当前位置:文档之家› 压力容器焊接线能量控制的基本原则

压力容器焊接线能量控制的基本原则

压力容器焊接线能量控制的基本原则
压力容器焊接线能量控制的基本原则

压力容器焊接线能量控制的基本原则

对某些材料的焊接,为保证其焊接质量,除应正确选择焊接方法和焊接材料外,执行焊接工艺的一个共同特点就是控制焊接线能量。

1、不同的材料对焊接线能量控制的目的和要求:

不同的材料对焊接线能量控制的目的和要求不一样。如:

(1)焊接低合金高强钢时,为防止冷裂纹倾向,应限定焊接线能量的最低值;为保证接头冲击性能,应规定焊接线能量的上限值。

(2)焊接低温钢时,为防止因焊缝过热出现粗大的铁素体或粗大的马氏体组织,保证接头的低温冲击性能,焊接线能量应控制为较小值。

(3)焊接奥氏体不锈钢时,为防止合金元素烧损,降低焊接应力,减少熔池在敏化温度区的停留时间,避免晶间腐蚀,应采用较小的焊接线能量。

(4)焊接耐热耐蚀高合金钢时,为减少合金元素烧损,避免焊接熔池过热而形成粗晶组织降低高温塑性和疲劳强度,防止热裂纹,获得较好“等强度”的接头,应采用较小的焊接线能量。

(5)珠光体钢与奥氏体钢异种钢焊接时,应采用较小的线能量以降低熔合比,避免接头珠光体钢一侧产生淬硬组织,防止扩散层。如果珠光体钢淬硬倾向较大,则焊前应预热,预热事实上是提高了焊接热输入。

(6)铝及铝合金焊接时,为防止气孔,应采用大的焊接电流配合较高的焊接速度应是焊接工艺参数的最佳匹配,即采用适中的焊接线能量。

(7)工业纯钛焊接时,为保证接头既不过热,又不产生淬硬组织,应采用小电流、快焊速,即采用较小的焊接线能量。

(8)镍及镍合金焊接时,为防止热裂纹,应采用小线能量。等等。

当设计文件、相关标准提出的性能指标如冲击韧性、耐腐蚀性能等对线能量及其相关的焊接层次、层间温度有严格要求时,应在焊接作业指导书规定焊接线能量、焊接层次(含焊道尺寸)和层间温度的控制要求,施焊中通过对这些参数的记录来检查和证实焊接线能量及其相关的焊接层次、层间温度的要求是否得到满足。

2、焊接线能量的测量方法:

通常焊接线能量采用下列公式进行计算(适用于单电弧焊接方法,针对于每条焊道,并且不考虑累积):

线能量Q=60IV/v (J/mm)

式中:A--焊接电流(A);

V--电弧电压(V);

v--焊接速度(电弧行走速度)(mm/min)。

焊接线能量——熔焊时,由焊接热源输入给单位长度焊缝的能量。

焊接线能量的计算过程如下:

有效热功率:P=η×Po=η×U×I

其中:

Po——电弧功率(J/s)

U——电弧电压(V)

I——焊接电流(A)

η——功率有效系数,焊条电弧焊为0.74~0.87、埋弧焊为0.77~0.90、交流钨极氩弧焊为0.68~0.85、直流钨极氩弧焊为0.78~0.85。无特别说时,取中间值。

当焊接电流、电弧电压最大而焊接速度最小时,线能量最大。反之,线能量最小。可见,直接决定焊接线能量的因素是焊接电流、电弧电压和焊接速度。这里对焊接线能量推荐以下测量方法:

(1)由电流表、电压表读数和测量单位时间熔敷焊道的长度(焊接速度)计算线能量。但该方法对电流表和电压表有精度要求,焊工也不便于直接观察,且焊接电缆过长或电力网络波动都会影响到数据的准确性。

(2)由规定的线能量极限值推算出每根焊条的燃烧时间极限值和每根焊条的熔敷长度极限值。焊接时测量每根焊条的燃烧时间和每根焊条的熔敷长度,检查其是否在极限范围内。这种方法能克服前一种方法的缺点,值得推广。

3、焊接线能量与相关变素的关系:

与焊接线能量有关的变素包括预热温度、层间温度、焊接层次(含焊道尺寸)、焊接电流、电弧电压、焊接速度、电流种类与极性、焊接位置和焊条直径等。直接决定焊接线能量的因素是焊接电流、电弧电压和焊接速度。焊接层数和层厚取决于焊接电流、电弧电压和焊接速度的大小,当认为控制焊接线能量有必要时,焊接作业指导书一般对焊接层数和层厚都应作出规定。

预热温度与焊接线能量的影响是相同的,在保持焊缝和热影响区冷却速度不变的情况下,若提高预热温度,则必须减小焊接线能量。间接影响线能量的因素如:层间温度高了,无形中增加了线能量;焊接位置中以立向上焊的线能量最大;焊条直径大了,自然要增加电流值。

当有冲击性能要求时,除预热温度外,为了减少焊接工艺评定的数量,宜在焊接工艺评定时选择实际焊接中可能出现的最大线能量。最大线能量评定合格

后,实际焊接中选用较小的线能量就无需重新评定。因为线能量增大则韧性较差,评定时按韧性较差的条件以保证焊件焊接时有足够的韧性。

焊接线能量的控制

焊接线能量的控制 对某些材料的焊接,为保证其焊接质量,除应正确选择焊接方法和焊接材料外,执行焊接工艺的一个共同特点就是控制焊接线能量。 1、不同的材料对焊接线能量控制的目的和要求: 不同的材料对焊接线能量控制的目的和要求不一样。如: (1)焊接低合金高强钢时,为防止冷裂纹倾向,应限定焊接线能量的最低值;为保证接头冲击性能,应规定焊接线能量的上限值。 (2)焊接低温钢时,为防止因焊缝过热出现粗大的铁素体或粗大的马氏体组织,保证接头的低温冲击性能,焊接线能量应控制为较小值。 (3)焊接奥氏体不锈钢时,为防止合金元素烧损,降低焊接应力,减少熔池在敏化温度区的停留时间,避免晶间腐蚀,应采用较小的焊接线能量。 (4)焊接耐热耐蚀高合金钢时,为减少合金元素烧损,避免焊接熔池过热而形成粗晶组织降低高温塑性和疲劳强度,防止热裂纹,获得较好“等强度”的接头,应采用较小的焊接线能量。 (5)珠光体钢与奥氏体钢异种钢焊接时,应采用较小的线能量以降低熔合比,避免接头珠光体钢一侧产生淬硬组织,防止扩散层。如果珠光体钢淬硬倾向较大,则焊前应预热,预热事实上是提高了焊接热输入。 (6)铝及铝合金焊接时,为防止气孔,应采用大的焊接电流配合较高的焊接速度应是焊接工艺参数的最佳匹配,即采用适中的焊接线能量。 (7)工业纯钛焊接时,为保证接头既不过热,又不产生淬硬组织,应采用小电流、快焊速,即采用较小的焊接线能量。 (8)镍及镍合金焊接时,为防止热裂纹,应采用小线能量。等等。 本人认为:当设计文件、相关标准提出的性能指标如冲击韧性、耐腐蚀性能等对线能量及其相关的焊接层次、层间温度有严格要求时,应在焊接作业指导书规定焊接线能量、焊接层次(含焊道尺寸)和层间温度的控制要求,施焊中通过对这些参数的记录来检查和证实焊接线能量及其相关的焊接层次、层间温度的要求是否得到满足。 2、焊接线能量的测量方法: 通常焊接线能量采用下列公式进行计算(适用于单电弧焊接方法,针对于每条焊道,并且不考虑累积): 线能量Q=60IV/v (J/mm)

焊接质量控制措施

博易短纤维工程焊接质量控制措施 1、编制说明 本工程中除一般工艺介质外,还有夹套管、热媒管、蒸汽管等特殊管道,因此,本工程焊接管理要针对夹套管、热媒管、蒸汽管制订焊接质量控制措施。 2、编制依据 《工业金属管道工程施工及验收规范》GB50235-97; 《现场设备、工业管道焊接工程施工及验收规范》GB50236-98; 3、焊接材料的理化性能和焊接性能 3.1管道的材质有Q235、20#、1Cr18Ni9Ti等钢。 3.2 Q235 、20#钢属于低碳钢,焊接性能好,一般不需采取特殊的工艺措施即可得到优质的焊接接头,几乎适应各种焊接方法进行焊接。低碳钢综合性能较好,强度、塑性和焊接性能得到较好配合,淬硬倾向小,对裂纹不敏感,焊缝及近缝区不易产生裂纹。 3.3 Cr18Ni9Ti属于奥氏体不锈钢,在常温下具有单相奥氏体组织,耐腐蚀,电阻率大,导热系数小,塑性、韧性及冷压力加工性良好,但强度较低。焊接性能良好,焊接时一般不需要采取特殊的工艺措施;若焊接工艺选择不正确,也会产生晶间腐蚀和热裂纹等缺陷。 防止产生晶间腐蚀的措施:从焊接材料方面,选用超低碳(0.03%)或添加Ti或Nb等稳定元素的不锈钢焊条;从焊接工艺方面,采用小规范减少危险温度范围停留时间,采用小电流、快速焊、短弧焊及不作横向摆动,焊缝可强制冷却,加快焊接接头的冷却速度,减少热影响区,也使其在450~850℃这个危险区停留的时间减少到最大限度。多层焊时要控制层间温度,要前一道焊缝冷却到60℃以下再焊。 热裂纹的防止措施:采用适当的焊接规范和冷却速度。工艺上采用小规

范即小电流、快速焊来减少焊接熔池过热,快速冷却以减少偏析,使抗裂性提高。多层焊时,要控制层间温度,要前一焊道冷却(60℃)后再焊接。 3.5 异种钢的焊接 不同钢号的碳素钢与奥氏体不锈钢之间的焊缝金属应保证抗裂性能和力学性能,采用Cr、Ni含量较奥氏体不锈钢母材高的焊接材料。 4、一般控制措施 4.1 一般规定 4.1.1焊材仓库负责焊材的保管,严格执行《焊材一级库保管规定》。焊接材料必须具有质量证明书和出厂合格证,对焊材质量有怀疑时,必须进行复验。焊条的药皮不得脱落和明显裂纹;焊丝在使用前应清除其表面的油污、锈蚀;TIG焊使用的Ar气纯度应在99.9%以上。 4.1.2焊材烘烤室负责焊材的烘烤和发放,依据《焊材烘烤一览表》的规定进行烘烤与保温,回收的焊条重复烘烤不超过两次。施工中,焊条应存放在保温筒内,随用随取。 4.1.3焊接设备由设材部登记建帐,焊接设备上的仪表,由质检部计量人员定期校核,经鉴定合格证后方可使用。使用过程中,焊接设备上的接线柱应与电缆紧密接触。 4.1.4 焊接环境应符合如下规定: 风速:TIG焊时小于2m/s,手工电弧焊时小于10m/s; 相对湿度小于90%; 4.1.5 管道焊接时应垫牢,不得将管子悬空或处于外力作用下施焊。为提高焊接质量和焊接速度,凡是可以转动的管子都应采用转动焊接,减少仰焊和立焊。在地面预制的管道应及时进行焊缝检验,尽量减少高空作业。 4.1.6压力管道焊缝应认真做好焊接记录。 4.1.7经检查合格的不锈钢焊缝及其影响区,应尽早进行酸洗、钝化处理。

焊接过程控制程序文件

焊接过程控制程序 1目的和使用范围 为了保证焊接施工处于受控状态,确保工程焊接质量,特制定本程序。 本程序适用于公司建筑安装和压力容器、锅炉、压力管道的焊接 施工。 Q/ZS21003-2009 文件控制程序 记录控制程序 人力资源管理程序 施工生产过程控制程序 施工机具装备管理程序 2职责 焊接技术中心是负责焊接控制的归口管理部门,各单位技术部门负责实 施。 3工作程序 焊接工艺流程控制见图 1。 4焊工 4.1凡在公司各工程(车间)施焊的焊工应服从公司的统一管理,焊工合格证“聘用情况” 的“聘用 单位”栏应该公司公章, “法人代表”栏应有法人代表签字或盖章。 4.2焊工上岗前应取得与所焊项目相应的资格。 4.3参加国外引进项目施工的焊工, 还应根据有关文件指定的标准进行考核, 考核合格后上 岗。 4.4各单位焊工管理人员应建立焊工台账,并按时向公司焊接技术中心申请焊工资格考试。 4.5公司焊接技术中心按照有关标准规定进行焊工资格培训考试工作, 并负责按标准规定办 理焊工资格证件。 4.6焊工考试资料由公司档案科归档。 4.7焊工资格失效前1 — 3个月焊工应重新考试。 4.8首次参加考试或参加公司首次选用的焊接方法、钢材、焊接材料考试的焊工,应先参加 培训在进 行考试。 4.9考试合格的焊工只能担任合格项目的范围内的焊接工作。 有技术人员负责安排、 焊接检 验员监督检查。 4.10 焊接技术中心负责建立公司焊工资格台账。 5焊接材料 5.1焊接材料应放在干燥通风良好的仓库内贮存保管。焊材库内控制温度在 5摄氏度以上, Q/ZS21004-2009 Q/ZS20901-2009 Q/ZS20401-2009 Q/ZS20701-2009 焊接施工前准备

焊接过程控制办法

3.0 相关职责 3.1焊接责任人:负责焊工资格的管理;组织实施焊接工艺评定,满足客户产品质量标准,评定 试样的保存;审核产品焊接试板的性能报告;指导焊工正确施焊,批准焊接缺陷的 第一、二次返修;负责焊接过程管理,焊接质量负总责;实施焊接人员的培训,考 核。 3.2工程部:负责焊接项目的工艺评估,并监督实施焊接工艺指导书;编制焊接工艺评定报告。 3.3品质部:负责按照客户要求,对焊接产品进行有效的检验和焊接过程的品质判定;并对焊接 质量进行统计以及统计数据的分析; 3.4认证部:负责按照工艺文件标准,采购符合要求的焊材,母材及焊接气体;并要求供方提供 相应质量报告。 3.5财务部仓库:负责焊材的储存、发放、回收管理;仓库焊材的标识管理。 3.6生产部:负责焊接现场的标识管理,对焊接人员作业质量进行考核;按焊接作业指导书实施 生产,监督执行焊接工艺;负责监督车间对焊接设备、工装、模具的管理; 3.7人力资源部:负责建立焊接相关人员能力评价信息,并对焊接人员资质的有效期监督。组织 与焊接相关的人员培训,建立培训考核档案。 4.0 定义说明 焊接工艺规程(WPS):焊接过程中的一整套工艺程序及其技术规定。内容包括:焊接方法、焊 前准备加工、装配、焊接材料、焊接设备、焊接顺序、焊接操作、焊接 工艺参数以及焊后处理等。 焊接工艺评定(WPQR):为验证所拟定的焊件焊接工艺的正确性而进行的试验过程及结果评价。 焊接工艺评定的一般过程为:拟定焊接工艺指导书、施焊试件和制取试 样、检验试件和试样、测定焊接接头是否具有所要求的使用性能、提出 焊接工艺评定报告对拟定焊接工艺指导书进行评定。 5.0 程序内容 5.1 焊接工艺评定 5.1.1根据客户产品要求,结合相关标准规定,确定焊接工艺评定内容及要求。 5.1.2 焊接工程师编制《预焊接工艺指导书》(PWPS),焊接责任人负责审核。审核通过后由 有资格、经验的焊工施焊,施焊中应详细记录施焊工艺规范参数,填写《施焊记录》。 5.1.3 焊工对焊缝外观质量自检合格后,交焊接检验员检验。 5.1.4焊接检验员按《焊接检验指引》检验合格后,再进行无损检测(需要时)、机械性能试验, 按要求对各项指标进行检测。 5.1.5 焊接工程师收集各项记录和检验报告,修订《预焊接工艺规程》(PWPS),由焊接责任 人联系外部有资质的机构进行;《焊接工艺评定》(WPQR)。 5.1.6如果一次评定不合格,应分析原因制订新的工艺规范参数,重新进行焊接工艺评定试验。 5.1.7通过的焊接工艺评定,第三方将提供《焊接工艺评定报告》,由DCC存档。 5.2 焊接技术规程编制原则、依据 5.2.1《焊接工艺规程》是产品施焊时必须遵循的工艺文件,《焊接工艺规程》编制的依据是 已批准的《焊接工艺评定报告》(WPQR),产品图纸、技术条件及技术协议提出的有 关内容。

大线能量焊接

Materials Science Forum Vols. 783-786 (2014) pp 1046-1052 ? (2014) Trans Tech Publications, Switzerland doi:10.4028/https://www.doczj.com/doc/647674935.html,/MSF.783-786.1046
Research and development of a yield strength 400 MPa class structural steel plate with enhanced weldability Yu Zhang*, Xiaobao Li, Xin Pan
(Institute of Research of Iron and Steel, Shasteel, Jinfeng, Zhangjiagang, Jiangsu, 215625, China) *Corresponding author: zhangyu02@https://www.doczj.com/doc/647674935.html, Keywords: Structural steel plate, high heat input welding, heat-affected zone, intra-granular nucleated ferrite, impact property;
Abstract: A 400 MPa yield strength structural steel plate with enhanced weldability was produced by using advanced steel making technology and thermo-mechanical controlled processing technique. A microstructure consisting of acicular ferrite (3~8 ?m) and polygonal ferrite was observed in the rolled plate, which exhibits a yield strength ≥ 420 MPa, tensile strength ≥ 560 MPa, elongation ≥ 26 % and charpy impact toughness ≥ 300 J at -40 °C. Three-wire flux copper backing submerged arc welding with heat input of 230 kJ/cm was applied to butt weld the 36 mm thick plate, and defect-free joint with satisfactory mechanical properties were produced. The coarse grain heat affected zone (CGHAZ) contains mostly intra-granular nucleated ferrite plus a few grain boundary ferrite and ferrite side plate, and shows charpy impact toughness ≥ 90 J at -40 °C. The enhancement impact toughness of CGHAZ resultant from high heat input welding is due to improvement of intra-granular ferrite formation induced by Ca and Ti containing oxides and sulphides. 1. Introduction Steels with yield strength over 400 MPs are getting increased application for shipbuilding and offshore platform construction for increasing capacity [1-3]. Welding heat input for on-site fabrication is strictly controlled below 50 kJ/cm for ensuring low temperature impact property of the weld joint. For conventional steel grades, the impact property of the heat affected zone (HAZ) will deteriorate with increasing heat input due to the formation of brittle bainitic structure [4-7]. Welding methods with high heat input of 80~200 kJ/cm, such as electro-gas welding and multi-wire submerged arc welding which enable one-pass welding of 40 mm thick plate, were employed by the industry for improving construction efficiency and cost reduction [8-10]. It is obvious that the lack of high quality steel plate limits the efficiency improvement of shipbuilding. There are some activities aiming to develop the steel plate with enhanced weldability, and some promising results were reported [11-13]. However most of them are laboratory trial results and lack of verification of mill facilities. In this paper, microstrucrtural characteristics, mechanical property and weldability of a 400 MPa yield strength class steel plate produced by industrial mill facilities were reported. 2. Experimental procedure 2.1 Industrial production of the steel plate The alloy design is basically low carbon and low carbon equivalent type. Steel-making is conducted on a 180t converter-ladle fining-RH, and finally continuous casted into a with a thickness of 220 mm, and the measured composition includes 0.05%C, 0.15%Si, 1.45%Mn, 0.006%P, 0.004%S, 0.001%B, and minor Ti and Ca.
All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP, https://www.doczj.com/doc/647674935.html,. (ID: 112.25.149.196-25/04/14,11:07:47)

PE管热熔焊接技术的施工出现质量问题及控制措施

浅谈聚乙烯PE管热熔焊接施工质量问题及控制措施 摘要:聚乙烯PE管热熔焊接施工符合国家节能减排,低碳化规定,能较好控制施工环境。并对聚乙烯PE管热熔焊接施工中出现质量问题,产生原因进行分析,提出质量控制措施。 一、概述 PE管是建设部“十一.五”推广应用的一种新型材料,也是国际上推崇的绿色建材。目前,国内一些厂家的聚乙烯管材、管件等生产设备和制造技术基本达到国际先进水平,国家制订了燃气、给水等埋地式聚乙烯管材、管件标准和施工规范,从而使聚乙烯PE 燃气管道在市政燃气工程中的大规模应用确立了理论依据, 聚乙烯PE管燃气管道施工得到了迅速发展。 二、聚乙烯PE管施工要点 1.聚乙烯PE燃气管对管沟的要求:其开挖宽度和工作坑尺寸,应根据现场实际情况和管道敷设方法确定。也可按公式确定:单管沟边连接b=DN+0.3,双管同沟连接 b=DN 1+DN 2 +S+0.3(S为两管之间设计净距)。沟底连接时,其宽度应加大。 在湿陷性黄土地区,不宜在雨季施工,或在施工时切实做好排水工作,排除沟内积水。开挖时应在槽底预留30~60mm厚土层进行压实处理。沟底遇有垃圾等杂物时必须清除,并应铺一层厚度不小于15mm的砂土或素土,整平压实至设计标高,对软土基及特殊腐蚀土壤,应按设计要求处理。管道下沟前按设计图纸检查灰土等地基处理层的标高,并清除沟底的一切杂物,管道下沟采用人工下管,下沟时应防止划伤、扭曲或过强的拉伸及弯曲,严禁用金属绳捆绑吊装。 2.施焊的焊工必须持有省质量技术监督局颁发的《锅炉压力容器焊工合格证》且施焊项目与证书规定项目相一致。 3.焊接前先试焊,按照焊接设备性能、管材生产厂家提供的参数,结合规范规定调整加热温度、焊接加热时间、拖动压力、保压时间、冷却时间等焊接参数,制定出合格焊缝的环高、环宽、环缝高标准,正式焊接按《PE管焊接作业指导书》进行正式焊接。 4.聚乙烯PE燃气管连接方式采用热熔对接焊连接,焊机为热熔对接焊机,聚乙烯PE燃气管焊接后,对焊口进行100%的外观检查及10%的焊口切除检验。 5.聚乙烯PE燃气管对接前,两管端各伸出夹具一定长度25~30mm,并校直两对应的连接件,使其处于同一轴线。 6.检查焊机各部分电源线及其它线路连接是否正常。 7.按要求接通加热板、铣削装置、液压系统的电源等。 8.根据所施工的管材规格选用恰当的夹具、设置好机架位置。 9.将两端已清理合格的管材用夹具固定在机架上,注意做到两端面相距在100mm左右,检查夹具使管口错边量小于壁厚的10%,并用棉布擦净管连接端头。 10.测出每根焊接管子的拖动压力并记录。 11.用双面铣刀铣削焊口两端面,完全清除管端氧化层,使其待连接端面吻合,且在同一轴线上。 12.查取相应管材的焊接参数并记录,同时计算出熔接压力,熔接压力=标准焊接压力(理论参数)+拖动压力。 13.将热板加热温度设置在210℃±10℃进行加热,将达到温度要求的加热板置于机

焊接作业管理程序

焊接作业管理程序 (版本:1)

目录 前言 1范围 2 职责 3 程序 3.1 作业流程 3.2 文件准备 3.3 作业人员控制 3.4 焊材控制 3.4.1 焊材的采购 3.4.2 焊材的储存 3.4.3 焊材的烘干 3.4.4 焊材的发放和领用 3.5 母材控制 3.6 设备控制 3.7 安全环境控制 3.8 工艺质量控制 3.9 焊接质量检验、验收 4 过程指导和监测 5 记录

6 相关文件

前言 为了对宁海国华电厂二期项目的焊接材料、焊接过程及焊接的安全进行有效管理,明确各单位各部门的职责,特制定本程序。 本程序起草人:张家刚 本程序会审人: 本程序审核人: 本程序批准人: 本程序于2007年1月1日发布,自发布之日起实施。 本程序由浙江火电宁海电厂二期项目工程部负责解释。

1 范围 本程序规定了焊接作业文件、焊接人员、焊接材料、作业环境及设备管理等的基本要求,适用于宁海国华电厂#5机1000MW工程项目的焊接施工和管理。 2 职责 2.1 焊接技术人员负责编制焊接工艺卡、作业指导书等焊接文件,并制订相应的作业风险控制计划(RCP)。 2.2 项目质量控制部是焊接管理工作具体实施的监督部门,并负责: 2.2.1 编制焊接质检计划和实施计划,负责焊接质量的全过程控制及相关质量措施的实施; 2.2.2 参与焊接技术措施的审定,深入工程实际监督有关技术措施的实施,及时制止违章作业并及时报告有关部门; 2.2.3 确定受检焊缝或检验部位,签发焊口日检通知单,记录并监督检验质量,负责工程质量统计; 2.2.4 掌握焊工技能状况,检查焊工合格证,对违章作业或作业质量不稳定的焊工有权停止其焊接工作。检查热处理工合格证; 2.2.5 组织焊接质量外观检验和最终质量验收。 2.3 焊接与检测工程公司负责焊接工艺评定、焊工的培训、考试、发证及证件管理,并负责现场无损检测及金属试验工作。 2.4 人力资源部负责热处理人员的组织培训、焊工资质审查、证件管理。 2.5 施工单位负责焊接、热处理的现场实施,组织焊工上岗前的考试,并对焊接、热处理设备进行日常维护和保养。 2.6 安全保卫部门负责组织配置现场消防设备和安全标志,组织现场安全检查、监督。 2.7 经理工作部负责组织焊接、热处理、无损检测人员的定期健康检查和健康档案管理。 3程序 3.1 作业流程 3.1.1 焊接作业应执行《ZHDB 308001 施工过程控制程序》中的有关要求。 3.1.2 焊接作业控制流程见图1。

焊接线能量的范围与计算方法

焊接线能量的范围与计算方法 q = IU/υ式中:I电弧电压V υ线能量 J/cm 例如,板厚12mm,进行双面开Ⅰ形坡口埋弧焊,焊丝 ф4mm,I=650A,U=38V,υ=0、9cm/s。,则焊接线能量q为: q= IU/υ=65038/0、9 =27444 J/cm 线能量综合了焊接电流、电弧电压和焊接速度三大焊接工艺参数对焊接热循环的影响。线能量增大时,热影响区的宽度增大,加热到高温的区域增宽,在高温的停留时间增长,同时冷却速度减慢,决定焊接线能量的主要参数就是焊接速度,焊接电流,和电弧电压,所以从这个意义上讲,只要你确定了合理的焊接规范参数,就已经确定了合理的焊接线能量,所以并没有一个专门的定量的的焊接线能量的测定,除非有特别要求,工程技术上也不可能给一个线能量的具体数值来控制,而是由焊接规范控制的,不过焊接线能量可以通过电流和电压和焊速来计算。但是没一种焊接方法,还有根据实际应用情况线能量都不同,所以这种计算必要性不大,只要你利用合理的焊接规范,一般就没什么问题个人认为理论上应该乘以热效率系数,但是从工程上来说这些都不是实用的东西焊接线能量熔焊时,由焊接热源输入给单位长度焊缝的能量。焊接线能量的计算过程如下:有效热功率:P=ηPo=ηUI其中:Po电弧功率(J/s)U电弧电压(V)I焊接电流(A)η 功率有效系数,焊条电弧焊为0、74~0、

87、埋弧焊为0、77~0、 90、交流钨极氩弧焊为0、68~0、 85、直流钨极氩弧焊为0、78~0、85。无特别说明时,取中间值。焊接线能量:E=P/v其中:v焊接速度(cm/min)列: Q345E板焊接线能量经验数值小于等于39J/cm。当今,他们在计算熔焊热输入时,不管电极是摆动还是不摆动,都使用同一公式,这是不适宜的。在摆动焊时,焊道宽、焊速慢,用传统公式计算出的线能量就会比实际值大。建议在计算摆动焊接的线能量时添加折减系数;或者,重新定义热输入。

钢箱梁工地焊接质量控制措施

钢箱梁焊接质量控制措施 1、编制依据 1.1 设计文件 《桥梁工程设计说明及图纸》 设计交底及图纸会审记录。 1.2 有关规范及标准 《公路工程技术标准》(JTG B01-2003) 《公路桥涵设计通用规范》(JTG D60-2004) 《公路桥涵施工技术规范》(JTG/T F50-2011) 2、编制范围 本方案针对XXX桥梁工程—主桥钢箱梁焊接工程编制。 3、工程概况 XXX为跨径35m+4x50m+35m的拱结构支撑的钢连续箱梁桥。 4、工作内容 钢箱梁工地焊接主要包括梁段环缝对接、梁段纵缝对接、嵌补段对接。梁段环缝对接系指顶板、底板、腹板横向对接焊缝。纵缝焊接和环缝焊接完成后,再进行结构嵌补段焊接,有U形肋嵌补段、球扁钢嵌补段、T型肋补段、I型钢补段等。还有加劲板、封板等焊接。 5、焊接工艺评定 正式施工前,根据本桥设计图纸和有关规定,编制《焊接工艺评定方案》及《焊接工艺任务书》,模拟实际施工条件,逐项进行焊接工艺评定。 图1 焊接工艺评定流程图 6、主桥钢箱梁焊接工程技术要求

(1)加工单位对其首次采用的钢材、焊接材料、焊接接头形式、焊接方法等应进行焊接工艺评定,并根据评定报告确定焊接工艺作为指导生产性文件,并报监理工程师认可; (2)对焊缝集中、刚性较强节点编制焊接程序,将焊接应力降到最低限度; (3)焊条使用前需经350°C~400°C烘焙二小时,焊剂使用前须经250°C左右烘焙二小时,然后存放在恒温箱中,施焊时焊条、焊剂应放在焊条保温筒中,防止受潮; (4)施焊前,焊工应复查焊件接头质量和焊区的处理情况,当不符合要求时,应经修整合格后方可施焊; (5)焊接时,焊工遵守焊接工艺,不得自由施工及在焊道外的母材上引弧; (6)焊接应采用双数焊工从中间逐渐向外,左右进行,以保证构件自由收缩; (7)多道多层焊应连续施工,每层焊道焊毕后应及时清理检查,清除缺陷后再焊;多层焊起落点相互错开,角焊缝转角处要连续施焊; (8)埋弧自动焊在所有对接焊缝的两端设置引弧和熄弧板,引弧板的坡口形式、材料与工件相同;埋弧自动焊在施工过程中不应断弧,如发生断弧应按照规定将停弧处刨成1:5的坡度后,再继续搭接50mm进行施焊,焊接应搭接圆润一致; (9)焊缝出现裂纹时,焊工不得擅自处理,应查明原因确定修补工艺后方可进行处理。焊缝同一位置不得出现二次以上返修,超过二次时,应按返修工艺进行; (10)本桥焊缝等级分类: 一级焊缝:除二级焊缝之外的焊缝(采用等强度焊接)。 二级焊缝:飘带部分焊缝、横隔板和加劲板可以采用二级焊缝(但支座附近和拱梁结合区附近的横隔板、加劲肋的焊缝采用一级焊缝); (11)焊缝的检查:焊缝的外形尺寸、质量等级及缺陷分级应符合现行的有关国家规范、规程、质检标准的有关规定;对一级焊缝超声波探伤有疑问的部分用X射线复查,射线探伤、焊缝质量按有关国家规范、规程、质检标准的有关规定执行;二级焊缝进行磁粉探伤及检查,凡出现缺陷磁粉迹痕均作返修处理。 7、钢箱梁焊接的管理措施 7.1焊接人员培训

焊接控制程序

焊接控制程序 1 范围 本程序明确了压力容器现场组焊工程的焊接工艺评定、焊工、焊接材料、焊接设备、焊接管理、焊缝返修、产品焊接检查试板等工作程序、职责、权限的一般规定。 本程序适用于FCC所从事的压力容器现场组焊的焊接过程控制。 2引用文件 FCC/QM02-2005《压力容器质量保证手册》 FCC/VP02-2005 《文件和资料控制程序》 FCC/VP03-2005《材料控制程序》 FCC/VP16-2005《质量记录控制程序》 FCC/QG05.10-2005《焊工考试管理规定》 3职责 3.1 本程序由技术处主办,质量处、人力资源处等有关处室协办。 3.2 设备安装工程公司及项目经理部负责本单位(项目)的焊工管理和焊接过程管理。 3.3压力容器现场组焊的焊接控制由项目焊接责任工程师负责。 4 管理内容 4.1 焊接工艺评定 4.1.1 项目焊接责任工程师进行专业审图后,根据《钢制压力容器焊接规程》(JB/T4709)的要求,查阅FCC压力容器用《焊接工艺评定汇编》,编写压力容器焊接施工技术文件中的“焊接工艺卡”,报项目质保工程师审批后执行。FCC《焊接工艺评定汇编》中未列入的新材料的焊接工艺评定,应向FCC技术处办理焊接工艺评定开发申请,FCC焊接责任工程师审核后向焊接培训站办理焊接工艺评定委托。 4.1.2 焊接培训站的焊接工程师根据《焊接工艺评定申请委托书》编制“焊接工艺指导书”(WPS),进行焊接工艺评定,并负责将评定后的“焊接工艺评定报告”(PQR)连同试件及焊材的质量证明书、焊接记录、热处理记录、无损检测报告和理化试验报告等汇编成册,经FCC焊接责任工程师审核后,报FCC压力容器质保工程师批准。 4.1.3 经批准的PQR原件由FCC技术处存档保管,经PQR验证合格的WPS在FCC范围内通用,改变附加因素而增加的试验数据,可对PQR进行补充,但需按上述4.1.2条重新审批。 4.1.4 FCC技术处每年根据经批准的PQR发布FCC《焊接工艺评定汇编》增补文件,项目焊接责任工程师根据《焊接工艺评定汇编》选择压力容器现场组焊所需的焊接工艺评定。 4.2 焊工管理 4.2.1从事压力容器主体、受压部件焊接的焊工必须按《锅炉压力容器压力管道焊工考试与管理规则》的规定考试合格,取得和施焊位置相应的焊接资格后才能从事相应位置的焊接

焊接收缩量计算

焊接收缩量计算 焊接变形收缩是复杂的,计算公式也是近似的。 对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。 除其它因素,变形大小与焊缝的充填金属量、输入热量成正比。所以同一板厚的对接焊缝横向收缩大小依次为: 单V,x,单U,双U。多道焊时,每道焊缝所产生的横向收缩量逐层递减。 T形接头、搭接接头的横向收缩量,随焊角高K的增加而增大,随板厚s增加而降低。单V对接焊缝横向收缩近似值及公式: y = 1.01*e^:0.0464x: y,收缩近似值 e,2.718282 x, 板厚 双V对接焊缝横向收缩近似值及公式: y = 0.908*e^:0.0467x : y,收缩近似值 e,2.718282 x, 板厚

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 财务管理工作总结 [财务管理工作总结]2009年上半年,我们驻厂财会组在公司计财部的正确领导下,在厂各部门的大力配合下,全组人员尽“参与、监督、服务”职能,以实现企业生产经营目标为核心,以成本管理为重点,全面落实预算管理,加强会计基础工作,充分发挥财务管理在企业管理中的核心作用,较好地完成了各项工作任务,财务管理水平有了大幅度的提高,财务管理工作总结。现将二00九年上半年财务工作开 展情况汇报如下: 一、主要指标完成情况: 1、产量90万吨,实现利润1000万元 ,按外销口径, 2、工序成本降低任务: 上半年工序成本累计超支1120万元,,受产量影响,。 二、开展以下几方面工作: 1、加强思想政治学习,用学习指导工作 2009年是转变之年,财务的工作重心由核算向管理转变,全面参与生产经营决策。对财会组来说,工作重心从确认、核算、报表向预测、控制、分析等管理职能转变,我们就要不断的加强政治学习,用学习指导工作,因此我们组织全组认真学习“十七大”、学习2009年马总的《财务报告》,在学习实践科学发展观活动中,反思过去,制定了2009年工作目标,使我们工作明确了方向,心里也就有了底,干 起活来也就随心应手。 5

施工质量工程关键点质量控制措施

施工质量工程关键点质量控制措施

专业建筑资料上传,需要的直接收藏 专业建筑资料 中国水利水电第十三工程局有限公司勤劳的员工为您提供!

关键点质量控制措施 一、本工程关键点的范围: 1、地基与基础 1)轴线定位、标高 2)边坡支护 3)基础砼浇筑 4)基础回填土方 5)密实度检测 2、主体工程 1)柱、梁、板、墙、楼梯砼工程 2)配合比试配送检3)楼层标高轴线 4)现场砂浆搅拌计量及试块制作5)承重墙砌体与砼结合部位的尺寸、标高 6)商品砼坍落度抽查及试块制作 7)钢材复试取样 8)砼钢筋保护层 3、建筑装修 1)楼地面砼配合比 2)楼地面砼 3)施工安全防护4)饰面工程承重结构节点 5)厨卫间地面防水 6)厨卫间堵洞 4、建筑屋面 1)出水管堵洞 2)屋面找平层 3)屋面防水施工工艺 4)泛水高度 5)淋(闭)水试验 5、给排水、采暖及消防

1)给水管消毒冲洗 2)系统试压 3)下水管连接、坡度 4)下水管通球试验 5)暖气系统试压 6)阀门严密性试验 7)室外下水管道安装 8)灌水试验 6、建筑电气 1)预埋管砼浇筑 2)接地装置施工 3)等电位施工 4)配电箱、变配电设备安装调试 5)材料检查 6)桥架、母线安装、电缆敷设 二、关键点质量控制方法及措施 1、关键点质量控制的方法 在进行工程质量控制时必须坚持一条原则、二项重点、三个阶段、四种手段。 1)一条原则: 工程质量控制是整个监理工作的核心,与进度和投资相互制约,出现矛盾时,必须坚持质量第一的原则;监理机构监督施工单位履行施工合同和国务院的《建设工程质量管理条例》;按建设部《工程建设标准强制性条文》、技术规范和设计文件要求施工。2)二项重点: 重要的、关键的分部工程、分项工程,如地基工程、主体结构和装饰工程;重要的分项工程,如独立基础、钢筋、混凝土、屋面防水、设备基础及预埋、避雷针及接地装置、设备试运转等。关键部位:梁柱节点、箍筋加密区、钢筋焊接、搭接、独立柱混凝土浇筑

焊接控制程序

(1)目的 为了对叉车制造中的焊接进行控制并对叉车制造的焊接材料进行控制和管理,焊接工艺评定及焊接工艺的编制、审批,焊工资格及证书的管理、焊工标记、制造焊接试板、焊接设备、施焊程控和记录,焊缝返修等质量活动作出规定,以保证叉车制造的焊接质量始终处于受控状态。 (2)范围 本程序适用于叉车制造的焊接质量控制。 (3) 定义 无 (4) 权责 4-1 焊接责任工程师负责焊接系统的管理和焊接质量活动的控制,负责组织处理焊接技术与质量问题,审核焊接性能试验、工艺评定指导书和报告,审批叉车制造焊接工艺、焊接工艺评定指导书及焊接接头一、二次返修工艺,确认制造试板力学性能结果并在报告上签字。 4-2 焊接工艺员负责编写焊接性能试验和焊接工艺评定指导书,负责编写焊接工艺和焊接接头一、二次返修工艺。 4-3 车间技术人员负责焊工施焊过程中的质量管理,对工艺纪律的执行情况、焊接材料的使用和焊接设备的维护实施监督。 4-4 焊接试验员负责焊接性能试验、焊接工艺评定和焊材复验,负责焊工培训、考试的指导,负责收集每月焊工的工作实绩并归档。 4-5 质保工程师负责审批叉车制造焊接工艺。 4-6 公司技术负责人负责审批焊接性能试验报告、焊接工艺评定报告和焊接接头超次返修工艺。 (5) 作业程序 5-1 焊接材料

5-1-1 供方的选择 按《采购及材料控制程序》的规定执行。根据焊接工艺试验结果和施焊经 验,选择焊材质量稳定、社会信誉好、服务优良的供方。 5-1-2 计划与订货 由采购部门依据焊接工艺要求的牌号和规格提出焊材订货计划,经材料责任 工程师审核,主管领导审批,采购部门负责订货。 5-1-3 验收与复验 5-1-3-1 焊接材料(焊条、焊丝、焊剂、气体)应符合国家或行业标准的规定,有制造厂的质量证明书和清晰牢固的标记,质量证明书上的力学性能和 化学成份指针应齐全符合上述相应标准的规定,焊材到货后由材料检验 员检验验收,不需复验的焊材检查合格后由材料检验员负责编号填写焊 材检查记录,并下达合格材料入库通知单,由材料保管员办理入库手续。5-1-3-2 需要复验的焊材到货验收合格后,由采购部门负责委托焊接试验和复验,焊接责任工程师负责签发复验报告,由材料责任工程师审核合格后交材 料检验员确认,由材料检验员下达合格材料通知单,由材料保管员办理 入库手续。 5-1-3-3 经验收或复验不合格的焊材,由采购部门按《不合格品控制程序》的规定作退货或更换处置。 5-1-4 焊材保管、烘干与发放 5-1-4-1 焊材分一、二级库管理,一级库负责焊材的保管与储存,由焊材烘材料保管员负责管理。焊材应按牌号、类别、规格等分别存放,并按类别、批 号设置标牌,焊材距地面和墙壁的距离均不得小于300mm,焊材库内应装 设去湿设备,保持室内相对湿度不超过60%。 5-1-4-2 二级焊材库负责焊材的烘烤、保温、发放、回收,由焊材烘干室管理员负责管理。焊材烘干室管理员应掌握各类焊条的性能和使用要求,明确烘干 的工艺规范,严格按要求进行操作,并做好二级保管焊材的环境条件和发

焊接质量保证措施

焊接质量保证措施 焊接质量保证措施 1.1. 目的 为了提高天生港电厂技改工程的焊接质量,鼓励和激发广大焊接人员的工作积极性,确保受监焊口的一次合格率在95%以上。 1.2. 适用范围 南通天电技改工程(2*330MW机组)焊接物资、焊接施工、焊接质检所涉及各项目的管理。 1.3. 相关文件 1.3.1. 国家及电力系统行业管理的有关政策、法令、条例、标准; 1.3. 2. 电力系统的规程、规范和规则; 1.3.3. DL647-1998电力工业锅炉压力容器检验规程; 1.3.4. DL5031-94电力建设施工验收技术规范(管道篇); 1.3.5. DL5048-95电力建设施工验收技术规范(管道焊

缝超声波篇); 1.3.6. DLT5069-1996电力建设施工验收技术规范(钢制承压管道对接焊缝射线检验篇); 1.3.7. DL5007-92电力建设施工验收规范(火力发电厂焊接篇); 1.3.8. 火电施工质量检验及评定标准(焊接篇); 1.3.9. 电力工业电力金相导则; 1.3.10. 焊工和无损检测人员的考试规程、规则; 1.3.11. 焊工技术考核规程; 1.3.1 2. 劳动部颁布:锅炉压力容器焊工考试规则; 1.3.13. 电力部颁布:电力工业无损检测人员资格考试规则; 1.3.14. 劳动部颁布:锅炉压力容器焊工考试规则; 1.3.15. 制造厂提供的设备合格证,出厂试验记录和质量保证书; 1.4. 焊接工艺评定管理 执行公司焊接工艺评定控制,焊接工艺评定管理工作由公司所属焊培中心负责实施,由南通分公司焊接施工项目技术人员根据工程焊接情况和要求(规格、材质)提出申请,由焊接专业出具由公司总工批准能够覆盖整个工程焊接的工艺 评定一览表,作为南通天电工程,焊接专业编制焊接工艺卡的依据及指导性文件来执行。

焊接管理程序.doc

MSOP-00-14 焊接过程控制程序 1、目的 通过对焊接过程的管理,使工程的焊接质量满足要求,保障焊接作业人员健康,减少环境影响。 2、范围 本程序适用于公司建筑、安装工程施工及加工制作中的焊接过程管理工作。 3、职责 3、 1 公司检测中心负责公司焊接过程管理及焊工培训取证工作,宏观掌握各项目部的焊接管理信息, 指导和协调各项目部检测中心的焊接管理工作。 3、 2 项目部检测中心负责本项目部的焊接过程管理及焊工培训工作。 机械部负责焊接设备的监督管理工作。 人力资源部负责全公司焊接人员的外委培训管理工作,并协助检测中心搞好焊工的内部培训管理。 工程处具体负责本单位焊接及热处理人员、设备、材料、技术、质量和施工的日常管理工作,并负责中 级焊工的培训工作。 4程序 4 .1 焊接技术管理 工程施工前,由项目部检测中心焊接专工组织编制焊接施工专业组织设计,编制要求见 MSP—00— 01《质量策划控制程序》。 专业工程处焊接技术人员根据《焊接施工专业组织设计》中的焊接作业指导书编制计划,编写本单位焊 接作业指导书,编制要求参见MSOP— 00— 03《作业指导书编写管理程序》。 在项目开工前,检测中心根据工程的需要及公司现有焊接工艺评定情况,确定焊接工艺评定任务,组织进行焊接工艺评定工作,并将工艺评定文件报分管副总审批。工艺评定文件及工艺评定试验报告原件由 公司检测中心保存。 根据焊接工艺评定文件,由检测中心专工编制焊接工艺规程,经分管副总批准后,印刷发放至相关人员, 并作为工程处技术人员编制焊接作业指导书的依据。 工程处分管焊接的技术人员,根据施工图纸编制主要焊接工程一览表,绘制主要焊接工程施工技术记录 图,报项目部检测中心审核、项目部总工批准后出版、发放。发放范围包括焊接和热处理技术人员、质 检人员和 NDT人员。 工程项目施工前,由工程处焊接技术人员,对参加焊接、热处理施工的人员进行技术交底,办理技术交底签证。对于重要的焊接项目,通知检测中心参加,交底要求见MSP-00-13《施工过程控制程序》。 焊接作业人员作业时按规定正确使用劳动防护用品,执行 MSP— 00— 25《职工劳动保护控制程序》、MSOP — 00—24《职工劳动保护用品管理程序》。 工程处焊接技术人员,应深入现场检查焊接指导书的执行情况,及时解决施工中的技术问题,并做好焊接施工技术纪录。 项目部检测中心焊接专工,在指导各工程处焊接技术管理的同时,应深入现场,做好现场的技术监督。 工程处焊接技术人员做好本单位的焊接竣工资料整理和工程总结;项目部检测中心焊接专工做好本项目 的焊接竣工资料审核和焊接工程总结工作。 焊接技术控制流程见附件S14— 1. 焊接人员培训管理 每年末,各工程处根据工程需要编制本单位下年度焊接人员培训计划,编制要求见MSP— 00— 06《培训控制程序》。 由检测中心对公司新招焊工进行初级培训,考核合格后,颁发上岗证,可从事一般钢结构焊接工作或气 割工作(气焊工)。 中级焊工培训 初级焊工一般要从事现场工作一年以上,可进行中级焊工培训。

相关主题
文本预览
相关文档 最新文档