当前位置:文档之家› 润滑油油膜到底有多重要

润滑油油膜到底有多重要

润滑油油膜到底有多重要
润滑油油膜到底有多重要

润滑油油膜的作用

润滑油油膜是保护记起内部组件减少磨损的重要性能之一,而油膜的强度主要取决于润滑油使用的基础油和添加剂,今天恒运君带你一起来看看润滑剂油膜强度的重要性及影响油膜效果的主要因素。

1、油膜的厚度

说到润滑,你会想到什么?它应该是先产生一层有厚度的膜,从而去分离两个金属表面的基础油,因为润滑油的作用就是为了避免金属间的表面接触。所以在这种需求下,油品就必须能提供摩擦表面分离的能力,这就需要三个支撑因素——相对速度、基础油粘度和负荷量。这三个因素也会受到温度、污染以及其它因素的影响。当油膜厚度平衡了这些因素,即借助于相对速度产生粘性流体膜将两摩擦表面完全隔开,由流体膜产生的压力来平衡外载荷,就称为流体动力润滑。

在具有滚动接触(可忽略的相对滑动运动)的应用中,即使具有较大的局部压力点,也可能会影响金属表面间的油膜厚度。其实这些压力点也起着重要作用。基础油的压力和粘度关系允许油品粘度因较高的压力而暂时性增加,这称为弹性流体动力润滑,尽管油膜会很薄,但依然能产生一个完整的油膜分离。

在实践当中,机器表面最理想的状态就是能实现完全分离,薄膜厚度就是为减少摩擦和磨损提供最好的保护。但是如果不具有满足这些油膜厚度的条件,例如当相对流速不足、粘度不足或负载过大时,会发生什么情况呢?其实大多数机器的设计和操作参数都允许速度

不足的情况存在,比如在启动、停止或方向运动变化时。当温度过高也会导致粘度降低,过度污染同样会使得油膜间隙中的磨粒接触。

当流体动力学或弹性流体动力学润滑的先决条件未满足时,基础油将要在所谓的边界接触条件下寻求支撑,这种支撑因素就需要寻找具有摩擦磨损控制性能的添加剂。因此,基础油和添加剂就被调和在一起生产出符合特定需求的润滑油脂产品,从而减轻预期会产生的边界润滑,该润滑剂就具有油膜强度和边界润滑性能。

2.说说油膜的作用

油膜的强度是除了油膜厚度以外,用以减轻摩擦和控制磨损的重要因素。如上所述,在流体动力学和弹性流体动力润滑中,粘度是影响油膜厚度的关键。当基础油粘度不足以克服金属间表面摩擦时,就需要基础油和添加剂产生化学协同效应,形成表面保护机理。在这些边界条件下,边界润滑也会受到机械表面化学和物理性质以及其它任何环境因素的影响,所以即使在负载较重、温度较高或相对表面速度较低时,油膜强度也会有所提高。

3.无润滑的表面相互作用

如果你在显微镜状态下的分子水平观察机械接触表面,你将发现即使它们被加工得非常光滑,但实际依然是相对粗糙的。这就如同宇航员从遥远的空间角度看,地球是一个完美光滑的球体,而站在地球表面的人则看到地球是充满了高高低低的山脉和山谷一样。

这是因为,当两个金属表面接触时,实际接触面积将显著低于表观接触面积。从显微镜下的“微观山”看,这些接触表面都是凹凸的最高点,低的粗糙面接触率较低。这些粗糙表面会因金属的相应剪切强度而出现弹性变形。因此初始接触点首先产生弹性变形,之后更多的接触点将连接起来,实际接触面积会随着负荷强度的增加而增加。

4.磨损是怎样产生的

在金属表面润滑膜厚度不足的情况下,粗糙接触点可能会导致冷焊,这是胶着磨损的先决因素。这些粗糙点上的粘附经历了加固硬化过程,因此,剪切点一般发生在金属未被强化的粗糙接触点以下层面。作为金属剪切,粗糙的尖端要么被转移到另一个表面,要么被分解成一个磨粒。

粘附通常被认为是机械磨损的初始形式。由于除了磨粒本身的磨损外还存在外部来源的磨损,导致磨粒磨损变得更具破坏性,这种形式的磨损称为三体磨损。而两体磨损则是由于切割或刨削产生锋利的表面接触点而引起。

5.如何控制摩擦磨损

摩擦磨损控制添加剂在基础油中加入少量调配,具有促进金属表面吸附的极性。由于相互作用的条件,这些吸附力与表面发生化学反应,与产生足够的油膜厚度条件成反比:较高的压力和较高的温度。

当机器表面与较高的压力和温度相互作用时,添加剂则通过在机器表面产生更具延展性的初始分子层来减轻金属对金属接触(磨损)的影响,这些摩擦控制层直接降低接触过程中的剪切强度,成为“牺牲品”。初始层可以通过使润滑剂的较弱分子键与金属和金属间粗糙边界条件作用产生强键的力释放,从而减轻摩擦。低剪切强度薄膜的形成也受基本原料的类型和机械表面冶金的影响。

温馨提示:

当润滑不良或润滑不良的机器表面滑动接触时,实际接触压力点上的物理分子相互作用是需要注意的。在机器表面的这种分子作用下,边界条件会受到许多物理和化学原理的约束。当添加剂化合物被选择用于油膜强度保护时,必须注意机器表面氧化、腐蚀、化学吸收和其它化学反应作用的平衡。

金属表面上的这些摩擦和磨损控制添加剂膜降低了接触点处的剪切强度。低剪切强度膜在物理相互作用中被“牺牲”,用以保护表面不受粘着、磨粒和疲劳磨损的影响。这些亚微米薄膜随着它们更接近金属表面而具有从液体到固体的特性。虽然基础油是流体动力学和弹性流体动力润滑用来保护机器表面的首选材料,但边界条件依然存在。因此,为了不受边界条件的限制,应使用合适的并具有摩擦和磨损控制性能的添加剂配方来调和润滑剂,才能在合理的限度范围内保证与机械相互作用成比例的油膜强度。

齿轮传动最小油膜厚度分析及改善润滑的措施

№.6 陕西科技大学学报 Dec.2009 ?84? J OU RNAL OF SHAANXI UN IV ERSIT Y OF SCIENCE &TECHNOLO GY Vol.27 文章编号:1000-5811(2009)06-0084-03 齿轮传动最小油膜厚度分析及改善润滑的措施 王宁侠1,蒋新萍2 (1.陕西科技大学机电工程学院,陕西西安 710021;2.常州轻工职业技术学院机械工程系,江苏常州 213164) 摘 要:根据弹性流体动力润滑理论,通过对齿轮传动中形成动压油膜的参数分析,得出齿面最小油膜厚度发生在小齿轮齿根与大齿轮齿顶开始啮合点的位置,认为应以此处的润滑状态作为齿面润滑状态的判断依据,同时给出了一些改善齿轮传动润滑状态的措施. 关键词:弹性流体动力润滑;起始啮合点;油膜厚度 中图分类号:T H132.41 文献标识码:A 图1 弹性流体润滑时的油膜厚度及压力分布0 引言 齿轮传动除节点外各啮合点处均有相对滑动, 因此齿面的润滑是必不可少的,而齿面的润滑状态 与齿面的失效形式密切相关.根据弹性流体润滑理 论,点、线接触的运动副其表面的润滑油膜厚度与材 料的弹性变形、流体动压和粘压关系、两接触表面的 平均速度、所受载荷大小等有关,微接触区内油膜厚 度及油压的变化如图1所示,其最小油膜厚度的计 算公式,即道森2希金森方程如下[1]:h min =2.65α0.54(η0v ) 0.7R 0.43E ′-0.03W -0.13(1 )图2 齿轮啮合的几何参数式中:α为润滑油的粘压系数;η0为大气压下的粘度;v 为两接触表面 沿相对运动方向的平均速度;R 为接触点的综合曲率半径,R =R 1R 2/ (R 1+R 2);W 为单位接触宽度上的载荷;E ′为当量弹性模量,1E ′ =12(1-ν21E 1+1-ν22E 2 ),E 1、E 2、ν1、ν2分别为两接触体材料的弹性模量和泊松比. 如图2所示的渐开线直齿圆柱齿轮传动中,两齿廓接触于任一点 K ,接触点K 处两齿廓的曲率半径分别为R 1、R 2,此时可看成是半径 分别为R 1、R 2的两圆柱体相接触,根据(1)式可分析该点处的最小油 膜厚度.齿轮的啮合传动过程是很复杂的,轮齿在传动中不断地进入 啮合、脱离、啮合,接触线在齿面上的位置不断变化,接触处的几何形 状(曲率半径)和运动速度随接触位置的变化而变化.啮合区内各点的 最小油膜厚度是变化的,那么最小油膜厚度的最小值发生在什么位 置?判断齿面润滑状态时应以哪一点的最小油膜厚度为依据?以下通过分析确定最小油膜厚度发生的位置. 3收稿日期:2009209226 作者简介:王宁侠(1963-),女,陕西省扶风县人,教授,研究方向:机械制造与设计

滑动轴承油膜厚度计算

1 滑动轴承的工程分析 下面是径向动压滑动轴承的一组计算公式。 1.最小油膜厚度h min h min =C-e=C(1-ε)=r ψ(1-ε) (1) 式中C=R -r ——半径间隙,R 轴承孔半径;r 轴颈半径; ε=e/C ——偏心率;e 为偏心距; ψ=C/r ——相对间隙,常取ψ=(0.6-1)×10-3(v)1/4 , v 为轴颈表面的线速(m/s ) 设计时,最小油膜厚度h min 必须满足: h min /(R z1+R z2)≥2-3 [1] (2) 式中R z1、R z2为轴颈和轴承的表面粗糙度。 2.轴承的特性系数(索氏系数) S=μn /(p ψ2 )(3) 式中μ——润滑油在轴承平均工作温度下的动力粘度(Pa ·s ); n ——轴颈的转速(r/s );p ——平均压强 (N/m 2 ) 用来检验轴承能否实现液体润滑。 ε值可按下面简化式求解。 A ε2 +E ε+C=0 (4) 其中A=2.31(B/d)-2 ,E=-(2.052A +1), C=1+1.052A -6.4088S. 上式中d ——轴径的直径(m );B ——轴承的宽度(m ) 通常ε选在0.5-0.95之间,超出0-1间的值,均非ε的解[1] 。 3.轴承的温升 油的平均温度t m 必须加以控制,否则,润滑油的粘度会降低,从而破坏轴承的液体润滑。 油的温升为进出油的温度差,计算式为: ) 5()(v K vBd Q c f p T S ψπψρψ += ? 式中 f —摩擦系数;c —润滑油的比热,通常取1680-2100 J/kg ℃;ρ—润滑油的密 度,通常取850-900kg/m 3;Q —耗油量(m 3 /s),通常为承载区内流出的端泄量;K S —为轴承体 的散热系数[1,2] 上式中的(f/ψ)、(Q/ψνBd )值,如ε=0.5-0.95可按 f/ψ=0.15+1.92 (1.119-ε)[1+2.31 ( B/d )-2 (1.052-ε)] (6) Q/ψνBd=ε(0.95-0.844ε)/[(B/d)-2+2.34-2.31ε] [2] (7) 求解,上式中的B ,d 的单位均为m ,p 的单位为N/m 2 ,ν为油的运动粘度,单位为m/s. 轴承中油的平均温度应控制在 t m =t 1+△T/2≤75℃ (8) 其中t 1为进油温度;t m 为平均温度 2 径向动压滑动轴承稳健设计实例 设计过程中可供选择的参数及容差较多,在选用最佳方案时,必须考虑各种因素的影响 和交互作用。如参数B 、轴颈与轴瓦的配合公差、润滑油的粘度的变化对油膜温升及承载能

润滑油油膜到底有多重要

润滑油油膜的作用 润滑油油膜是保护记起内部组件减少磨损的重要性能之一,而油膜的强度主要取决于润滑油使用的基础油和添加剂,今天恒运君带你一起来看看润滑剂油膜强度的重要性及影响油膜效果的主要因素。 1、油膜的厚度 说到润滑,你会想到什么?它应该是先产生一层有厚度的膜,从而去分离两个金属表面的基础油,因为润滑油的作用就是为了避免金属间的表面接触。所以在这种需求下,油品就必须能提供摩擦表面分离的能力,这就需要三个支撑因素——相对速度、基础油粘度和负荷量。这三个因素也会受到温度、污染以及其它因素的影响。当油膜厚度平衡了这些因素,即借助于相对速度产生粘性流体膜将两摩擦表面完全隔开,由流体膜产生的压力来平衡外载荷,就称为流体动力润滑。 在具有滚动接触(可忽略的相对滑动运动)的应用中,即使具有较大的局部压力点,也可能会影响金属表面间的油膜厚度。其实这些压力点也起着重要作用。基础油的压力和粘度关系允许油品粘度因较高的压力而暂时性增加,这称为弹性流体动力润滑,尽管油膜会很薄,但依然能产生一个完整的油膜分离。

在实践当中,机器表面最理想的状态就是能实现完全分离,薄膜厚度就是为减少摩擦和磨损提供最好的保护。但是如果不具有满足这些油膜厚度的条件,例如当相对流速不足、粘度不足或负载过大时,会发生什么情况呢?其实大多数机器的设计和操作参数都允许速度 不足的情况存在,比如在启动、停止或方向运动变化时。当温度过高也会导致粘度降低,过度污染同样会使得油膜间隙中的磨粒接触。 当流体动力学或弹性流体动力学润滑的先决条件未满足时,基础油将要在所谓的边界接触条件下寻求支撑,这种支撑因素就需要寻找具有摩擦磨损控制性能的添加剂。因此,基础油和添加剂就被调和在一起生产出符合特定需求的润滑油脂产品,从而减轻预期会产生的边界润滑,该润滑剂就具有油膜强度和边界润滑性能。 2.说说油膜的作用 油膜的强度是除了油膜厚度以外,用以减轻摩擦和控制磨损的重要因素。如上所述,在流体动力学和弹性流体动力润滑中,粘度是影响油膜厚度的关键。当基础油粘度不足以克服金属间表面摩擦时,就需要基础油和添加剂产生化学协同效应,形成表面保护机理。在这些边界条件下,边界润滑也会受到机械表面化学和物理性质以及其它任何环境因素的影响,所以即使在负载较重、温度较高或相对表面速度较低时,油膜强度也会有所提高。 3.无润滑的表面相互作用

高副接触弹流润滑条件下的油膜厚度分析

一高副接触弹流润滑条件下的油膜厚度分析 1 弹流润滑条件下的油膜厚度公式 1)线接触弹流润滑条件下的油膜厚度公式 线接触弹流润滑油膜厚度公式选用Dowson-Higginson 提出的油膜厚度公式【1】 ,其最小油膜 厚度公式为 13 .003.0'13 .043.07.0054.0min )(65.2w E L R u h ηα= (1-1) 式中,h min 为最小油膜厚度,m ;R 是综合曲率半径, 2 11 11R R R + =,其中R 1、R 2为两接触体在接触点处的曲率半径,m ;u 是接触点卷吸速度,2 2 1u u u += ,其中u 1、u 2为两接触体在接触点处的线速度,m/s ;η0是润滑油在大气压下的粘度,Pa ·s ,;α是粘压系数,m 2/N ;E '是综合弹 性模量,)11(2112 2 2 121'E E E μμ-+-=,其中,μ1、μ2为两接触体的泊松比,E 1、E 2为两接触体的 弹性模量,Pa ;L 是接触区域轴向长度,m ;w 是滚动体承受的载荷,N 。 从最小油膜厚度公式可以推导出中心油膜厚度公式为 13 .003.0'13 .043.07.0054.0)(53.3w E L R u h c ηα= (1-2) 最小油膜厚度公式的无量纲形式为 13 .07 .054.0min 65 .2W U G H =(1-3) 式中,min H 为无量纲最小油膜厚度,R h H /min min =;G 为无量纲材料参数,' E G α=;U 为无量纲速度参数,R E u U '0η= ;W 为无量纲载荷参数,RL E w W '= 。 从最小油膜厚度公式可以推导出中心油膜厚度公式的无量纲形式为 13 .07 .054.053.3W U G H c =(1-4) 2)点接触弹流润滑条件下的油膜厚度公式 点接触弹流润滑油膜厚度公式选用Hamrock-Dowson 提出的油膜厚度公式【2】 ,其最小油膜厚 度公式为 )1()(63.368.0073.0117.0'493.049.068.00min k e w E R u h ----=αη (1-5)

新油膜厚度在沥青混合料设计中的应用

新油膜厚度在沥青混合料设计中的应用 摘要:传统设计方法中,沥青混合料的沥青用量采用油膜厚度指标确定,但传统油膜的厚度与混合料的实际油膜厚度有误差。本文提出了新的油膜厚度指标,并进行沥青混合料的配合比设计,对该指标进行了试验检验。 关键词:油膜厚度、新油膜厚度、沥青混合料 1前言 确定沥青混合料中的最佳沥青用量是沥青混合料设计好坏的重要一环,如果沥青用量过大沥青混合料颜色黑亮,施工时易发生推移现象,同时其高温稳定性差。而沥青用量过小,沥青混合料颜色较暗,沥青混合料使用时易开裂老化,同时水稳定性差。传统的设计方法中沥青用量是用油膜厚度这个指标来衡量的,但是传统的油膜厚度的定义中[1],油膜厚度的大小只和胶结材料的用量体积有关,与矿料的颗粒分布情况和混合料的压实情况无关,也就是说沥青混合料设计中,最佳沥青用量的确定不考虑混合料的空隙率和VMA。这种假设与混合料在压实过程中的情况有很大的差别,混合料在压实过程中矿料颗粒之间空隙逐渐减小,包裹矿料颗粒的沥青厚度也会受到影响。所以用油膜厚度来确定最佳沥青用量误差较大,本文针对这种情况,采用新沥青油膜厚度对沥青混合料进行设计。 2 新油膜的概念 新油膜厚度t的定义为沥青混合料矿料的表面穿过油膜到空气的最短距离。并且假设所有矿料颗粒的新油膜是均匀的薄壳,这个薄壳就被称为“新油膜”。 传统油膜在进行建模时假设矿料包裹上油膜厚[2],矿料之间不发生接触,这样的话,每个矿料所包裹的油膜其厚度必然会相同,如矿料的粒径就没有关系了。但实际上沥青混合料的矿料颗粒并不是相互独立互补接触的状态,在沥青混合料的搅拌、运输、摊铺、压实的过程中,时刻在接触,这时,一定会出现两个矿料颗粒间的距离小于最佳油膜厚度的情况,也就是说矿料的油膜出现了重叠部分。 这种情况下,在按照传统油膜的模型就会有误差了[3],实际中的矿料油膜会相互接触的,矿料油膜厚度包括有效厚度和小于油膜厚度。为了避免计算时颗粒粒径太小,表面积计算值过大的情况,对沥青混合料矿料的最小粒径进行限制,因为纯沥青中最大的颗粒约为0.2μm,因此考虑集料的最小尺寸为0.2μm是有意义的。 3 油膜和新油膜区别计算示例 为了对比分析传统油膜和新油膜厚度的区别,现以某沥青路面混合料设计为例进行说明。该道路采用沥青AC-16作为道路上面层。其设计级配如表3-1所示。

相关主题
文本预览
相关文档 最新文档