当前位置:文档之家› 第五讲 原函数与不定积分 柯西积分公式 解析函数的高.

第五讲 原函数与不定积分 柯西积分公式 解析函数的高.

第五讲 原函数与不定积分 柯西积分公式 解析函数的高.
第五讲 原函数与不定积分 柯西积分公式 解析函数的高.

积分大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9. 2d ()x x ax b +? = 2 11ln ()ax b C b ax b b x +-++ 的积分 10. x C + 11.x ?=2 2(3215ax b C a - 12.x x ?=2223 2(15128105a x abx b C a -+ 13. x ? =22 (23ax b C a -

14 . 2x ? =2223 2 (34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>< 16 . ? 2a b - 17. d x x ? =b ?18. 2d x x ? =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a + 20. 22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21. 22d x x a -?=1ln 2x a C a x a -++ (四)含有2 (0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23. 2d x x ax b +?=2 1ln 2ax b C a ++

复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= ΛΛ1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+= =

复变函数积分方法总结

复变函数积分方法总结
[键入文档副标题]
acer [选取日期]

复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新
形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,
也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i2=-1 ,x,y 分别称为 z 的实部和虚部,记作
x=Re(z),y=Im(z)。 arg z=θ? θ?称为主值 -π<θ?≤π ,
Arg=argz+2kπ 。利用直角坐标和极坐标的关系式 x=rcosθ ,
y=rsinθ,故 z= rcosθ+i rsinθ;利用欧拉公式 eiθ=cosθ+isinθ。
z=reiθ。
1.定义法求积分:
定义:设函数 w=f(z)定义在区域 D 内,C 为区域 D 内起点为 A 终点
为 B 的一条光滑的有向曲线,把曲线 C 任意分成 n 个弧段,设分点为
A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段 zk-1 zk(k=1,2…n)上任
取一点?k 并作和式 Sn=
(zk-zk-1)=
?zk 记?zk= zk-
zk-1,弧段 zk-1 zk 的长度 =
{?Sk}(k=1,2…,n),当
0 时,
不论对 c 的分发即?k 的取法如何,Sn 有唯一的极限,则称该极限值为
函数 f(z)沿曲线 C 的积分为:
=
?zk
设 C 负方向(即 B 到 A 的积分记作)
.当 C 为闭曲线时,f(z)
的积分记作
(C 圆周正方向为逆时针方向)
例题:计算积分
,其中 C 表示 a 到 b 的任一曲

基本积分公式

§5.3基本积分公式 重点与难点提示 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式. (1) ( 5.6 ) (2) ( 5.7 ) (3) ( 5.8 ) (4) ( 5.9 ) (5) ( 5.10 ) (6) ( 5.11 ) (7) ( 5.12 ) (8) ( 5.13 ) (9) ( 5.14 )

(10) ( 5.15 ) (11) ( 5.16 ) 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有.

是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数)

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='??????? (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f +=1;设:t b ax =+

()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x s e c = ()22x a x f +=;设:t a x t a n = ()3分部积分法:??-=vdu uv udv 附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, , 积分后的函数仍是幂函数,而且幂次升高一次. 特别当 时,有 . 当 时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故 ( , )式右边的 是在分 母,不在分子,应记清. 当 时,有 . 是一个较特殊的函数,其导数与积分均不变.

应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.

复变函数的积分(答案)

复变函数练习题 第三章 复变函数的积分 系 专业 班 姓名 学号 §1 复变函数积分的概念 §4 原函数与不定积分 一.选择题 1.设C 为从原点沿2 y x =至1i +的弧段,则2()C x iy dz +=? [ ] (A ) 1566i - (B )1566i -+ (C )1566i -- (D )15 66 i + 2. 设C 是(1)z i t =+,t 从1到2的线段,则arg C zdz =? [ ] (A ) 4 π (B )4i π (C )(1)4i π+ (D )1i + 3.设C 是从0到12 i π+的直线段,则z C ze dz =? [ ] (A )12e π- (B )12e π-- (C )12ei π+ (D )12 ei π - 4.设()f z 在复平面处处解析且 ()2i i f z dz i ππ π-=?,则积分()i i f z dz ππ--=? [ ] (A )2i π (B )2i π- (C )0 (D )不能确定 二.填空题 1. 设C 为沿原点0z =到点1z i =+的直线段,则 2C zdz =? 2 。 2. 设C 为正向圆周|4|1z -=,则2232 (4)?C z z dz z -+=-?10.i π 三.解答题 1.计算下列积分。 (1) 323262121 ()02 i z i i z i i i e dz e e e ππ ππππ---==-=?

2 2222sin 1cos2sin 222 4sin 2.244i i i i i i zdz z z z dz i e e e e i i i i ππππππππππππππ------??==- ?????--=-=-=+ ?? ? ?? (3) 1 1 0sin (sin cos )sin1cos1. z zdz z z z =-=-? (4) 20 222 cos sin 1sin sin().2 22 i i z z dz z i ππππ= =?=-? 2.计算积分||C z dz z ??的值,其中C 为正向圆周: (1) 220 0||2 2,022224. 2 i i i z C z e e ie d id i θθ ππθθπ θθπ-==≤≤?==? ?积分曲线的方程为 则原积分I=

在实际应用中柯西积分公式的用途正文

柯西积分公式的应用 姓名:武小娜 班级:2014级数学教育 学号:201430626 摘要:阐述了柯西积分公式在解析函数理论中的重要地位,叙述了各种不同表示形式的柯西积分公式和高阶导数公式,并举例说明了这些公式在积分计算中的应用. 关键词:解析函数;复积分;柯西积分公式. 1 前言 的相关资料,力求把课本上的知识运用到实践中去. 2 预备知识 2.1 柯西积分定理 设函数)(z f 在z 平面上的单连通区域D 内解析,C 为D 内任一条周线,则0)(=?c dz z f . 2.2 推广的柯西积分定理

设C 是一条周线,D 为C 之内部,函数)(z f 在闭域C D D +=上解析,则 0)(=?c dz z f . 2.3 复周线柯西积分定理 设D 是有复周线---++++=n C C C Λ210C C 所围成的有界1+n 连通区域,函数 )z (f 在D 内解析,在C D D +=上连续,则0)(=?c dz z f . 2.4 柯西积分公式 3.2 高阶导数公式 设区域D 的边界是周线(或复周线)C ,函数)(z f 在D 内解析,在C D D +=上连续,则函数)(z f 在区域D 内有各阶导数,并且有 这是一个用解析函数)(z f 的边界值表示其各阶导函数内部值的积分公式. 现行教材中,仅应用数学归纳法证明了它的特殊形式——高阶导数公式,而数学归纳法比较繁琐.下面首先给出引理,然后利用该结论导出高阶导数公式一

种简单的证明. 引理 设Γ是一条可求长的曲线,)(z f 是Γ上的连续函数,对于每个自然数m 及复平面C 上的每个点Γ?z ,定义函数 那么每个)(z F m 在区域Γ-=C D 上解析,且 证明:首先证明)(z F m 是区域G 上的连续函数,即要证明,对于G 内的任意点a ,不论0>ε多么小,总存在0>δ,只要δ<-a z (z 在G 内的点),就有 2 ,2r r z r r a >≥->≥-ζζ.于是有(2)得 l r Mm a z a F z F m m m 1)2()()(+-<-, 其中l 为曲线Γ的长. 令 l Mm r a z l r Mm a z m m m 1112)2(+++<-?<-εε.

常用求导积分公式及不定积分基本方法定稿版

常用求导积分公式及不定积分基本方法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

一、基本求导公式 1. ()1x x μμμ-'= ()ln 1x x '= 2. (sin )cos x x '= (cos )sin x x '=- 3. 2(tan )sec x x '= 2(cot )csc x x '=- 4. (sec )tan sec x x x '= (csc )cot csc x x x '=- 5. ()ln x x a a a '=,()x x e e '= 6. () 2arctan 11x x '+= ()arcsin x '= () 2arccot 11x x '+=- ()arccos x '= 二、基本积分公式 1. 1d (111)x x x C μμμμ+=+ =-/ +?, 1ln ||+dx x C x =? 2. d ln x x a a x C a =+?,d x x e x e C =+? 3. sin d cos x x x C =-+?, cos d sin x x x C =+? 4. 2sec d tan x x x C =+? 2csc d cot x x x C =-+? 5. tan d ln |cos |x x x C =-+? cot d ln |sin |x x x C =+?

6. sec d ln |sec tan |x x x x C =++? csc d ln |csc cot |x x x x C =-+? 7. 2 1d arctan 1x x C x =++? arcsin x x C =+ 2211d arctan x x C a x a a =++? arcsin x x C a =+ 8. ln x x C =+ ( ln x x C =++ 9. 221 1d ln 2x a x C a x a x a -=+-+? 三、常用三角函数关系 1. 倍角公式 21cos 2sin 2x x -= 21cos 2cos 2x x += 2. 正余切与正余割 正割 1 sec cos x x = 22sec 1tan x x =+ 余割 1csc sin x x = 22 csc 1cot x x =+ 四、常用凑微分类型 1. 1 1 ()d d ()ln ()()()f x x f x f x C f x f x '==+??;

不定积分公式

Ch4、不定积分 §1、不定积分的概念与性质 1、 原函数与不定积分 定义1:若)()(x f x F =',则称)(x F 为)(x f 的原函数。 ① 连续函数一定有原函数; ② 若)(x F 为)(x f 的原函数,则C x F +)(也为)(x f 的原函数; 事实上,())()()(''x f x F C x F ==+ ③ )(x f 的任意两个原函数仅相差一个常数。 事实上,由[]0)()()()()()('2'1'11=-=-=-x f x f x F x F x F x F ,得C x F x F =-)()(21 故C x F +)(表示了)(x f 的所有原函数,其中)(x F 为)(x f 的一个原函数。 定义2:)(x f 的所有原函数称为)(x f 的不定积分,记为?dx x f )(,?-积分号,-)(x f 被积函数,-x 积分变量。 显然C x F dx x f +=?)()( 例1、 求下列函数的不定积分 ①?+=C kx kdx ②??? ???-=+-≠++=+1 ln 11 11 μμμμμ C x C x dx x 2、 基本积分表(共24个基本积分公式) 3、 不定积分的性质 ①[]???±= ±dx x g dx x f dx x g x f )()()()( ②??≠=) 0()()(k dx x f k dx x kf 例2、 求下列不定积分 ①? ? +- =++-= = +--C x C x dx x x dx 11 )2(11 )2(2 2

②? ? +=++-= = +--C x C x dx x x dx 21 )21(11 )21(2 1 ③?+-=??? ? ??+--C x x dx x x arctan 3arcsin 5131522 ④() ()() C x e e x dx dx e dx x e x x x x +- = - = ?? ? ?? -?? ?ln 2 1ln 2 121ππππ ⑤()???++-=-=-C x x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 2 ⑥? ??? ++-=+ = +=C x x xdx xdx dx x x x x x x dx tan cot sec csc cos sin cos sin cos sin 2 2 2 2 2 2 2 2 ⑦() ??+--=-=C x x dx x dx x cot 1csc cot 2 2 ⑧? ??++-=? ? ? ??++-= ++-=+C x x x dx x x dx x x dx x x arctan 311111111322 2 4 2 4 §2、不定积分的换元法 一、 第一类换元法(凑微分法) 1、()()()()b ax d a dx b ax d b ax f a dx b ax f += ++= +?? 1,1即 例1、求不定积分 ①()C x udu u x x xd xdx +- === ???)5cos(5 1sin 5 1555sin 5 15sin ②()()()()?? +-- =+-+?-=---=-+C x C x x d x dx x 8 1 77 7 2116 1211 71 21)21(212 121 ③() () )20(arctan 1 11 2 2 2 C a x a a x a x d a x a dx +?? ? ??= += +?? ④()() )23(arcsin 12 2 2 C a x a x a x d x a dx +?? ? ??=-= -? ? 2、()()n n n n n n dx dx x dx x f n dx x x f == --??1 1 ,1 即 例2、求不定积分 ①()( )() () C x C x x d x dx x x +-- =+-+? - =--- =-+??2 32 12 12 2 1 2 12 2 13 111 1 2 1112 1 1

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='?? ????? (3)若F (x )是f (x )的一个原函数,则 3、积分方法 ()()b ax x f +=1;设:t b ax =+ ()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec = ()22x a x f +=;设:t a x tan = ()3分部积分法:??-=vdu uv udv

附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与 . 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有 . 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清. 当时,有 . 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分 . 分析:该不定积分应利用幂函数的积分公式.

复变函数与积分变换公式

复变函数与积分变换公 式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数的积分及其计算方法

复变函数的积分及其计算方法 石睿 (北京林业大学工学院自动化10-1班,学号:101044118) 摘要:复变函数的积分是研究解析函数的一个重要工具,解析函数的很多重要性质都是通过复积分证明的。本文主要介绍柯西定理和柯西积分公式。 关键词:柯西定理;柯西积分公式 引言:首先介绍复积分的概念、性质和计算法,然后介绍解析函数积分的柯西积分定理及其推广——复合闭路定理. 在此基础上,建立柯西积分公式,然后利用这一重要公式证明解析函数的导数仍然是解析函数这一重要结论. 复积分的概念: 设C 是平面上一条光滑的简单曲线,其起点为A ,终点为B 。函数f(z)在C 上有定义。把曲线C 任意分成n 个小弧段。设分点为A=z 0,z 1,…,z n-1,z n =B,其中z k =x k +iyl k (k=0,1,2,…,n),在每个弧段 zk-1zk 上任取一点ζ k =ξ k +i η k ,做合式k n k k n k k k k n Δz )f(ζ)z (z )f(ζ S ∑∑==-?=-?= 1 1 1,其中 k k k k k y i x z z z ?+?=-=?-1 。 记 当λ→0时,如果和式的极限存在,且此极限值不依赖与ζk 的选择,也不依赖对 C 的分法,那么就称此极限值为f(z)沿曲线C 自A 到B 的复积分,记作 复积分的计算方法: 复积分可以通过两个二元实变函数的线积分来计算 设 ???==,)(,)(:t y y t x x C .βα≤≤t 则???'+'+'-'=β α β α t t y t y t x u t x t y t x v i t t y t y t x v t x t y t x u z z f C d )}()](),([)()](),([{d )}()](),([)()](),([{d )( ?'+'+= β αt t y i t x t y t x iv t y t x u d )}()()]}{(),([)](),([{ |,|max 1k n k z ?=≤≤λ.)(lim d )(1 0k n k k C z f z z f ??=∑ ? =→ζλ

不定积分的基本公式和运算法则直接积分法

·复习 1 原函数的定义。2 不定积分的定义。3 不定积分的性质。4 不定积分的几何意义。 ·引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。 ·讲授新课 第二节不定积分的基本公式和运算直接积分法 一基本积分公式 由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:

以上十五个公式是求不定积分的基础,必须熟记,不仅要记右端的结果,还要熟悉左端被积函数的的形式。 求函数的不定积分的方法叫积分法。 例1.求下列不定积分.(1)dx x ?2 1 (2) dx x x ? 解:(1) dx x ? 21 =2121 21x x dx C C x -+-=+=-+-+? (2)dx x x ? =C x dx x +=? 25 235 2 此例表明,对某些分式或根式函数求不定积分时,可先把它们化为x α 的形式,然后应用幂函 数的积分公式求积分。 二 不定积分的基本运算法则

法则1 两个函数代数和的积分,等于各函数积分的代数和,即 dx x g dx x f dx x g x f ???±=±)()()]()([ 法则1对于有限多个函数的和也成立的. 法则2 被积函数中不为零的常数因子可提到积分号外,即 dx x f k dx x kf ??=)()( (0≠k ) 例2 求3(21)x x e dx +-? 解 3(21)x x e d x +-?=23x dx ?+dx ?-x e dx ? = 4 12 x x x e C +-+。 注 其中每一项的不定积分虽然都应当有一个积分常数,但是这里并不需要在每一项后面加上一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和C 写在末尾,以后仿此。 注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。如上例 由于41()2 x x x e C '+-+=321x x e +-,所以结果是正确的。 三 直接积分法 在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结果,这样的积分方法叫直接积分法。 例3 求下列不定积分. (1) 1)(x dx ? (2)dx x x ?+-1 122 解:(1)首先把被积函数 1)()x 化为和式,然后再逐项积分得 1)((1x dx x dx - =+-- ??

复变函数与积分变换重点公式归纳

复变函数与积分变换 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+== 反余弦函数 )1(1 cos 2-+= =z z Ln i z Arc w

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定积分基本方法 This model paper was revised by LINDA on December 15, 2012.

一、基本求导公式 1. ()1x x μμμ-'= ()ln 1x x '= 2. (sin )cos x x '= (cos )sin x x '=- 3. 2(tan )sec x x '= 2(cot )csc x x '=- 4. (sec )tan sec x x x '= (csc )cot csc x x x '=- 5. ()ln x x a a a '=,()x x e e '= 6. () 2arctan 11x x '+= ()arcsin x '= () 2arccot 11x x '+=- ()arccos x '= 二、基本积分公式 1. 1d (111)x x x C μμμμ+=+ =-/ +?, 1ln ||+dx x C x =? 2. d ln x x a a x C a =+?,d x x e x e C =+? 3. sin d cos x x x C =-+?, cos d sin x x x C =+? 4. 2sec d tan x x x C =+? 2csc d cot x x x C =-+? 5. tan d ln |cos |x x x C =-+? cot d ln |sin |x x x C =+?

6. sec d ln |sec tan |x x x x C =++? csc d ln |csc cot |x x x x C =-+? 7. 2 1d arctan 1x x C x =++? arcsin x x C =+ 2211d arctan x x C a x a a =++? arcsin x x C a =+ 8. ln x x C =+ ( ln x x C =++ 9. 221 1d ln 2x a x C a x a x a -=+-+? 三、常用三角函数关系 1. 倍角公式 21cos 2sin 2x x -= 21cos 2cos 2x x += 2. 正余切与正余割 正割 1 sec cos x x = 22sec 1tan x x =+ 余割 1csc sin x x = 2 2csc 1cot x x =+ 四、常用凑微分类型 1. 1 1 ()d d ()ln ()()()f x x f x f x C f x f x '==+??;

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式 e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,

z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点?k并作和式S n=?(z k-z k-1)=??z k记?z k= z k- z k-1,弧段z k-1 z k的长度 ={?S k}(k=1,2…,n),当0时,不论对c的分发即?k的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C的积分为: =??z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作(C圆周正方向为逆时针方向) 例题:计算积分,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0. ∵f(z)=1 S n=?(z k-z k-1)=b-a ∴=b-a,即=b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设?k=z k-1,则 ∑1= ()(z k-z k-1) 有可设?k=z k,则 ∑2= ()(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得:

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

不定积分公式大全 基本公式有哪些

不定积分公式大全基本公式有哪些 inx + C ∫ sinx dx = - cosx + C ∫ cotx dx = ln|sinx| + C = - ln|cscx| + C ∫ tanx dx = - ln|cosx| + C = ln|secx| + C ∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C ∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C ∫ sec (x) dx = tanx + C ∫ csc (x) dx = - cotx + C ∫ secxtanx dx = secx + C ∫ cscxcotx dx = - cscx + C ∫ dx/(a + x ) = (1/a)arctan(x/a) + C ∫dx/√(a- x ) = arcsin(x/a) + C ∫dx/√(x+ a ) = ln|x + √(x+ a )| + C ∫dx/√(x- a ) = ln|x + √(x- a )| + C ∫√(x- a ) dx = (x/2)√(x- a ) - (a /2)ln|x + √(x- a )| + C ∫√(x+ a ) dx = (x/2)√(x+ a ) + (a /2)ln|x + √(x+ a )| + C ∫√(a- x ) dx = (x/2)√(a- x ) + (a /2)arcsin(x/a) + C 不定积分的基本公式有哪些

不定积分最全公式

常见不定积分公式 1)∫0dx=c 2)∫x^udx=(x^u+1)/(u+1)+c 3)∫1/xdx=ln|x|+c 4))∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2) dx=arcsin(x/a)+c 16) ∫sec^2 x dx=tanx+c; 17) ∫shx dx=chx+c; 18) ∫chx dx=shx+c; 19) ∫thx dx=ln(chx)+c; 1.∫adx = ax+C (a 为常数) 2.∫sin(x)dx = -cos(x)+C 3.∫cos(x)dx = sin(x)+C 4.∫tan(x)dx = -log e |cos(x)|+C = log e |sec(x)|+C

5. ∫cot(x)dx = log e |sin(x)|+C 6. ∫sec(x)dx = log e |sec(x)+tan(x)|+C 7. ∫sin 2(x)dx = 1 (x-sin(x)cos(x))+C 2 = 1 x - 1 sin(2x)+C 2 4 9. ∫cos 2(x)dx = 1 (x+sin(x)cos(x))+C 2 = 1 x + 1 sin(2x)+C 2 4 11.∫tan 2(x)dx = tan(x)-x+C 12.∫cot 2(x)dx = -cot(x)-x+C 13.∫sin(ax)sin(bx)dx = sin((a-b)x) - sin((a+b)x) +C 2(a-b) 2(a+b) 14.∫sin(ax)cos(bx)dx = - cos((a-b)x) - cos((a+b)x) +C 2(a-b) 2(a+b) 15.∫cos(ax)cos(bx)dx = sin((a-b)x) + sin((a+b)x) +C 2(a-b) 2(a+b) 16.∫xsin(x)dx = sin(x)-xcos(x)+C 17.∫xcos(x)dx = cos(x)+xsin(x)+C 18.∫x 2sin(x)dx = (2-x 2)cos(x)+2xsin(x)+C 19.∫x 2cos(x)dx = (x 2-2)sin(x)+2xcos(x)+C 20.∫e x dx = e x +C 21. ∫ a dx = a log |x| (a 为常数) x

相关主题
文本预览
相关文档 最新文档