当前位置:文档之家› 贝叶斯决策例子

贝叶斯决策例子

贝叶斯决策例子
贝叶斯决策例子

贝叶斯决策练习

某石油公司拟在一片估计含油的荒地上钻井。如果钻井,费用为150万,若出油的概率为0.55,收入为800万元;若无油的概率为0.45,此时的收入为0。该公司也可以转让开采权,转让费为160万元,但公司可以不担任何风险。为了避免45%的无油风险,公司考虑通过地震试验来获取更多的信息,地震试验费用需要20万元。已知有油的情况下,地震试验显示油气好的概率为0.8,显示油气不好的概率为0.2;在无油条件下,地震显示油气好的概率为0.15,而显示油气不好的概率为0.85。又当试验表明油气好时,出让开采权的费用将增至400万元,试验表明油气不好时,出让开采权费用降至100万元,问该公司应该如何决策,使其期望收益值为最大。

解:该公司面临两个阶段的决策:第一阶段为要不要做地震试验,第二阶段为在做地震试验条件下,当油气显示分别为好与不好时,是采取钻井策略还是出让开采权。

若用A 1表示有油,A 2表示无油;用B 1表示地震试验显示油气好,B 2表示地震试验显示油气不好。由题意可知:

1211211222()0.55 ()0.45

(|)0.8 (|)0.2(|)0.15 (|)0.85

P A P A P B A P B A P B A P B A ======

由贝叶斯公式计算得到:

11111111212()(|)0.440.44(|)0.867()(|)()(|)0.440.06750.5075

P A P B A P A B P A P B A P A P B A =

===++ 同理,有: 2112220.0675(|)0.1330.5075

0.11(|)0.2230.4925

0.3825(|)0.7770.4925P A B P A B P A B =

=====

该问题对应的决策树图

采用逆序的方法,先计算事件点②③④的期望值:

事件点 期望值

② 800×0.867+0×0.133=693.6(万元)

③ 800×0.223+0×0.777=178.4(万元)

④ 800×0.55+0×0.45=440(万元) 在决策点2,按max[(693.6-150),400]=543.6万元,故选择钻井,删除出让开采权策略; 在决策点3,按max[(178.4-150),100]=100万元,故选择出让开采权,删除钻井策略; 在决策点4,按max[(440-150),160]=290万元,故选择钻井策略。

在事件点①处期望值为:543.6×0.5075+100×0.4925=325.13万元 最后在决策点1,按max[(325.13-20),290]=305.13万元,故选择进行地震试验方案。

故为了使该公司的期望收入为最大的决策是:先进行地震试验,当试验结果为油气显示好时,选择钻井;而油气显示不好时,选择出让开采权,该策略下期望收入为305.13万元。

贝叶斯决策模型与实例分析报告

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下容 贝叶斯决策模型中的组成部分: ) ( ,θ θP S A a及 ∈ ∈。概率分布S P∈ θ θ) (表示决策 者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E,E e∈,无情报试验e0通常包括在集合E之。 一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z∈表示在自然状态θ的条件下,进行e试验后发生z结果

的概率。这一概率分布称为似然分布。 c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。 一个可能的后果集合C,C 每一后果c=c(e,z,a,θ)取决于e,z,a和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。 三、贝叶斯决策的常用方法 3.1层次分析法(AHP) 在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。 3.1.1层次分析模型 最高层:表示解决问题的目的,即层次分析要达到的目标。 中间层:表示为实现目标所涉及的因素,准则和策略等中间层可分为若干子层,如准则层,约束层和策略层等。 最低层:表示事项目标而供选择的各种措施,方案和政策等。 3.1.2层次分析法的基本步骤 (l) 建立层次结构模型 在深入分析研究的问题后,将问题中所包括的因素分为不同层次,如目标层、指标层和措施层等并画出层次结构图表示层次的递阶结构和相邻两层因素的从属关系。 (2) 构造判断矩阵 判断矩阵元素的值表示人们对各因素关于目标的相对重要性的认识。在相邻的两个层次中,高层次为目标,低层次为因素。 (3) 层次单排序及其一致性检验 判断矩阵的特征向量W经过归一化后即为各因素关于目标的相对重要性的排序权值。利用判断矩阵的最大特征根,可求CI和CR值,当CR<0.1时,认为层次单排序的结果有满意的一致性;否则,需要调整判断矩阵的各元素的取值。 (4) 层次总排序 计算某一层次各因素相对上一层次所有因素的相对重要性的排序权值称为层次总排序。由于层次总排序过程是从最高层到最低层逐层进行的,而最高层是总目标,所以,层次总排序也是计算某一层次各因素相对最高层(总目标)的相对重要性的排序权值。 设上一层次A包含m个因素A1,A2,…,A m其层次总排序的权值分别为a1,a2,…,a m;下一层次B包含n个因素B1,B2,…,B n,它们对于因素A j(j=1,2,…,m)的层次单排序权值分别为:b1j,b2j,…,b nj(当B k与A j无联系时,b kj=0),则B层次总排序权值可按下表计算。 层次总排序权值计算表

贝叶斯决策分析文献综述

管理决策分析 贝叶斯决策分析文献综述 单位:数信学院管理07 小组成员:0711200209 王双 0711200215 韦海霞 0711200217 覃慧 完成日期:2010年5月31日

有关贝叶斯决策方法文献综述 0. 引言 决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素 ,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 1.贝叶斯决策分析的思想及步骤 从信息价值的经济效用的角度,讨论贝叶斯公式在风险决策中的应用。首先根据期望值原则,以先验概率为基础,找到最优方案及其期望损益值和风险系数,然后用决策信息修正先验分布,得到状态变量的后验分布,并用后验分布概率计算各方案的期望损益值,找出最满意方案,并计算其风险系数(这里计算的风险系数应比仅有先验条件下计算的风险系数要小),最后求出掌握了全部决策信息值的期望损益值。用全部决策信息值的期望损益值减去没有考虑决策信息时的期望收益,就得到了决策信息的价值。 步骤如下: (1)已知可供选择的方案,方案的各状态概率,及各方案在各状态下的收益值。 (2)计算方案的期望收益值,按照期望收益值选择方案。 (3)计算方案的期望损益标准差和风险系数。运用方案的风险系数来测度其风险度,即得到每个方案每一单位期望收益的离散程度指标。该指标越大,决策风险就越大。期望损益标准差公式: ∑=-= n 12A )()(i i Ai x P EMA CP δ 风险系数: )() (1i i u E u D V =δ (4)利用贝叶斯公式对各种状态的概率进行修正。先算出各个状态下的后验概率,计算掌握了决策信息后的最满意方案的期望收益值和风险系数,最后算出信息的价值。 2. 贝叶斯决策分析的应用领域 2.1 港口规划等问题 港口吞吐量()i s 与其预测出现的现象()j z 为相互独立的事件。事件,i j s z 发生的概率分别是()i P s 、()j P z 。在事件j z 发生的条件下,事件i s 发生的概率为(/)i j P s z 。运用贝叶斯公式进行事件的原因分析和决策。根据贝叶斯定理可求得

贝叶斯公式应用案例

贝叶斯公式应用案例 贝叶斯公式的定义是: 若事件B1 ,B2 , …,Bn 是样本空间Ψ的一个划分, P(B i)>0 (i =1 ,2 , …, n ),A 是任一事件且P(A)>0 , 则有 P(B|A)= P(B j )P(A| B j ) / P(A) (j =1 ,2 , …, n ) 其中, P(A)可由全概率公式得到.即 n P(A)=∑P(B i)P(A|B i) i =1 在我们平时工作中,对于贝叶斯公式的实际运用在零件质量检测中有所体现。 假设某零件的次品率为0.1%,而现有的检测手段灵敏度为95%(即发现零件确实为次品的概率为95%),将好零件误判为次品零件的概率为1%。此时假如对零件进行随机抽样检查,检测结果显示该零件为次品。对我们来说,我们所要求的实际有用的检测结果,应当是仪器在检测次品后显示该零件为次品的几率。 现在让我们用贝叶斯公式分析一下该情况。 假设,A=【检查为次品】,B=【零件为次品】,即我们需要求得的概率为P(B|A) 则实际次品的概率P(B)=0.1%, 已知零件为次品的前提下显示该零件为次品的概率P(A|B)= 95%, P(B)=1-0.001=0.999 所以,P(A)=0.001X0.95+0.999X0.01=0.01094 P(B|A)=P(B)P(A|B)/P(A)=0.1%*95%/0.01094=0.0868 即仪器实际辨别出该次品并且实际显示该零件为次品的概率仅为8.68%。 这个数字看来非常荒谬且不切合实际,因为这样的结果告诉我们现有对于次品零件的检测手段极其不靠谱,误判的概率极大。 仔细分析,主要原因是由于实际零件的次品率很低,即实际送来的零件中绝大部分都是没有质量问题的,也就是说,1000个零件中,只有1个零件是次品,但是在检测中我们可以看到,仪器显示这1000个零件中存在着10.94个次品(1000*0.01094),结果相差了10倍。所以,这就告诉我们,在实际生产制造过程中,当一个零件被检测出是次品后,必须要通过再一次的复检,才能大概率确定该零件为次品。 假设,两次检测的准确率相同,令 A=【零件为次品】B=【第一次检测为次品】C=【第二次检测为次品】 则为了确定零件为次品,我们所需要的是P(A|BC)

贝叶斯决策例题

例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。根据过去的经验,在计划实施工期天气好的可能性为30%。为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。问如何进行决策。 解:采用贝叶斯决策方法。 (1)先验分析 根据已有资料做出决策损益表。 根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8 (2)预验分析 完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)

=1.36(万元) 完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元) 即,完全信息价值大于信息成本,请气象中心进行预报是合算的。 (3)后验分析 ①补充信息:气象中心将提供预报此时期内两种天气状态x 1(好天气)、x 2(坏天气)将会出现哪一种状态。 从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9 ②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。 预报天气好的概率 1111212()()(/)()(/)P x P P x P P x θθθθ=+ =0.31 预报天气坏的概率 2121222()()(/)()(/)P x P P x P P x θθθθ=+ =0.69 预报天气好且天气实际也好的概率:

贝叶斯决策的经典例题练习

一、贝叶斯决策(Bayes decision theory) 【例】某企业设计出一种新产品,有两种方案可供选择:—是进行批量生产,二是出售专利。这种新产品投放市场,估计有3种可能:畅销、中等、滞销,这3种情况发生的可能性依次估计为:0.2,0.5和0.3。方案在各种情况下的利润及期望利润如下表。 企业可以以1000元的成本委托专业市场调查机构调查该产品销售前景。若实际市场状况为畅销,则调查结果为畅销、中等和滞销的概率分别为0.9、0.06和0.04;若实际市场状况为中等,则调查结果为畅销、中等和滞销的概率分别为0.05、0.9和0.05;若实际市场状况为滞销,则调查结果为畅销、中等和滞销的概率分别为0.04、0.06和0.9。问:企业是否委托专业市场调查机构进行调查? 解: 1.验前分析: 记方案d1为批量生产,方案d2为出售专利 E(d1)=0.2*80+0.5*20+0.3*(-5)=24.5(万元) E(d2)=40*0.2+7*0.5+1*0.3=11.8(万元) 记验前分析的最大期望收益为E1,则E1=max{E(d1),E(d2)}=24.5(万元) 因此验前分析后的决策为:批量生产 E1不作市场调查的期望收益 2.预验分析: (1)设调查机构调查的结果畅销、中等、滞销分别用H1、H2、H3表示 由全概率公式 P(H1)=0.9*0.2+0.06*0.5+0.04*0.3=0.232 P(H2)=0.05*0.2+0.9*0.5+0.05*0.3=0.475 P(H3)=0.04*0.2+0.06*0.5+0.9*0.3=0.308 (2)由贝叶斯公式有 P(?1|H1)=0.9*0.2/0.232=0.776 P(?2|H1)=0.06*0.5/0.232=0.129 P(?3|H1)=0.04*0.3/0.232=0.052 P(?1|H2)=0.05*0.2/0.475=0.021 P(?2|H2)=0.9*0.5/0.475=0.947 P(?3|H2)=0.05*0.3/0.475=0.032 P(?1|H3)=0.04*0.2/0.308=0.026 P(?2|H3)=0.06*0.5/0.308=0.097 P(?3|H3)=0.9*0.3/0.308=0.877 (3)用后验分布代替先验分布,计算各方案的期望收益值 a)当市场调查结果为畅销时 E(d1|H1)=80* P(?1|H1)+20* P(?2|H1)+(-5)* P(?3|H1)

贝叶斯决策例子

贝叶斯决策练习 某石油公司拟在一片估计含油的荒地上钻井。如果钻井,费用为150万,若出油的概率为0.55,收入为800万元;若无油的概率为0.45,此时的收入为0。该公司也可以转让开采权,转让费为160万元,但公司可以不担任何风险。为了避免45%的无油风险,公司考虑通过地震试验来获取更多的信息,地震试验费用需要20万元。已知有油的情况下,地震试验显示油气好的概率为0.8,显示油气不好的概率为0.2;在无油条件下,地震显示油气好的概率为0.15,而显示油气不好的概率为0.85。又当试验表明油气好时,出让开采权的费用将增至400万元,试验表明油气不好时,出让开采权费用降至100万元,问该公司应该如何决策,使其期望收益值为最大。

解:该公司面临两个阶段的决策:第一阶段为要不要做地震试验,第二阶段为在做地震试验条件下,当油气显示分别为好与不好时,是采取钻井策略还是出让开采权。 若用A 1表示有油,A 2表示无油;用B 1表示地震试验显示油气好,B 2表示地震试验显示油气不好。由题意可知: 1211211222()0.55 ()0.45 (|)0.8 (|)0.2(|)0.15 (|)0.85 P A P A P B A P B A P B A P B A ====== 由贝叶斯公式计算得到: 11111111212()(|)0.440.44(|)0.867()(|)()(|)0.440.06750.5075 P A P B A P A B P A P B A P A P B A = ===++ 同理,有: 2112220.0675(|)0.1330.5075 0.11(|)0.2230.4925 0.3825(|)0.7770.4925P A B P A B P A B = ===== 该问题对应的决策树图 采用逆序的方法,先计算事件点②③④的期望值: 事件点 期望值 ② 800×0.867+0×0.133=693.6(万元) ③ 800×0.223+0×0.777=178.4(万元) ④ 800×0.55+0×0.45=440(万元) 在决策点2,按max[(693.6-150),400]=543.6万元,故选择钻井,删除出让开采权策略; 在决策点3,按max[(178.4-150),100]=100万元,故选择出让开采权,删除钻井策略; 在决策点4,按max[(440-150),160]=290万元,故选择钻井策略。 在事件点①处期望值为:543.6×0.5075+100×0.4925=325.13万元 最后在决策点1,按max[(325.13-20),290]=305.13万元,故选择进行地震试验方案。 故为了使该公司的期望收入为最大的决策是:先进行地震试验,当试验结果为油气显示好时,选择钻井;而油气显示不好时,选择出让开采权,该策略下期望收入为305.13万元。

贝叶斯分析在风险型决策中的应用

贝叶斯分析在风险型决策中的应用 姓名:王义成 班级:12级数学与应用数学四班 摘要:本文介绍了风险型决策的概念,特点及公式,简述了贝叶斯分析的基本理论,并通过一个具体生活实例,阐明了贝叶斯分析在风险型决策中的应用。 关键词:风险型决策贝叶斯分析期望损失 引言:决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 一、风险型决策 风险决策就是不完全信息下的决策,是根据风险管理的目标,在风险识别和风险衡量的基础上,对各种风险管理方法进行合理的选择和组合,并制定出风险管理的具体方案的过程。风险决策贯穿于整个风险管理过程,它依据对风险和损失的科学分析选择合理的风险处理技术和手段,从若干备选方案中选择一个满意的方案。 风险型决策的特点是:决策人无法确知将来的真实自然状态,但他能给出各种可能出现的自然状态,还可以给出各种状态出现的可能性,即通过设定各种状态的(主观)概率来量化不 确定性。构成一个统计决策有三个基本要素:①可控参数统计结构(Α,Β,{pθ:θ∈Θ}, 其中参数空间中每个元素就是自然界或社会可能处的状态;②行动空间(?,Β?),其中?={a}是为解决某统计决策问题时,人们对自然界(或社会)可能作出的一切行动的全体。?中的每个元素表示一个行动。是?上的某个σ代数,这是为以后扩充概念而假设的;③损失函数L(θ,a),它是定义在Θ×?上的二元函数。从这三个要素出发,可以得到不同的风险情景空间。例如,要开发一种新产品,在市场需求无法准确预测的情况下,要确定生产或不生产,生产多少等问题就是一个风险决策问题。状态集就是市场销售情况,如销路好、销路一般、销路差等,这些状态不受决策者控制,而决策者做出某种决策后,后果也不确定,带有风险。所以,在风险型决策中,准确而又充分地估计信息的价值,合理地在信息的收集上增加投入来获取不断变化的市场信息,及时掌握各种自然状态的发生情况,可以使决策方案的选择更可靠,进而增加经济效益。 二、贝叶斯风险与贝叶斯规则 ⑴风险函数 给定自然状态θ,采取决策规则δ时损失函数L(θ,δ(x)),对随机试验后果x的期望值成为风险函数(risk function),记作R(θ,δ) ⑵贝叶斯风险 当自然状态的先验概率为π(θ),决策人采用策略δ时,风险函数R(δ,θ),关于自然状态θ的期望值称为贝叶斯风险,记作R(π,δ)如果R(π,δ1)< R(π,δ2)则称 记作δ1>δ2 策略δ1优于δ 2, ⑶贝叶斯决策规则 先验分布为π(θ)时,若策略空间?存在某个策略δπ,能够使?δ∈?,有R π,δπ≤ R π,δ ,则称δπ是贝叶斯规则,亦称贝叶斯策略。

浅谈贝叶斯公式及其应用

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现,这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且1n i i B ==Ω ,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1 ()(/) (/),1,2,...,()(/) i i i n j j j P B P A B P B A i n P B P A B == =∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) () (/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1 ()(/) (/),1,2,...,()(/) i i i n j j j P B P A B P B A i n P B P A B == =∑ 结论的证。

贝叶斯决策方法课后习题

1.什么叫贝叶斯决策?如何进行贝叶斯决策? 风险型决策方法是根据预测各种事件可能发生的先验概率,然后再采用期望值标准或最大可能性标准来选择最佳决策方案。这样的决策具有一定的风险性,因为先验概率是根据历史资料或主观判断所确定的概率,未经试验证实,为了减少这种风险,需要较准确的掌握和估计这些先验概率。这就要通过科学实验,调查,统计分析等方法获得较为准确的情报信息,以修正先验概率,并据以确定各方案的期望损益值,拟订可供选择的决策方案,协助决策者做出正确的决策。一般来说,利用贝叶斯定理要求得后验概率,据以进行决策的方法称为贝叶斯决策方法。贝叶斯决策方法步骤: (1)进行预后验分析,决定是否值得搜集补充资料以及从补充资料中可能得到的结果和如何决定最优对策。 (2)收集补充资料,取得条件概率,包括历史概率和逻辑概率,对历史概率要加以检验,辨明其是否适合计算后验概率。 (3)用概率的乘法定理计算联合概率,用概率的加法定理计算边际概率,用贝叶斯定理计算后验概率。 (4)用后验概率进行决策分析。 2.如何进行预后验分析和后验分析? 预后验分析是后验概率决策分析的一种特殊形式的演算,这里的特殊形式是指用一套概率对多种行动策略组合进行多次计算,从中择优。 预后验分析有两种形式,一是扩大型,预后验分析,这实际上是一种反推决策树分析,二是常规型预后验分析,这实际上是一种正向分析,用表格形式进行。扩大型分析要解决的问题是搜集追加信息对决策者有多大的价值,如果试验应采取

什么行动策略,常规型分析要解决的问题是,如果试验应采取什么行动策略,但是这两种分析方法所得出的结论是一致的。 根据预后验分析,如果认为采集信息和进行调查研究是值得的,那么就应该决定去做这项工作。一旦取得了新的信息,决策者就结合这些新信息进行分析,计算各种方案的期望损益值,选择最佳的行动方案,结合运用这些信息并修正先验概率,称为后验分析,这正是发挥贝叶斯决策理论威力的地方。 3.什么是先验分析? 先验分析就是决策者要详细列出各种自然状态及其概率,各种备选行动方案与自然状态的损益值,并根据这些信息对备选方案作出抉择的决策过程,当时间,人力和财力不允许搜集更完备的信息时,决策者往往用这类方法进行决策,在贝叶斯决策中,先验分析是进行更深入分析的必要条件。 4.贝叶斯决策有哪些优点?哪些局限? 贝叶斯决策的优点表现在以下几个方面: (1)如果说在第14章中大多用的是不完善的信息或主观概率的话,那么贝叶斯决策则提供了一个进一步研究的科学方法,也就是说,它能对信息的价值或是否需要采集新的信息作出科学判断。 (2)它能对调查结果的可能性加以数量化的评价,而不是像一般的决策方法那样对调查结果,或者是完全相信,或者是完全不相信。 (3)如果说任何调查结果都不可能是完全准确的,而先验知识或主观概率也不是完全可以相信的,那么贝叶斯决策则巧妙的将这两种信息有机的结合起来了。(4)它可以在决策过程中,根据具体情况不断的使用,使决策逐步完善和更加科学。贝叶斯决策方法也有其局限性,主要表现在以下几个方面:

第十五章贝叶斯决策方法

第十五章 贝叶斯决策方法 一、单项选择题 2、进行贝叶斯决策的必要条件是()。 A 、预后验分析 B 、敏感性分析 C 、完全信息价值分析 D 、先验分析 答:D 二、多项选择题 2、贝叶斯决策的优点有() A 、把调查结果和先验概率相结合 B 、对调查结果给出数量化的评价 C 、可以根据情况多次使用 D 、对不完备的信息或主观概率提供一个进一步研究的科学方法 答:ABCD 三、名词解释 1、贝叶斯决策 答:贝叶斯决策:根据各种事件发生的先验概率进行决策一般具有较大的风险。减少这种风险的办法是通过科学实验、调查、统计分析等方法获得较为准确的情报信息,以修正先验概率。 四、简答题 1、简述n 个事件的贝叶斯定理。 答:n 个事件的贝叶斯定理公式:如果事件n A A A ,,,21 是互斥完备的,其中某个事件的 发生是事件B 发生的必要条件。则 ) /()()/()()/()() /()()/(2211n n i i i A B P A P A B P A P A B P A P A B P A P B A P +++= 五、计算题 1、某工厂的产品每箱的次品率由三种可能:0.02,0.05,0.10,其相应概率分别为0.5,0.3,0.2。今从一箱中有返回地抽取10件,检验后发现这10件中有一件次品,试求三种次品率的后验概率。 答:(1)设三种次品率依次为321,,θθθ,于是5.0)(1=θP ,3.0)(2=θP ,2.0)(3=θP 。设A 表示事件“10件中有一件次品”,要求)/(1A P θ,)/(2 A P θ,)/(3A P θ。 )/(1θA P =02.0*98.09=0.0167 )/(2θA P =05.0*95.09=0.0315 )/(3θA P =10.0*90.09=0.03874 )/()()/()()/()()(332211θθθθθθA P P A P P A P P A P ++==0.02555

贝叶斯决策理论的Matlab实现

第二章 1、简述基于最小错误率的贝叶斯决策理论;并分析在“大数据时代”,使用贝叶斯决策理论需要解决哪些问 题,贝叶斯决策理论有哪些优缺点,贝叶斯决策理论适用条件和范围是什么?举例说明风险最小贝叶斯决策理论的意义。 答:在大数据时代,我们可以获得很多的样本数据,并且是已经标记好的;要使用贝叶斯决策理论最重要的是确定类条件概率密度函数和相关的参数。 优缺点:贝叶斯决策的优点是思路比较简单,大数据的前提下我们可以得到较准确的先验概率, 因此如果确定了类条件概率密度函数,我们便可以很快的知道如何分类,但是在大数据的前提下,类条件概率密度函数的确定不是这么简单,因为参数可能会增多,有时候计算量也是很大的。 适用条件和范围: (1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。 (2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。用这种方法进 行分类时要求两点: 第一,要决策分类的参考总体的类别数是一定的。例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。 第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率 密度函数P(x/Di)是已知的。显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。 说明风险最小贝叶斯决策理论的意义: 那股票举例,现在有A、B两个股票,根据市场行情结合最小错误率的风险选择A股(假设为0.55),而B股(0.45);但是选着A股必须承担着等级为7的风险,B股风险等级仅为4;这时因遵循最 小风险的贝叶斯决策,毕竟如果A股投资的失败带来的经济损失可能获得收益还大。 2、教材中例2.1-2.2的Matlab实现. 2.1:结果:

模式识别实验一(最小贝叶斯决策及ROC曲线)讲解

实验一 一、 实验原理 1. 最小错误率贝叶斯决策规则: 对于两类问题,最小错误率贝叶斯决策有如下判决规则: 1212(|)(|),;P x P x x x ωωωω>∈∈则反之,则。 由于先验概率i (P ω)可以确定,与当前样本x 无关,所以决策规则也可整理成下面的形式: 121212(|)() (),() (|)P x P l x x x P P x ωωωωωω= >∈∈若,则否则。 2. 平均错误率 决策边界把x 轴分割成两个区域,分别称为第一类和第二类的决策区域.样本在中但属于第二类的错误概率和样本在中但属于第一类的错误概率就是出现错误的概率,再考虑到样本自身的分布后就是平均错误率: 212211()(|)()(|)()(|)P()(|)P()t t t t P e P x p x dx P x p x dx p x dx p x dx ωωωωωω∞ -∞ ∞ -∞ =+=+???? 3. 此实验中的判决门限和平均错误率 (1) 判决门限 假设随机脉冲信号f 中0的概率为,高斯噪声信号n 服从,信号叠加时的放大倍数为a ,叠加后的信号为 *s f a n =+。 由最小错误率贝叶斯决策可得:

1122()(|)()(|)P p x P p x ωωωω→→ > 化简计算得:220022(ln(1)ln ) 2a a a p p t μσ+---= (2) 平均错误率 由上述积分式可计算。 二、 实验内容 1、 已知均值和方差,产生高斯噪声信号,计算其统计特性 实验中利用MATLAB 产生均值为0,方差为1的高斯噪声信号,信号统计分布的程序和结果如下: %产生高斯噪声并统计其特性 x=0;%均值为0 y=1;%方差为1 n=normrnd(x,y,[1 1000000]);%产生均值为0,方差为1的高斯噪声 m1=mean(n);%高斯噪声的均值 v1=var(n); %高斯噪声的方差 figure(1) plot(n(1:400)); title('均值为0,方差为1的高斯噪声'); figure(2) hist(n,10000); title('高斯噪声的统计特性'); 得到m1=-4.6534e-005;v1= 0.9971。

贝叶斯决策模型及实例分析(doc 12页)

贝叶斯决策模型及实例分析(doc 12页)

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步

确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下内容 贝叶斯决策模型中的组成部分:)(,θθP S A a 及∈∈。概率分布S P ∈θθ)(表示决策者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E ,E e ∈,无情报试验e0通常包括在集合E 之内。 一个试验结果Z 取决于试验e 的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z ∈表示在自然状态θ的条件下,进行e 试验后发生z 结果的概率。这一概率分布称为似然分布。 一个可能的后果集合C ,C c ∈以及定义在后果集合C 的效用函数u(e,Z,a,θ)。 每一后果c=c(e,z,a,θ)取决于e,z,a 和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可

作业一:贝叶斯决策

1、问题表述: []T l x x x x ,...,,21=是一个用特征向量表示的位置样本, M ωωω,...,,21是预先已知的M 个类,则形成了M 个条件。概率)(x P i ω(后验概率),表示i x ω∈的概率。用概率最大来进行分类是一种无意义的选择,必须采用Bayes 规则和实验数据进行后验概率密度函数的计算和分类。 2、全概率公式和贝叶斯准则 ),...2,1(M i A i =是M 个事件,设每个事件发生的概率为)(i A P ,则有∑==M i i A p 1 1)(; 任意事件B 的概率为: ∑== M i i i A P A B P B P 1 )()|()( (1-1) 其中)|(i A B P 是条件i A 在B 的条件概率。据此有定义: ) (),()|(A P A B P A B P = (1-2) 为A 下B 的全条件概率,其中),(A B P 是两个事件A 、B 的联合概率。式(1-1)就是著名的全概率公式。 由全概率公式(1-1)可以得到全条件概率: ) (),()|(B P B A P B A P = (1-3) 因为),(),(A B P B A P =,则由(1-2)、(1-3)式可以导出著名的Bayes 准则: )()|()()|(B P B A P A P A B P = (1-4) 将Bayes 准则扩展到随机变量、随机向量: ) ()|()()|()()|()()|(x p x y p y p y x p x p x A P A P A x p ==随机向量: 随机变量: ∑ == M i i i A P A x p x p 1 )()|()(全概率: 3、贝叶斯决策的原理: 首先假定一个具有两个类21ωω、的情况,贝叶斯分类规则可以描述为:

贝叶斯决策的例题练习

贝叶斯决策的例题练习公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

一、贝叶斯决策(Bayes decision theory) 【例】某企业设计出一种新产品,有两种方案可供选择:—是进行批量生产,二是出售专利。这种新产品投放市场,估计有3种可能:畅销、中等、滞销,这3种情况发生的可能性依次估计为:,和。方案在各种情况下的利润及期望利润如下表。 企业可以以1000元的成本委托专业市场调查机构调查该产品销售前景。若实际市场状况为畅销,则调查结果为畅销、中等和滞销的概率分别为、和;若实际市场状况为中等,则调查结果为畅销、中等和滞销的概率分别为、和;若实际市场状况为滞销,则调查结果为畅销、中等和滞销的概率分别为、和。问:企业是否委托专业市场调查机构进行调查解: 1.验前分析: 记方案d1为批量生产,方案d2为出售专利 E(d1)=*80+*20+*(-5)=(万元) E(d2)=40*+7*+1*=(万元) 记验前分析的最大期望收益为E1,则E1=max{E(d1),E(d2)}=(万元) 因此验前分析后的决策为:批量生产 E1不作市场调查的期望收益

2.预验分析: (1)设调查机构调查的结果畅销、中等、滞销分别用H1、H2、H3表示由全概率公式 P(H1)=*+*+*= P(H2)=*+*+*= P(H3)=*+*+*= (2)由贝叶斯公式有 P(?1|H1)=*= P(?2|H1)=*= P(?3|H1)=*= P(?1|H2)=*= P(?2|H2)=*= P(?3|H2)=*= P(?1|H3)=*= P(?2|H3)=*= P(?3|H3)=*= (3)用后验分布代替先验分布,计算各方案的期望收益值 a)当市场调查结果为畅销时 E(d1|H1)=80* P(?1|H1)+20* P(?2|H1)+(-5)* P(?3|H1) =80*+20*+(-5)*=(万元) E(d2|H1)=40* P(?1|H1)+7* P(?2|H1)+1* P(?3|H1) =40*+7*+1*=(万元)

第四章 贝叶斯决策分析

第四章 贝叶斯决策分析 前面所讨论过的风险型决策,其基本方法是将状态变量视为随机变量,用先验状态分布表示状态变量的概率分布,用期望值准则计算方案的满意程度。由于先验状态分布与实际情况存在一定误差,为了提高决策质量,需要通过市场调查,收集有关状态变量的补充信息,对先验分布进行修正,用后验状态分布进行决策,这就是本章将要介绍的贝叶斯决策。 第一节 贝叶斯决策的基本方法 一.贝叶斯决策的意义 在管理决策的实际过程中,往往有两种偏向。一是缺乏市场调查,对状态变量概率分布情况的掌握和分析还十分粗略,就匆忙进行决策分析,使得决策结果与市场现实的出入过大,造成决策失误;二是市场调查费用过高,收集的信息没有给企业带来应有的效益。 所以既要充分重视信息对决策的价值,同时也要注意信息自身的价值,少花钱多办事。只有将两者合理的结合起来,才能提高决策分析的科学性和效益性。如何将两者有机的结合也就是贝叶斯决策所要解决的问题。 在讨论贝叶斯决策方法之前,我们先来回顾在概率统计中学过的全概率公式和贝叶斯公式。 1. 离散情况:设有完备事件组{},(j=1,2,……,n ),满足条件θi θj =Ф(i ,j=1,2,…… , n ;i ≠ j ),且∑=n j j 1 θ =Ω,对任一随机事件H ,其全概率公式和贝叶斯公式分别 为 P (H )= ∑=n j j j P H P 1 |) ()(θθ ,()(j P θ > 0) (4-1) P (θi |H )=) ()()(H P P H P i i θθ| = )()() ()(j n j j i i P H P P H P θθθθ∑ =1 || , (i=1,2,。。。 ,n ;P (H )>0) (4-2) 2. 连续情况:设随机变量θ的概率密度为p(θ),则对一随机变量τ,有 h (τ)=? +∞ ∞ -θθθτπd P )()(| (4-3) k (θ| τ)=) () ()(τθθτπh P | =θ θθτπθθτπd P P )()() ()(? ∞ +∞ -|| (h (τ)> 0) (4-4)

决策理论一道习题

决策理论 与方法 P85 12(1)(2) 晨光公司生产的圆珠笔芯成箱批发给商业部门,每500件装成一箱,每箱产品的次品率有三种,即10%,20%,30%,相应的概率分别是0.7,0.2,0.1.出厂前的检验方案有两种,一是整箱产品逐一检验,二是整箱不检验,但必须承担商家更换次品费用,一件次品更换费用平均为0.77元。 (1)该公司应该选择哪一种检验方案? (2)如果整箱产品逐一检验前,允许从每箱中抽取十件产品进行检验,设X=“其中所含次品个数”。试进行抽样贝叶斯决策分析。 解:(1)先进行验前分析。 先验状态变量的概率矩阵为 P =(0.7,0.2,.01)T 由题设给出的条件,方案a 1在各状态的收益值为 Q (a 1,θj )=q 1j =-0.1×500-0×θj =-50,j=1,2,3 方案a 2在各状态的收益值为 Q (a 2,θj )=q 2j =-0.77×500θj =(38.5,77,115.5),j=1,2,3 于是,收益矩阵为 Q =(q ij )2×3=???? ??-115.5-77-38.5-50-50-50 相应的损失矩阵为 R =(r ij )2×3=???? ??65.527000 11.5 方案a 1,a 2,的期望损失值 E [R (a 1,θj )]=∑3 j r 1j P (θj )=-11.5×0.7+0×0.2+0×0.1=8.05 E [R (a 2,)]=∑3 j r 2j P (θj )=0×0.7+27×0.2+65.5×0.1=11.95 因此,验前最满意行动方案a *=a 1,即整箱产品逐一检验。 (2)一箱产品中最多有次品500×30%=150件, 即所抽取的10件产品中所含次品数X =0,1,2,··· ,10 则条件概率P (X =i |θj )=i C 10 i j θ()i j --?101θ

万能的贝叶斯决策——应用总结

万能的贝叶斯决策——应用总结 学完《模式识别》一课之后,收获颇多。说实话,这门课要想学好不简单,但是老师教会我们要掌握方法,不要拘泥于大堆的公式。方法的思想掌握了,遇到问题以后就可以开阔思路,直接拿来用了。课上主要讲了四大块,Beyes 决策,概率密度函数估计,线性判别以及聚类和Fuzzy 模式识别。下面就其中的Beyes 判别一项做一下应用方面的总结,所选材料均来自学校图书馆CNKI 中国学术期刊全文总库。 众所周知,Beyes 公式是统计学里一个非常重要的公式,而Beyes 决策理论方法则是统计模式识别中的一个基本方法。根据Beyes 决策设计的分类器理论上性能最优,经常被用来作为衡量其他分类器优劣的标准。 当然,要想使用Beyes 理论进行决策,还必须满足几个条件:(1)对象的所有特征观察量,我们设为d 维特征空间,记为],,,[21d x x x d =;(2)要决策分类的类别数,我们设为c 类,用i ω来表示,},,,{21c ωωωω =Ω∈;(3)各类别总体的概率分布,即i ω出现的先验概率)(i p ω;(4)类条件概率密度)|(i x p ω。知道以上几个条件以后,给定一个观测值x ,我们就可以根据需要利用相应的Beyes 决策规则把它分到相应的类去。几种决策规则包括:基于最小错误率的Beyes 决策、基于最小风险的Beyes 决策、最小最大决策以及序贯分类方法等。 Beyes 决策理论是模式识别中的一个比较基础的决策方法,应用十分广泛,几乎涉及到了方方面面。 1.医学方面 Beyes 决策在医学方面有非常重要的地位,主要应用在医疗诊断中。比如我们模式识别经典课本中所例举的癌细胞判别的例子。在医疗诊断中,许多疾病的症状比较相似,即使同一种病,病情的严重程度不同,症状更复杂(如:阑尾炎是慢性,急性还是穿孔;胃癌的早期,中期与晚期等),这就给医生的诊断带来了一定的困难。利用Beyes 统计决策就可以很好的解决这一问题。 例如:诊断阑尾炎的例子[1] 设有三种疾病状态:1A 表示慢性阑尾炎,2A 表示急性阑尾炎,3A 表示阑尾炎穿孔,根据以往的统计经验先验概率已知。又设疾病的症状可分为n 类,表示为n B B B ,,,21 。疾病)3,2,1(=i A i 涉及到症状),,2,1(n j B j =的概率为)|(i j A B p 。

相关主题
文本预览
相关文档 最新文档