养人才的素质有着极其重要的影响。 1.注重新概念、新内容的学习。从教学内容和要求看,物理学习到了大学阶段确实出现了 一次飞跃,或者说上了一个台阶。客观地讲,这个台阶的梯度不能算小。这就形成了物理难懂难学的现实。 大学物理的内容不是中学内容的重复或简单的扩展,而是在概念上深化、理论上提高,螺旋式上升。有许多新概念出现,如角动量、热学中的“熵”、量子化、能带等。既学习质点的运动,又研究多粒子体系。用爱因斯坦相对论的时空观代替了牛顿的绝对时空观。量子理论取代了能量连续的看法。从宏观到微观,从低速到高速,从经典到近代,大学物理的内容把同学们带向一个又一个美妙而又神奇的物质世界。对这些新概念、新内容,从一开始就要给予充分的理解和足够的重视。学习过程,实际上就是智慧能力的发展过程。问题要一个一个的解决,知识要一点一点的积累。不要等问题成了堆,然后坐山兴叹:物理难懂难学也! 2.培养高等数学来思考、处理物理问题的能力。如果硬要把中学物理和大学物理做个比较的话,我要说,中学主要解决“恒”的问题,如物体在恒力作用下的运动,恒力的功等等;大学主要处理“变”的问题,如变力的冲量,变力的功等等。从数学的角度来说,中学物理是用初等数学解题,而大学物理趋向于

用高等数学解题。不少学生不适应这种变化,还停留时间在原来的认识水平上。他们只习惯于把中学的思维、中学的方法生搬硬套到新的物理情境中来,不善于变换认识问题的角度,不善于改变解决问题的方式。不少同学只会用初等数学来处理问题,往往不能正确地用高等数学特别是微积分来表达和分析物理问题。同学们经常把矢量当标量、把变量当常量、把积分运算用代数运算来代替等等。 尽管老师反复强调,但仍有不少学生仍按原来的思路去分析、处理问题,这是思维定势的消极影响,给物理学习带来了障碍。 数学不仅是一种计算工具,更是对物理现象进行抽象、概括的表现手段。在大学物理中,许多概念和规律都是用高等数学的形式表达出来的。用高等数学来理解和处理问题是大学物理给同学们提出的一个新课题和基本要求。同学们一定要多加练习、用心揣摩,尽快进入角色中来。 如果同学们对这个问题不给予足够的重视,不尽快予以突破并获得一定自由度的话,高等数学的应用将成为大学物理学习道路上的一个最大的障碍。 3.养成自觉、自主学习的好习惯 从学习方法的特点看,中学生天天与老师在一起,老师抱着学生走,学生们也习惯了在别人的监督下学习,在老师划定的轨道上运行。而到了大学,老师只讲那些最重要的问题,许多内容是要求大家自学的。教师除了上课答疑与学生见面外,剩余的时间完全由学生自己支配。同学们若不会统筹安排自己的时间,认真自学,多少时间就会白白浪费掉。

大学物理知识点总结汇总

大学物理知识点总结汇总 大学物理知识点总结汇总 大学物理知识点总结都有哪些内容呢?我们不妨一起来看看吧!以下是小编为大家搜集整理提供到的大学物理知识点总结,希望对您有所帮助。欢迎阅读参考学习! 一、物体的内能 1.分子的动能 物体内所有分子的动能的平均值叫做分子的平均动能. 温度升高,分子热运动的平均动能越大. 温度越低,分子热运动的平均动能越小. 温度是物体分子热运动的平均动能的标志. 2.分子势能 由分子间的相互作用和相对位置决定的能量叫分子势能. 分子力做正功,分子势能减少, 分子力做负功,分子势能增加。 在平衡位置时(r=r0),分子势能最小. 分子势能的大小跟物体的体积有关系. 3.物体的内能

(1)物体中所有分子做热运动的动能和分子势能的总和,叫做物体的内能. (2)分子平均动能与温度的关系 由于分子热运动的无规则性,所以各个分子热运动动能不同,但所有分子热运动动能的`平均值只与温度相关,温度是分子平均动能的标志,温度相同,则分子热运动的平均动能相同,对确定的物体来说,总的分子动能随温度单调增加。 (3)分子势能与体积的关系 分子势能与分子力相关:分子力做正功,分子势能减小;分子力做负功,分子势能增加。而分子力与分子间距有关,分子间距的变化则又影响着大量分子所组成的宏观物体的体积。这就在分子势能与物体体积间建立起某种联系。因此分子势能分子势能跟体积有关系, 由于分子热运动的平均动能跟温度有关系,分子势能跟体积有关系,所以物体的内能跟物的温度和体积都有关系:温度升高时,分子的平均动能增加,因而物体内能增加; 体积变化时,分子势能发生变化,因而物体的内能发生变化. 此外, 物体的内能还跟物体的质量和物态有关。 二.改变物体内能的两种方式 1.做功可以改变物体的内能.

大学物理1知识总结

一 质 点 运 动 学 知识点: 1. 参考系 为了确定物体的位置而选作参考的物体称为参考系。要作定量描述,还应在参考系上建立坐标系。 2. 位置矢量与运动方程 位置矢量(位矢):是从坐标原点引向质点所在的有向线段,用矢量r 表示。位矢用于确定质点在空间的位置。位矢与时间t 的函数关系: k ?)t (z j ?)t (y i ?)t (x )t (r r ++== 称为运动方程。 位移矢量:是质点在时间△t 内的位置改变,即位移: )t (r )t t (r r -+=?? 轨道方程:质点运动轨迹的曲线方程。 3. 速度与加速度 平均速度定义为单位时间内的位移,即:t r v ?? = 速度,是质点位矢对时间的变化率:dt r d v = 平均速率定义为单位时间内的路程:t s v ??= 速率,是质点路程对时间的变化率:ds dt υ= 加速度,是质点速度对时间的变化率: dt v d a = 4. 法向加速度与切向加速度 加速度 τ?a n ?a dt v d a t n +==

法向加速度ρ =2 n v a ,方向沿半径指向曲率中心(圆心),反映速度方向的变化。 切向加速度dt dv a t = ,方向沿轨道切线,反映速度大小的变化。 在圆周运动中,角量定义如下: 角速度 dt d θ= ω 角加速度 dt d ω= β 而R v ω=,22n R R v a ω==,β==R dt dv a t 5. 相对运动 对于两个相互作平动的参考系,有 'kk 'pk pk r r r +=,'kk 'pk pk v v v +=,'kk 'pk pk a a a += 重点: 1. 掌握位置矢量、位移、速度、加速度、角速度、角加速度等描述质点运动和运动变化的 物理量,明确它们的相对性、瞬时性和矢量性。 2. 确切理解法向加速度和切向加速度的物理意义;掌握圆周运动的角量和线量的关系,并能灵活运用计算问题。 3. 理解伽利略坐标、速度变换,能分析与平动有关的相对运动问题。 难点: 1.法向和切向加速度 2.相对运动问题

大学物理学习心得体会

大学物理学习心得体会 大学物理学习心得体会一:大学物理学习心得体会经过两个学期的物理学习后,我对物理学习有了一定的心得和感受。首先要做好课前准备。北京邮电大学的《大学物理》课程开始于大一下学期,在正式开始物理学习之前,最好能根据老师对课程体系的介绍,以及在高年级同学那里得到的信息,弄清课程特点和必备的基础知识,结合自己对中学物理的学习情况,提前做好充分准备。因为大学物理与高中的物理是紧密相关的,是高中物理知识的扩展和提高,所以适当复习高中的物理概念和公式,以及常用的物理模型是很有必要的。当然,大一上学期的高等数学知识例如积分部分也是需要及时复习的。 然后要有科学的学习方法。每个人都有不同的学习习惯和方法,更有参差不齐的基础知识,要正确认识自身,熟悉周围学习条件和学习环境,根据课程特点,把一天中学习效果最好的时间安排给相应课程的学习。 以我自己为例,本人就对物理这门学科的兴趣还是很浓厚的,高中的时候由于题目类型固定,各种题目做得多,所以能取得相应比较好的成绩。但是到大学,在学习时间没有高中多的情况下,怎样调动自己的学习兴趣,提高单位时间的学习效率是最需要解决的问题。必须做一道题通一类题,这样才能在有限的学习时间内获得最大的学习效果。 再者就是要共同学习。科学家中很少有独立进行科学研究的,他们更多的是在团队中合作工作。向他们那样,如果能与同学或老师经常面对面或通过互联网等形式进行交流,甚至参与老师的科研项目,或者与同学组成学习小组共同学习,那么将会收获更多的知识和乐趣。 我在平时尽量要求自己,争取每节课后提出一个问题。如果没有问题,也可以在老师身边听听其它同学有什么问题。有一些问题可能折射出我们在某个知识点上的欠缺,所以问问题是必要的查漏补缺环节。 另外,经常逛逛物理学习交流论坛,参与问题讨论也是件很有乐趣的事。更要注重课堂学习。课堂学习是学习的主要方式,教师的课堂讲解和示范对于正确理解物理理论有很大帮助,保证课堂学习效果是提高整体学习效率的关键一环。要保证课堂学习效果,就要做好预习、认真听讲、积极思考、跟紧老师思路、理解理论内涵,掌握例题解法、记录课堂笔记,还要把课后复习、完成作业及总结提高与课堂学习相结合。 首先是保证课上的精神状态良好,提前一天预习物理书上的内容。课上认真记录,最好用双色记录法,用红笔标注出重难点,以便在以后的复习过程中可以多加留意。课上听到不太懂的地方或是有疑问的地方,要做好标注比如打个问号什么的,下课及时找老师解决。人的惰性会使我们当天不及时解决的问题留到第二天就忘了。

大学物理学知识总结

大学物理学知识总结 第一篇 力学基础 质点运动学 一、描述物体运动的三个必要条件 (1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。 (2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。 质点适用的范围: 1.物体自身的线度l 远远小于物体运动的空间范围r 2.物体作平动 如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。 如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。 (3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。 二、描述质点运动和运动变化的物理量 (1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径。 在直角坐标系中 zk yi xi r ++= 在自然坐标系中 )(s r r = 在平面极坐标系中 rr r = (2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即 1 2r r r -=?

位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。 路程是质点在空间运动所经历的轨迹的长度,恒为正,用符号s ?表示。路程的大小与质点运动的轨迹开关有关,与质点在其往返的次数有关,故在一般情况下: s r ?≠? 但是在0→?t 时,有 ds dr = (3)速度v 与速率v : 平均速度 t r v ??= 平均速率 t s v ??= 平均速度的大小(平均速率) t s t r v ??≠ ??= 质点在t 时刻的瞬时速度 dt dr v = 质点在t 时刻的速度 dt ds v = 则 v dt ds dt dr v === 在直角坐标系中 k v j v i v k dt dz j dt dy i dt dx v z y x ++=++= 式中dt dz v dt dy v dt dx v z y x = == ,, ,分别称为速度在x 轴,y 轴,z 轴的分量。

大学物理小结

大学物理热学部分小结 大学物理的热学部分还是相对不是太难的,因为与高中的物理关联很大,很多概念都是以前接触过的,但是没有深入研究,这已经给这部分的学习带来了极大的便利。如果说要有什么不同,主要那有如下几个方面: 1、研究方法的不一样:虽然很多内容是接触过的,但是重新学习的时候明显感觉到不一样的是研究方法,随着其他知识的累积,尤其是高数的引入,给物理的学习带来的极大的便利,特别是一些公式的推理过程让我们更好的了解公式的来由,更好的便于记忆和理解。 2、准确度的不同:在学习过程中,总有些以前的东西对推翻,因为要考虑的东西越来越多,微观的宏观的等压的等温的……这些都告诉我们要全面细致地学习,应用的知识越来越多,要把知识串成串。 3、学习方法的不同:大学阶段的物理学习和中学阶段的物理学习存在着很大的不同,课少了,作业也少了,但是仍然不能放松,毕竟在中学几乎每天都在学物理,所以现在的物理学习更需要自己的主动和认真。 大学物理力学小结 能量守恒定律定律内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。 1)自然界中不同的能量形式与不同的运动形式相对应:物体运动具有机械能、分子运动具有内能、电荷的运动具有电能、原子核内部的运动具有原子能等等。 (2)不同形式的能量之间可以相互转化:“摩擦生热是通过克服摩擦做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能等等”。这些实例说明了不同形式的能量之间可以相互转化,且是通过做功来完成的这一转化过程。 (3)某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等.某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 能量守恒的具体表达形式保守力学系统:在只有保守力做功的情况下,系统能量表现为机械能(动能和位能),能量守恒具体表达为机械能守恒定律。热力学系统:能量表达为内能,热量和功,能量守恒的表达形式是热力学第一定律。相对论性力学:在相对论里,质量和能量可以相互转变。计及质量改变带来能量变化,能量守恒定律依然成立。历史上也称这种情况下的能量守恒定律为质能守恒定律。 能量守恒定律的重要意义能量守恒定律,是自然界最普遍、最重要的基本定律之一。从物理、化学到地质、生物,大到宇宙天体。小到原子核内部,只要有能量转化,就一定服从能量守恒的规律。从日常生活到科学研究、工程技术,这一规律都发挥着重要的作用。人类对各种能量,如煤、石油等燃料以及水能、风能、核能等的利用,都是通过能量转化来实现的。能量守恒定律是人们认识自然和利用自然的有力武器。基本内容:热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。 普遍的能量转化和守恒定律在一切涉及热现象的宏观过程中的具体表现。热力学的基本定律之一。 表征热力学系统能量的是内能。通过作功和传热,系统与外界交换能量,使内能有所变化。根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔU 应等于在此过程中外界对系统传递的热量Q和系统对外界作功A之差,即UⅡ-UⅠ=ΔU =Q-A或Q=ΔU+A这就是热力学第一定律的表达式。如果除作功、传热外,还有因物质从外界进入系统而带入的能量Z,则应为ΔU=Q-A+Z。当然,上述ΔU、A、Q、Z均

大学物理学习心得.doc

大学物理学习心得 大学很多的专业都会学习物理,那么你想了解大学物理应该如何学习呢?下面我就和大家分享大学物理学习心得,来欣赏一下吧。 大学物理学习心得(一) 《大学物理》是我们工科必修的一门重要基础课,但由于我们现在所学的《大学物理》涵盖的内容广,包括力学、热学、电磁学、光学、量子力学以及相对论,而且对高等数学、线性代数等数学基础要求较高,是我们大家都感到很困难的一门课。下面我简单说一下我的一些学习心得。 首先,“课堂”和“课后”是学习任何一门基础课的两个重要环节,对大学物理来说也不例外。课堂上,我认为高效听讲十分必要,如何达到高效呢?我们听讲要围绕着老师的思路转,跟着老师的问题提示思考,同时又能提出一些自己不太明白的问题。对于老师的一些分析,课本上没有的,及时提笔标注在书上相应空白的地方,便于自己看书时理解。课后,我们在完成作业之前应该先仔细看书回顾一下课堂内容,再结合例题加深理解,然后动笔做作业。除此之外,我认为可以借助一些其他教材或辅导资料来扩展我们的视野,不同教材分析问题的角度可能不同,而且有些教材可能更符合我们自己的思维方式,便于我们加深对原理的理解。总之,课堂把握住重点与细节,课后下功夫通过各种途径来巩固加深

理解。 第二,对大学物理的学习,我认为自己的脑海中一定要有几种重要思想:一是微积分的思想。大学物理不同与高中物理的一个重要特点就是公式推导定量表示时广泛运用微分、积分的知识,因此,我们要转变观念,学会用微积分的思想去思考问题。二是矢量的思想。大学物理中大量的物理量的表示都采用矢量,因此,我们要学会把物理量的矢量放到适当的坐标系中分析,如直角坐标系,平面极坐标系,切法向坐标系,球坐标系,柱坐标系等。三是基本模型的思想。物理中分析问题为了简化,常采用一些理想的模型,善于把握这些模型,有利于加深理解。如力学中刚体模型,热学中系统模型,电磁学中点电荷、电流元、电偶极子、磁偶极子模型等等。当然,我们还可总结出一些其他重要思想。 最后,我们还要充分发挥自己的想象力、空间思维能力。对于有些模型,我们可以制出实物来反映,通过视觉直观感受,而大学物理中还存在大量我们无法直观反映的模型,因此就必须通过发挥自己的想象力来构造出来。 大学物理学习心得(二) 本学期我们生科专业开设了3门实验课,在实验课中,我学到了很多在平时的学习中学习不到的东西,尤其是物理光学实验。它教会我更多的应该是一种态度,对待科学,对待学习。为期七周的的大学物理实验就要画上一个圆满的句号了,回顾这七周的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物

大学物理实验心得体会范文

大学物理实验心得体会范文 大学物理实验是很多大学生进入大学以来接触的第 一门实验课,那大学物理实验心得体会怎么写呢?下面小编就和大家分享大学物理实验心得体会,来欣赏一下吧。 大学物理实验心得体会(一) 本学期我们生科专业开设了3门实验课,在实验课中,我学到了很多在平时的学习中学习不到的东西,尤其是物理光学实验。它教会我更多的应该是一种态度,对待科学,对待学习。为期七周的的大学物理实验就要画上一个圆满的句号了,回顾这七周的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。 我很感谢能够有机会学习物理实验,因为每一位老师都教会了我很多。每次上实验课,老师都给我们认真的讲解实验原理,轮到我们自己动手的时候,老师还常常给予我们帮

助,不厌其烦地为我们讲解,直到我们做出来。有的同学在实验过程中出现了问题,就耽误了时间,老师也总是陪着我们直到最后一名同学做完实验。 在大学物理实验课即将结束之时,我对在这一年来的学习进行了总结,总结这一年来的收获与不足。取之长、补之短,在今后的学习和工作中有所受用。下面我就对我这一年所学到的东西做一个概述: 1、实验课的基本程序 1.1、课前预习: 对于每一次将要进行的实验,我们都要做好预习,通过阅读实验教材,上网搜索资料,自己翻阅其他辅导书,弄清本次实验的目的、原理和所要使用的仪器,明确测量方法,了解实验要求及实验中特别要注意的问题等。这一步至关重要,它是实验成败的关键。我觉得我对于这一点还是做的不

错的,因此每一次实验都能够很顺利地完成。而且我发现我准备地越充分,实验就会越顺利。因为前期的准备可以使我在实验的时候避免手忙脚乱,充分的预习也使我充满了信心。因为我做了充分的预习,在实验中就不会遇到突发状况就不知该如何是好。就这样一步一个脚印,就不必“从头再来”,节省了时间。 1.2、实验操作 我们做实验是在每周周二的下午,先由实验辅导老师对实验进行讲解,老师的讲解很重要,一定要认真地听。因为老师会讲一些实验中可能会出现的问题及注意事项,这会帮我们解决很多麻烦,可以避免很多错误。老实讲解完实验有关的事情后,还会给我们再详细的对实验仪器的使用进行讲解,在对基本实验的装置了解之后,我们对自己动手实验就不会有一种很陌生的感觉了,这一点对我们来说很有利,我们可以很投入和很成功的完成实验。因为我们已经知道什么地方是操作的要点,什么可能导致失败。并且物理实验本就在很大程度上调动我们学习的积极性。实验完毕,实验数据须经教师审阅、签字,再将仪器整理好。

大学物理演示实验心得论文

大学物理实验论文 在本学期的演示实验课中,我学到了很多在平时的学习中学习不到的东西。在实验课上,老师给我们认真的讲解实验原理,让我们通过奇妙的物理现象来感受伟大的自然科学的奥妙,老师向我们展示了一些很新奇的仪器和实验,我们都带着好奇心仔细的观看了每一个实验,并亲手操作了部分实验,一些看似不正常的现象都能用科学的自然知识来解释! 实验物理和理论物理是物理学的两大组成部分,其发展共同形成整个物理学史的前进足迹,二者相互促进、共同发展。当实验物理中有新的发现、出现新的结果时,就会激励和促进理论物理研究出现新的模型、理论,使人类对自然规律的探索向广深推进。大学物理演示实验更是激发了同学们的试验兴趣和热情,通过奇妙的物理实验增进我们的理论学习!在演示实验课上,一些奇妙的实验引起了同学们的极大兴趣,如椎体上滚,扫描成像,离心现象,真空物理现象等……现在就其中的几个实验做一下探讨。 (—)锥体上滚实验. 这个实验让我看的目瞪口呆,开始我还以为见了一个怪坡呢。但是经过仔细的分析发现这其实是一种错觉:这个轨道一头高一头低,双锥体从低的一头滚向高的一头是重心向上滚,但分析一下就知道真相不是这样的。首先这是一个双锥体而不是一个圆柱体,其次这不是一个斜面两条轨道,而且轨道是成八字状摆放的,并且高处张得开。这样的设计会使椎体处于高处时重心降低,而且在低处时由于轨道变窄使得重心升高且高于在高处时的,由于一来这个实验就变成重心由高处向低处走的正常现象了,也就不违反物理定律了。 操作:将锥体滑滚移到导轨较低的一端,再放开双手,锥体将会自动上滚。说明:这个实验是由一个锥体和两根互成角度同时又与水平面成一

大学物理A(下)小结

◆波动光学小结 一.基本概念 1.光程——光在媒质走过的几何路程与媒质折射率的乘积。 2.半波损失——当光从光疏媒质入射到光密媒质时,反射光存在位相突变(改变了π),相当于多走了半个波长的光程,称为半波损失。3.相干光的三个条件——振动方向相同、振动频率相同、初位相差恒定。4.位相差与光程差的关系ΔΦδ ——= ——,Δφ= 2kπ, δ=kλ, 加强 2πλΔφ=( 2k+1)π, δ=(2k+1)λ/2,减弱

四.光的偏振 1.理解天然光、部分偏振光、线偏振光的定义及表示方法;2.掌握如何利用偏振片区分这三种光;

3.光强的计算 (1)天然光通过偏振片后成为线偏振光,光强变为原来的二分之一; (2)线偏振光通过偏振片后仍为线偏振光,透射光的光矢量方向同偏振片的偏振化方向一致,光强为I=I0cos 2α;I0为入射光的光强, α为入射光光矢量的方向和偏振片偏振化方向的夹角。4.当入射光为天然光时,反射光和折射光均为部分偏振光; 反射光垂直分量多于平行分量,折射光平行分量多于垂直分量。 当入射角满足布儒斯特定律 tgi=n 2/n 1 时,反射光成为线偏振光。 此时,i+γ=90°。γ为折射角。5.双折射现象:光通过晶体后产生二条折射光 一条称为O光,为寻常光,满足折射定律; 另一条称为e光,为非常光,不满足折射定律。 ◆振动与波动 一.基本理论

二.驻波 二列相向传播的波,波动方程为 t x =Acos(—— - ——) Y 1 T λ t x =Acos(—— + ——) Y 2 T λ 2π 2π 则驻波方程为 Y = 2Acos—— x cos—— t。 λ T 能确定波腹、波节的位置; 理解二波腹、二波节的间距均为λ/2; 理解波节两侧各质点的位相差为π。

大学物理上 章节小结

第一章 质点运动的描述 小结 一、运动学特点:瞬时性、矢量性、相对性。 二、基本概念: 1、位矢:k z j y i x r 位矢大小:2 22z y x r r r 方向:由坐标原点指向质点。 2、速度:j v i v j dt dy i dt dx dt r d v y x v 的大小: 2y 2x 2 2v v dt dy dt dx dt r d v v 的方向:所在位置的切线向前方向。 3、速率:dt ds v v 4、加速度: j a i a j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222y x a 的大小: 2 222 222 y 2 x 2 y 2x dt y d dt x d dt dv dt dv a a a 或自然坐标系中,n n t t t t e a e a dt e d v e dt dv dt v d a 大小: 2 22 2 n 2t r v dt dv a a a 方向:t n a a tg 三、运动描述 1、运动方程:⑴矢量式: k )t (z j )t (y i )t (x )t (r ⑵标量式:)t (x x ,)t (y y ,)t (z z 2、轨迹方程:0)y ,x (F 3、圆周运动的角量描述:

(1)角坐标 (2)角速度dt d (3)角加速度22dt d dt d 4、角量与线量的关系: ① r v ② r a t ③2 n r a 四、相对运动 ME PM PE v v v 五、运动类型 1、直线运动 0a n ,一维情况下,标量式代替矢量式。 2、曲线运动 0a n 第二章牛顿定律、第三章动量守恒定律和能量守恒定律 小结 一、牛顿运动三定律 二、常见力 ①弹性力②万有引力 :保守力 ③摩擦力 :非保守力 三、重要物理量 ①动量v m P ②冲量 t F t t F dt F I t t ? 1221 ③动能2k mv 21 E ④功 b a S d F W 合力功等于各分力功之和。一维情况下,力的功等于力曲线与坐标轴所 围面积的代数和。 ⑤势能 )势能零点取在无限远处万有引力势能:(r mM G E p 面上)势能零点取在某一水平重力势能:(mgh E p ,h 为物体m 相对势能零点的竖 直坐标。 处)势能零点取在弹簧原长弹性势能:(kx 2 1E 2 p 四、定理、原理及定律 1、定理

物理实验心得体会

物理实验心得体会 经过一年的大学物理实验的学习让我受益菲浅。在大学物理实验课即将结束之时,我对在这一年来的学习进行了总结,总结这一年来的收获与不足。取之长、补之短,在今后的学习和工作中有所受用。在这一年大学物理实验课的学习中,让我受益颇多。 一、大学物理实验让我养成了课前预习的好习惯。一直以来就没能养成课前预习的好习惯(虽然一直认为课前预习是很重要的),但经过这一年,让我深深的懂得课前预习的重要。只有在课前进行了认真的预习,才能在课上更好的学习,收获的更多、掌握的更多。 二、大学物理实验培养了我的动手能力。实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台。每个实验我都亲自去做,不放弃每次锻炼的机会。经过这一年,让我的动手能力有了明显的提高。 三、大学物理实验让我在探索中求得真知。那些伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。实验是检验理论正确与否的试金石。为了要使你的理论被人接受,你必须用事实(实验)来证明,让那些怀疑的人哑口无言。虽说我们的大学物理实验只是对前人的经典实验的重复,但

是对于一个知识尚浅、探索能力还不够的人来说,这些探索也非一件易事。大学物理实验都是一些经典的给人类带来了难以想象的便利与财富。对于这些实验,我在探索中学习、在模仿中理解、在实践中掌握。大学物理实验让我慢慢开始摸着石头过河。学习就是为了能自我学习,这正是实验课的核心,它让我在探索、自我学习中获得知识。 四、大学物理实验教会了我处理数据的能力。实验就有数据,有数据就得处理,这些数据处理的是否得当将直接影响你的实验成功与否。经过这一年,我学会了数学方程法、图像法等处理数据的方法,让我对其它课程的学习也是得心应手。经过这一年的大学物理实验课的学习,让我收获多多。但在这中间,我也发现了我存在的很多不足。我的动手能力还不够强,当有些实验需要很强的动手能力时我还不能从容应对;我的探索方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成;我的数据处理能力还得提高,当眼前摆着一大堆复杂数据时我处理的方式及能力还不足,不能用最佳的处理手段使实验误差减小到最小程度……总之,大学物理实验课让我收获颇丰,同时也让我发现了自身的不足。在实验课上学得的,我将发挥到其它中去,也将在今后的学习和工作中不断提高、完善;在此间发现的不足,我将努力改善,通过学习、实践等方式不断提高,克服那些不应成为学习、获得知识的障碍。在今后的学习、工作中有

大学物理心得体会

心得体会 大学物理作为一门系统的自然科学,物理学的概念原理的确很多.学好物理要求首先理并掌握有关的概念原理,这很容易使人望而生畏,觉得太难学,但是只要我们沉下心来好好总结,我们就会发现,物理学的这些概念并不是杂乱的堆积,而是系统的组织起来的,其中有主有次,有基础的,也有衍生的 学习物理的重要方式是解答物理问题或习题.我们已经是大学生,要经常用物理知识去解释和解决生活当遇到的物理问题,勤思善想,我想经常这样做我们会受益匪浅的.物理源于实践又高于实践,经常解释一些问题可以使我们加深对物理概念的理解,所谓熟能生巧吗 学习物理还要加强自学能力的培养,首先做到仔细阅读教材,领会其基本内容,有时也要去图书馆或者书店找一些参考资料帮助学习,可以向老师学习,注意听讲,在课堂上有选择有重点地听讲.聆听老师的讲课是难得的学习机会,应该自觉的珍惜把握从中获益.我高中物理老师的许多话我还记忆犹新,他说过:"无论一道多么复杂的物理习题,总是有若干个比较简单的物理过程组合而成,你只要把每个物理过程分析清楚了,那么各个物理过程所对应的物理定律就自然而然的显现出来."这句话我体会特别深,也获益匪浅. 总之,物理是一门基础学科,只要学习得法,刻苦认真,从中不仅能学到大量知识,而且能培养科学思想与方法,提高科学素质和激发创新能力.我非常爱探索各种物理现象,所以我也非常喜欢学习物理,我忠心希望我们学校的每一个同学都对物理产生浓厚的兴趣,因为我相信用知识武装起来的头脑是不可战胜的 在学习过程中还要注意及时归纳总结,特别是在经过一个阶段的学习以后,经验和教训都要一起总结,总结经验主要就是把一些好的经典的解题方法和思路在过一过目,看自己是否真正的掌握了。而总结教训则是把自己平时总喜欢犯的一些错误归结到一起,看看它们的共同点,并找出症结,这样对症下药才能达到立竿见影的效果,如果是基础知识没有掌握牢固,那么就加强基础的学习,而如果是计算上的问题,那么就要注意计算能力的提高。 总之,态度决定一切,细节决定成败。

大学物理总结

大学物理总结 --1603012022 陈军 物理学学习是一次充满迷茫、艰难探索、循序渐进的长途旅行,对物理概念、物理定律和物理思想的理解要经过反复思索、逐步加深、直到顿悟的漫长过程。学习大学物理,我们从开始就会发现,许多概念和定律在中学都曾学习过,也有了一定的理解,遇到的一些问题也能用中学物理方法解决,这种不断重复、逐步深化的方式本是学习物理学的常用方法。但这种方法易使我们产生轻敌思想,误以为学习大学物理不难,对概念的理解、方法的掌握、物理思想的确立以及物理问题的处理思路习惯于停留在中学水平,忽视了对知识体系和思想体系的深入思考,慢慢地感到学习越来越困难,逐渐失去了对物理课的兴趣,也就不可能有好的学习效果。因此,需要特别提醒的是,我们从开始就要十分重视对大学物理的学习,不仅要投入足够的时间和精力,而且要掌握正确的学习方法。 学习物理关键在于多思考,搞清楚其中的原理。学习物理不是简单的套用公式,进行数字推导;物理知识重要的是要掌握扎实的基础知识。要对基本物理概念、物理规律清楚弄清本质,明白相关概念和规律之间的联系,明白物理公式定理、定律在什么条件下应用,而不能简单地以做习题对基本概念和基本规律的学习和理解,如果概念不清做题不仅费时间费精力,而且遇到的矛盾或困惑就越多.做习题的目的是为了巩固基本知识,从而达到灵活运用。所以上课时是最重要的。这就是我学习大学物理的体会。 与学习任何课程一样,学习大学物理也要牢牢抓住课前预习、课堂听讲、做好笔记、理解例题、课后复习(包括完成作业)和考前复习这几个主要环节。课前预习就是粗略浏览将要学习的内容,目的在于明确课堂上必须重点解决的问题;课堂听讲就是要学习老师引出物理概念的目的、建立物理模型的思路、描述物理现象的方式、演绎物理原理的程序、解释物理定律的思想、分析物理问题的过程、解决物理问题的方法。在课堂上最重要的是学习物理思想和物理方法,同时以提纲的形式记录下老师授课的全过程,重点记录课本上没有的内容和自己觉得重要的东西,以备查阅。讲解例题是课堂教学的重要组成部分,学习例题也是 学会应用理论的开始。教师通过对例题的分析和求解,一方面是要教会学生求解某一类题目的方法,另一方面是要培养学生分析问题的能力,而更为重要的是要加深学生对基本理论的理解、提高应用理论解决实际问题的能力。每个例题都是一个物理模型,物理题实际上已知模型的拓展和变化。如何懂一道题通一类题,剖开题目表面找到问题所在是我们学习的关键。课后复习(包括完成作业)就是所谓的“把书读厚”,既要全面回顾课堂听讲的过程和所学内容,又要凭借记忆和查阅课本,把提纲式课堂笔记补充为详细笔记,并写下自己的思考体会,还要理清知识重点、难点以及解决某类物理问题的步骤和技巧,更要在完成作业的过程中巩固所学知识、解决发现存在的问题。考前复习就是所谓的“把书再读薄”,此时的重点不在于记忆概念、定律和结论,而在于理清课程体系和知识框架、独特的研究方法和思想模式、常见问题的处理流程和技巧、常用的数学知识,当然还要查漏补缺。 当然在大学学习物理不打你有文化课要学习,我们还有大学物理实验要做,这是在加强我们的动手能力,所以在大一下学期开始,每一次实验,我们都要预习,写好预习报告。基本上

2020年大学生学习物理化学的心得体会

大学生学习物理化学的心得体会 一个学期物理化学的悄然而逝,回首的往事,感慨颇多。我对大学物理化学的学习有了比较深入的了解。物理化学是化学学科的理论基础,所以历史上也曾称作"理论化学"。物理化学综合运用数学,物理等基础科学的理论和实验方法来研究化学过程中的平衡规律和速率规律及这些规律与微观结构的关系。 首先,从那里我学到了,做事之前的准备要做好,做事时常常抬头从不同的角度看看,做完了要记得总结。做之前要认真思考:我做这件事是为了什么目的,我想达到什么效果,中间可能会出现哪些问题,我有没有在做无用功……很多时候总觉得自己很忙,可是在忙什么呢?有必要吗?有没有快速点的办法?这些问题却没有思考。那是 ___吗?当然,我们都知道,是挤出来的。正如,很多成功之士,他们的成功部分在于他们会挤时间,把时间用在刀刃上。 其次,我觉得有一点特别重要,就是我从白老师身上深深感受到的乐观的心态。每次上课,老师都是笑嘻嘻的,非常开心。每节课都如此精彩。我得养成乐观的心态,向老师那样,开心的工作,愉快的学习,那样也才有。 我自己认为因为考试是重要的,学生把前途都寄托在考试中,老师觉得要对学生负责,所以一上课老师不敢多寒暄,往往没几句"

家常"就直奔主题,接着便是一大串拗口的外 ___名字和写在黑板上像铁丝网一样密密麻麻的方程,让人头晕目眩。一节课下来,有的同学早已在睡梦中度过了半节课,有的随着盼望已久的下课铃声的响起而应声睡着了,有的早已拿出了《读者》之类的杂志津津有味地读着,有的什么也不干耳朵却塞着耳机在听音乐。 我们的课堂里到底有多少学生在认真听课?一个学生一个学期会认真听几节课?每节课会认真听几分钟?有的同学在问我学物理化学到底有什么用?这些问题就是有一个学习的兴趣问题。 所以,我体会到,对物理化学的学习和其他门学科的学习一样,兴趣是很重要的。经常和老师同学讨论物理化学问题,会增加我对物理化学课的兴趣。因为书上的理论都很枯燥,通过讨论可以给这些理论增加一点人味,因为一想起某个理论问题我就会想起我的老师和同学们,因而感到亲切和安慰,于是便受到了鼓舞。总之,物理化学是培养学生逻辑思维能力和实验动手能力的一门最重要的学科。要学好需要老师和同学之间的互动。 学习物理化学必须讲究方法,而改进的本质目的,就是为了学习效率。可以这样认为,学习效率很高的人,必定是学习成绩好的学生。因此,对大部分学生而言,学习效率就是提高学习成绩的直接途径。

关于学习大学物理的心得体会

关于学习大学物理的心得体会 关于学习大学物理的心得体会 大学物理是每一个理科大学生所必须学的课程,物理学是关于自然界最基本形态的科学,他研究物质的结构和相互作用以及物质的运动。接下来就跟WTT一起去了解一下关于吧! 篇1 物理学来自于自然现象,规律源自于生活实践,每一个物理规律的得出,都是前人用成千上万次的实验推理得出的。其中汇集了古人的智慧和力量,饱含着人们发现过程中的艰辛和获得成功后的喜悦。人们在探索规律认识规律的过程中留下的实践经验,对我们现在的学习有着很大的启发作用,也给学生的学习增加了很大兴趣。让学生知道物理家探索物理规律的艰难,明确只有对物理学有执着的追求,坚持不懈地努力,才能到达成功的彼岸。适当学习一些物理学史可以使学生更好地建立物理观念,较好地在头脑中形成物质结构及物质运动整体上的概括的物理图景。适当地学习一些物理学史可以使学生加深对物理概念的理解,更好地掌握物理规律,当学生知道了这些史实时,不但明确了发现一种物理规律的艰辛程度,还能更好地明确物理规律的内涵,从而更深层次理解了这一规律。更好地知道物理学是来自于自然生活而更重要的是服务于生活,使学生知道身边处处有物理。适当地学习一些物理学史,可以陶冶学生的情操,从物理学家那些高贵的品质中吸收更多的营养,对历史上一些

有杰出贡献的科学家进行个别考察和研究,这些科学家对待事物的科学态度、思想方法、高贵品质等会对后人产生深远的影响和熏陶,受到深刻的启示和启迪,得到巨大的动力和精神食粮,受到鼓舞。所以在学习中适当地加入物理学史,对学生学习物理的兴趣及探索问题坚持不懈精神的培养有着很重大的意义。 学习物理学史,对学生学习知识、理解和掌握知识也具有相当大的作用。例如:在讲原子动力时候,原子本身就非常小,用肉眼根本观察不到它的结构,只能是抽象地去想象,如果硬背原子的结构是由原子核、核外电子构成,讲解就非常的乏味,使学生不好理解和掌握,但是如果加上原子物理学史,对知识掌握和理解就容易多了。1897年,汤姆生利用阴极射线管发现了电子,说明原子可再分,还有复杂的内部结构,他就把原子想象成了一个枣糕模型,原子核就是蛋糕,电子就像枣镶嵌在原子核上。过了二十年,整理英国的物理学家卢瑟福和助手们用氦核散射实验证实了枣糕模型不成立,提出了原子的核式结构,原子的直径数量级比原子核直径数量级大十万多倍。把原子比作足球场,原子核也就是放在足球场中心的一颗绿豆那么大,电子在原子核外作高速运动,使学生很形象地知道了原子的结构。后来密立根又测出了电子电量,卢瑟福又发现质子,又认识了原子核还可以分为质子和中子。1939年,德国的物理学家哈恩和助手用中子轰击铀核时,铀核发生裂变。1942年,费米等人在美国建成第一个裂变反应堆。人类在原子物理上发展迅速,到1952年第一

相关主题
文本预览
相关文档 最新文档