当前位置:文档之家› 丙烯丙烷 塔底 筛板 1.4 71

丙烯丙烷 塔底 筛板 1.4 71

丙烯丙烷 塔底 筛板 1.4 71
丙烯丙烷 塔底 筛板 1.4 71

过程工艺与设备课程设计任务书

——丙烯--丙烷精馏装置设计

学生姓名:

班级:

学号:

指导老师:

完成时间: 2013 - 07 - 04

前言

本设计说明书包括概述、流程简介、精馏塔、再沸器、辅助设备、管路设计和控制方案共七章。

说明中对精馏塔的设计计算做了详细的阐述,对于再沸器、辅助设备和管路的设计也做了说明。

鉴于设计者经验有限,本设计中还存在许多错误,希望各位老师给予指正。

感谢老师的指导和参阅!

目录

1. 概述 (3)

2. 方案流程简介 (5)

3. 精馏过程系统分析 (6)

4. 再沸器的设计 (18)

5. 辅助设备的设计 (24)

6. 管路设计 (30)

7. 控制方案 (33)

设计心得及总结 (34)

附录一主要符号说明 (35)

附录二参考文献 (37)

附录三塔计算结果表 (38)

附录四再沸器主要结构尺寸和计算结果表 (39)

附录五工艺流程图 (40)

1. 概述

蒸馏是分离液体混合物(含可液化的气体混合物)常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛的应用。其中,简单蒸馏与平衡蒸馏只能将混合物进行初步的分离。为了获得较高纯度的产品,应使得混合物的气、液两相经过多次混合接触和分离,使之得到更高程度的分离,这一目标可采用精馏的方法予以实现。

精馏过程在能量剂驱动下,使气、液两相多次直接接触和分离,利用液相混合物中各组分由液相向气相转移,难挥发组分由`气相向液相转移,实现原料中各组分的分离。该过程是同时进行的传质、传热的过程。为实现精馏过程,必须为该过程提供物流的存储、输送、传热、分离、控制等的设备、仪表。所用设备主要包括精馏塔及再沸器和冷凝器等。

1.1 精馏塔

精馏塔是一圆形筒体,塔内装有多层塔板或填料,塔中部适宜位置设有进料板。两相在塔板上相互接触时,液相被加热,液相中易挥发组分向气相中转移;气相被部分冷凝,气相中难挥发组分向液相中转移,从而使混合物中的组分得到高程度的分离。

简单精馏中,只有一股进料,进料位置将塔分为精馏段和提馏段,而在塔顶和塔底分别引出一股产品。精馏塔内,气、液两相的温度和压力自上而下逐渐增加,塔顶最低,塔底最高。

一个精馏塔的分离能力或分离出的产品纯度如何,与原料体系的性质、操作条件以及塔的性能有关。实现精馏过程的气、液传质设备,主要有两大类,板式塔和填料塔。

本设计选取的是板式塔,相较而言,在塔效率上,板式塔效率稳定;在液气比方面,板式塔适应范围较大,而填料塔则对液体喷淋量有一定要求;在安装维修方面,板式塔相对比较容易进行;由于所设计的塔径较大,所以在造价上,板式塔比填料塔更经济一些;而且,板式塔的重量较轻,故选择板式塔。

在众多类型的板式塔中,选择了溢流型筛板塔,相比较其它类

型的板式塔,溢流型筛板塔价格低廉,装卸方便,而且金属消耗量少,非常适合板间距小、效率较高而且塔单位体积生产能力大的分离要求,同时其操作弹性大、阻力降小、液沫夹带量少以及板上滞液量少的优点也为之提供了广阔的应用市场。

1.2. 再沸器

再沸器是精馏装置的重要附属设备,其作用是使塔釜液部分汽化,从而实现精馏塔内的气液两相间的热量及动量传递。其形式主要有立式热虹吸再沸器、卧式热虹吸再沸器、强制循环式、釜式再沸器和内置式再沸器。

本设计采用立式热虹吸式再沸器,它是一垂直放置的管壳式

换热器。液体在自下而上通过换热器管程时部分汽化,由在壳程内的载热体供热。

立式热虹吸特点:

▲循环推动力:釜液和换热器传热管气液混合物的密度差。

▲结构紧凑、占地面积小、传热系数高。

▲壳程不能机械清洗,不适宜高粘度、或脏的传热介质。

▲塔釜提供气液分离空间和缓冲区。

▲立式安装,增加了塔的裙座高度。

1.3. 冷凝器(设计从略)

用以将塔顶蒸气冷凝成液体,部分冷凝液作塔顶产品,其余作回流液返回塔顶,使塔内气液两相间的接触传质得以进行,最常用的冷凝器是管壳式换热器。

2. 方案流程简介

2.1. 精馏装置流程

精馏就是通过多级蒸馏,使混合气液两相经多次混合接触和分离,并进行质量和热量的传递,使混合物中的组分达到高程度的分离,进而得到高纯度的产品。

流程如下:

原料(丙稀和丙烷混合液体)经进料管由精馏塔中某一位置(进料板处)流入塔内,开始精馏操作;当釜中的料液建立起适当液位时,再沸器进行加热,使之部分汽化返回塔内。气相沿塔上升至塔顶,由塔顶冷凝器将其进行全部或部分冷凝。将塔顶蒸气凝液部分作为塔顶产品取出,为馏出物;另一部分作为回流返回塔顶。回流液从塔顶沿塔流下,在下降过程中与来自塔底的上升蒸气多次逆向接触分离。当流至塔底时,被再沸器加热部分汽化,气相返回塔内作为气相回流,而液相则作为塔底产品采出。

2.2. 工艺流程

2.2.1. 物料的储存和运输

精馏过程必须在适当的位置设置一定数量不同容积的原料储罐、泵和各种换热器,以暂时储存,运输和预热(或冷却)所用原料,从而保证装置能连续稳定的运行。

2.2.2. 必要的检测手段

为了方便解决操作中的问题,需在流程中的适当位置设置必要的仪表,以及时获取压力、温度等各项参数。另外,常在特定地方设置人孔和手孔,以便定期的检测维修。

2.2.

3. 调节装置

由于实际生产中各状态参数都不是定值,应在适当的位置放置一定数量的阀门进行调节,以保证达到生产要求,可设双调节,即自动和手动两种调节方式并存,且随时进行切换。

2.3. 设备选用

精馏塔选用筛板塔,配以立式热虹吸式再沸器。

3. 精馏过程系统设计

3.1 设计条件

工艺条件:饱和液体进料,丙烯含量x

f

=65%(摩尔分数)

塔顶丙烯含量x

D =98%,釜液丙烯含量x

w

≤2%,总板效率为

0.6。

操作条件:

1)塔顶操作压力:P=1.62MPa(表压)

2)加热剂及加热方法:加热剂——水蒸气

加热方法——间壁换热3)冷却剂:循环冷却水

4)回流比系数:R/Rmin=1.4。

塔板形式:筛板

处理量:q

nf

=70kmol/h

塔板设计位置:塔底

3.2 物料衡算及热量衡算

3.2.1. 物料衡算:

q nF =q

nD

+q

nW

x F q

nF

=x

D

q

nD

+x

W

q

nW

解得结果:x

D =45.9375kmol/h x

W

=24.0625kmol/h

3.2.2.求质量流量:

M

D

=0.98*42+0.02*44=42.04 kg/kmol;

M

W

=0.02*42+0.98*44=43.964 kg/kmol;

M

F

=0.65*42+0.35*44=42.7 kg/kmol

则 q

MD = x

D

?M

D

/3600 =0.5364kg/s ;

q

MW = x

W

?M

W

/3600 =0.2939kg/s

q

MF =x

F

?M

F

/3600=0.8303 kg/s

3.2.3. 塔内气、液相流量:

1)精馏段:qn

L =R?qn

D

; qn

V

=(R+1)?qn

D

;

2)提馏段:qn

L '=qn

L

+q?qn

F

; qn

V

'=qn

V

-(1-q)?qn

F

;

qn

L '=qn

V

'+qn

W

;

其中q=1;

则:qn L ’=qn L +qn F ; qn V ’=qn V 3.2.4. 热量衡算

1)再沸器热流量:qn r =qn V '?r'

再沸器加热蒸气的质量流量:M r = qn r /Rr 2)冷凝器热流量:qc=V ?Cp ?(t2-t1)

冷凝器冷却剂的质量流量:Mc= qc/(Cl ?(t2-t1))

3.3 塔板数的计算

3.3.1. 相对挥发度的计算:

通过对给定的温度—组成表格,计算相对挥发度α α=Ka/Kb=(ya*xb)/(yb*xa)

计算后平均,算得,1.72Mpa (绝)下α=1.131583 1.82Mpa (绝)下α=1.127408 平衡关系:x=y/(α-(α-1)y). 3.3.2. 估算塔底的压力:

已知塔顶的压力为1.62Mpa (表) 即1.72Mpa (绝) 工程经验每块塔板压降100mm 液柱,丙烷-丙烯:密度 460。 则塔底压力可以通过公式:P=N*0.1*460*9.8/1000000。 其中N 是假设实际塔板数,P 单位为Mpa 3.3.3.给出假设,进行迭代: 具体为:

假设实际板数——确定塔顶塔底压力——根据压力和组成算出相对挥发度——平均相对挥发度——理论板数—— 实际板数——与假设比较

其中:e

e e D x y y X R --=min min 4.1R R =

q 线方程 e y =0.65 平衡关系 e

e

e y y x )1(--=

αα

精馏线方程

+=x R R y D

提馏线

流程图:

计算程序: #include "stdio.h" main(){

float x,y,a,d1,d2,w1,w2; int n=1;

scanf (“%f%f%f%f%f\n ”,&a,&d1,&d2,&w1,&w2); y=0.98;

x=y/(a-(a-1)*y); n++; for(;;n++) { y=d1*x+d2; x=y/(a-(a-1)*y);

if(x<0.65&&(0.65-x)>0.00001) break;

else continue;}

printf("in=%d\n",n);

n=n+1;

for(;;n++)

{ y=w1*x+w2;

x=y/(a-(a-1)*y);

if(x<0.02&&(0.02-x)>0.00001) break;

else continue;}

printf("total=%d\n",n);

}

其中a,d1,d2,w1,w2分别为

相对挥发度,精馏线斜率,精馏线截距,提馏线斜率,提馏线截距。

迭代结果:

第一次:首先假设100块实际板。

利用excel计算出塔底压力1.76508Mpa,插值出α=1.129701 计算出 d1=0.939677,d2=0.059117。

再通过精馏线与q线的交点。

计算出w1=1.031598,w2=-0.00063。

带入程序,得理论进料为51块板,理论总板数为108块(包括釜)

则实际板数为(108-1)/0.6=178.333块。

第二次:实际板为178.333块。

利用excel计算出塔底压力1.801895Mpa,α= 1.128163

计算出 d1= 0.940352,d2= 0.058455。

再通过精馏线与q线的交点。

计算出w1 1.031244,w2= -0.00062。

带入程序,得理论进料为51块板,理论总板数为109块(包括釜),则实际板数为(109-1)/0.6=180块。

第二次迭代得到的结果与假设接近,可认为收敛。

结论:理论进料为51块板,理论总板数为109块(包括釜)实际进料第85块板,实际总塔板数为180块。

回流比R= 15.76127

塔底压力P=1.72+N*0.1*460*9.8/1000000=

1.801144Mpa(绝)

塔底温度:已知在0.02/0.98 下

P=1.72Mpa t= 49.39679℃;P=1.82Mpa t= 51.99784℃;

插值得:t=51.5073℃

流量:精馏段:q

mLs =R?q

mDs

=8.4543kg/s q

mVs

=(R+1)?q

mDs

=8.9907kg/s

提馏段:q

mLs ’=q

mLs

+q

mFs

=9.2846kg/s q

mVs

’= q

mVs

=8.9907kg/s

3.3.4.计算结果

3.4 精馏塔工艺设计 3.

4.1. 物性数据

1.8Mpa ,51.5℃下,丙烷的物性数据(以塔底为标准):查得 气相密度:ρV =28kg/m 3 液相密度:ρL =460kg/m 3 液相表面张力:ζ=5.268mN/m 3.4.

2. 初估塔径

气相流量:q mVs ’=8.9907kg/s q VVs ’=q mVs ’/ρ q nVs =0.3211m 3

/s 液相流量:q mLs ’=9.2846kg/s q VLs ’=q mLs ’/ρ q nLs =0.0206m 3/s 两相流动参数:

248.0460

28

9907.82846.9==''=''=

L V V qm L qm V L V qv L qv F ρρρρ

设间距: T H =0.45m 查费克关联图得20C =0.06 气体负荷因子C :0.2

2020C C σ??

= ???

2

.0)20

268.5(

06.0==0.0459 液泛气速f u :

f u ==28

28

4500459.0-=0.1854

泛点率取

f

u

u =0.75, 操作气速u=0.14m/s

所需气体流道截面积A :s

V A u

=

=0.3211/0.14=2.29m 2 选取单流型,弓形降液管板,取D T A A =0.12,则T

A

A =1-D T A A =0.88

故塔板截面积A T =A/0.88=2.685m 2,

14

.3685

.244?=

=

π

AT

D

塔径D : =1.78 m ,圆整:取1.8m

则实际塔板截面面积T A =2.5414 m 2,降液管截面积D A =0.3052m 2 气体流道截面积A=2.338m 2 ,实际操作气速u=qV ’/A=0.1286m 2 实际泛点率

f

u

u =0.73,在0.6~0.8之内

且选T H =0.45m ,D=1.8m 符合经验关系 3.4.3. 塔高的估算

实际板数180块,初选塔板间距0.45m ,则塔高Z=180*0.45=81m 。 进料处两板间距增大为0.9m

设置20个人孔,人孔所在处两板间距增大为0.8m

裙座取5m,塔顶空间高度1.5m,釜液上方气液分离高度取4m. 设釜液停留时间为30min 釜液高度:2

2

8.1*14.3*4603211

.0*4*18004*60*30='

=D q H

l v w

πρ =0.45m

所以,总塔高h=81+(0.9-0.45)+5+1.5+4+0.45+20*(0.8-0.45)≈100m

3.5 溢流装置的设计 3.5.1. 降液管 (弓形)

由上述计算可得:降液管截面积:Ad=AT ×0.12= 0.3052m 2 由Ad/AT=0.12,查《化工原理》(下册)P113的图6.10.24可得: lw/D=0.68,Bd/D=0.14

所以,堰长lw=0.68D=1.224m ,堰宽Bd=0.14D=0.252m ,降液管面积 =0.3052 m 2

3.5.2.溢流堰

溢流强度 qvlh ’/lw=0.0206*3600/1.224=60.59<(100-130).合格

收缩系数E 近似为1

3

/233

/2,

3

)

224

.136000206.0(

1084.21084.2??=???

? ???=--W

nLh

ow l q E h

则堰上液头高: =0.0439m >0.006m 合适

取堰高hw=0.040m 。 3.5.3. 受液盘和底隙

取平形受液盘,底隙hb 取0.050m

液体流经底隙的流速:ub=qvls ’/(lw*hb )=0.0206/(1.224*0.050)=0.337m/s ub<0.4m/s 符合要求。

3.6 塔板布置和其余结构尺寸的选取 3.6.1.塔板布置及其他结构尺寸的选取

由于D>(0.8~0.9m),采用分块式塔板; 取塔板厚度t=4mm; 整个塔板面积: 受液区和降液区面积 2Ad=0.4068㎡ 入口安定区和出口安定区 bs=60mm=0.06m 边缘区 bc=50mm=0.05m

选择塔板为单流型,有效传质面积r

x r x r x A a arcsin (2222+-=)

其中:Bd=0.252m, x=D/2-(Bd+bs)=0.588m, r=D/2-bc=0.85m 求得a A =1.825m2

3.6.2. 筛孔的尺寸和排列:选用正三角形排列 取筛孔直径:do=7mm,t=3.5do 开孔率 2

)(

907.0t

d o =?=7.5% 筛孔面积 Ao=?Aa=0.1368m2 筛孔气速 uo=qv ’/Ao=2.223m/s 筛孔个数 2

4

o d Ao

n =

=3557

3.7 塔板流动性能校核 3.7.1. 液沫夹带量的校核

由LV F =0.248和实际泛点率0.73,查《化工原理》(下册)P117的图6.10.28可得θ=0.0057,则 00588.0460

28

3211.00026.00057.010057.01=-=''-=

V V qv L L qv e V ρρφφ

kg 液体/kg 气体

<10%,故不会产生过量的液沫夹带。

3.7.2. 塔板阻力计算 干板阻力ho :

据d 0/δ=7/4=1.75,查《化工原理》(下册)P118的图6.10.30,得C 0=0.79

故2

2)79

.0223.2(284608.9*21)(21=''=

Co uo L V g ho ρρ=0.0521m 液柱 塔板清液层阻力hL :

d

T A A s qV ua 2-'

=

=0.3004/(2.541-2*0.2034)=0.14m/s

气体动能因子Fa=2814.02

/1?=V ua ρ=0.74

查《化工原理》(下册)P118的图6.10.31,得β=0.72,故hL=β(hw+how )=0.72*(0.04+0.0439)=0.0604m 液柱

表面张力阻力ha :

ha=8

.9*28*7268.5*104104303--?=

?Lg d ρσ =0.000682 m 液柱 所以hf=ho+hL+ha=0.0521+0.0604+0.000682=0.1131m 液柱 3.7.3. 降液管液泛校核

由hd hf how hw Hd ++?++= ,取?=0,则hf =0 其中 ud 是底隙流速

2

82)(1018.1)(3hb

lw l qv g ud hd ?'?==-=0.0088 m 液柱,于是

hd hf how hw Hd +++==0.1962m 液柱

取降液管中泡沫层密度Φ=0.6,则Hd ’=Hd/0.6=0.327 m 液柱,而Ht+hw=0.45+0.05=0.5> Hd ’,故不会发生降液管液泛。

3.7.

4. 液体在降液管内停留时间

应保证液体在降液管内的停留时间大于3~5s ,才能保证液体所夹带气体的释出

T=Ad*Ht/qvL ’=0.2034*0.45/0.3004=4.44>3,故所夹带气体可以释放。

降液管流速Ub=Ht/T=0.1014m/s 3.7.5. 严重漏液校核

Ho ’=0.0056+0.13(hw+how )-ha

=0.0056+0.13*0.0839-0.00068=0.01583 m 液柱,

稳定系数k=0

,,

h h u u o

o

o

==1.814>1.5~2.0,故不会发生严重漏液。

反算,

o u =2.223/1.814=1.225 m/s

3.8 负荷性能图 3.8.1. 过量液沫夹带线

规定ev=0.1,则

代入得:q vvh ’= 8848.1-168.97 32

)('VLh q

由上述关系可作得线① 3.8.2. 液相下限线

006.0)(

1084.23

/23='?=-lw

h qvl how q vLh ’=3.07lw=3.07*1.224=3.88 是与y 轴平行的线

由上述关系可作得线② 3.8.3. 严重漏液线 q VVh ’ =a(b+cq ’VLh 2/3)1/2

??

?

?????

'?--?='

-3232

.313

)(101.75.21081.8W VLh

W T VVh l q h H A q

σ

其中:

3441061.428

460

79.00.135110594.110594.1?=????=?=V L AoCo

a ρρ 0095.0000682.005.013.00056.013.00056.0=-?+=-+=ha hw b

43/243/2410225.3224.1/1069.3/1069.3---?=?=?=lw c

q ’VVh =4610(0.0095+0.0003225q ’VLh 2/3)1/2 由上述关系可作得线③ 3.8.4. 液相上限线

令 =5s ,得: =720*0.45*0.3052=98.88 由上述关系可作得线④ 3.8.5. 降液管液泛线

'-'-='3/222''''VLh

VLh VVh q d q c b q a 式中:a ’=

=910934.3-?*28/(460*0.1351*0.79)=21.49×10-9

b ’=

=0.6*0.45+(0.6-0.72-1)*0.05=0.214

c ’= =315

810-? d ’= = =4.269310-?

'-'?-='?--3/22829004269.010315214.01049.21VLh VLh VVh q q q

上述关系可作得降液管液泛线⑤ 上五条线联合构成负荷性能图

作点为:q ’VLh =74.16m 3/h q ’VVh =1155.46 m 3/h 如图:

VLs

T

d q

H

A ?=τd

T VLh A H q 720='29)/(10934.3AoCo L

V

ρρ

-?σ

βφφhw H T )1(--+2

8

2

8

)05.0224.1/(1018.1)/(1018.1??=??--hb lw )/()1(1084.23/23lw β+?-)224.1/()72.01(1084.23/23+?-

局部放大后

设计点位于四条线包围的区间中间稍偏下

操作弹性操作弹性:q

v ’

max

/ q

v

min

=1540.2/520.33=2.96

所以基本满足要求。

4. 再沸器的设计

4.1. 设计任务与设计条件

4.1.1.选用立式热虹吸式再沸器

其壳程以水蒸气为热源,管程为塔底的釜液。釜液的组成为(摩尔分数)丙稀=0.02,丙烷=0.98

塔顶压力P

D

=1.72MPa

塔底压力P

W

=1.8011MPa

4.1.2.再沸器壳程与管程的设计

物性数据

1)壳程凝液在温度(100℃)下的物性数据:

潜热:r

c =2319.2Kg

KJ/

热导率:λ

c

=0.6725w/(m*K)

粘度:μc =0.5294mPa·s

密度:ρc =958.1kg/m3

2)管程流体在(51.51℃ 1.8011MPa)下的物性数据:

潜热:r

b

=330 kJ/kg

液相热导率:λ

b

=0.082w/(m·K)

液相粘度:μb =0.07mPa·s

液相密度:ρb =460kg/m3

液相定比压热容:Cpb=3.19 kJ/kg·K

表面张力:ζb=0.00394N/m

气相粘度:μv =0.0088mPa·s

气相密度:ρv =28kg/m3

蒸气压曲线斜率(Δt/ΔP)=0.00025 m2 K/kg

4.2. 估算设备尺寸

热流量:

= Mw ·V ’ ·r b ·1000/3600= 2633400w 传热温差: =48.49℃ 假设传热系数:K=850W/( m 2 K)

估算传热面积Ap =63.89 m 2

拟用传热管规格为:Ф25×2mm,管长L=3m

则传热管数: =271 若将传热管按正三角形排列,按式 N T =3a(a+1)+1 b=2a+1 得:a=9 b=19

管心距:t=32mm

则 壳径: =638m 取 D = 0.600m

取 管程进口直径:Di=0.25m 管程出口直径:Do=0.35m

4.3. 传热系数的校核 4.3.1.显热段传热系数K 假设传热管出口汽化率 Xe=0.22 则循环气量: =36.27kg/s 1) 计算显热段管内传热膜系数αi

传热管内质量流速: di=25-2×2=21mm

= 366.17kg/( m 2?

s) 雷诺数: = 109851.7>10000 普朗特数: =2.73 显热段传热管内表面系数:= 1445.43w/( m 2 K) 2) 壳程冷凝传热膜系数计算αo

蒸气冷凝的质量流量: = 1.1354kg/s 传热管外单位润湿周边上凝液质量流量:

=0.051 kg/(m ? s) c c b b R D D Q γγ==m t ?m

R

t K Q

??=0)3~2()1(d b t D S +-=e

b

t x D W =

0)3~2()1(d b t D S +-=L

d A N p T 0π=0

s W G t

=T

i N d s 204

π

=0

s W G t =b

b

Pb r C P λ

μ

=c

r

Q

m =T

N d m M 0π=

μ

M

4Re =

= 381.94

管外冷凝表面传热系数: = 5540.36w/ (m 2 K)

3) 污垢热阻及管壁热阻 沸腾侧:Ri=0.000176 m 2? K/w 冷凝侧:Ro=0.00009m 2? K/w 管壁热阻:Rw= 0.000051 m 2? K/w

4)显热段传热系数 =735.8w/( m 2? K) 4.3.2. 蒸发段传热系数KE 计算 1)传热管内釜液的质量流量: Gh=3600 G =1318220.97 kg/( m 2? h) Lockhut-martinel 参数: Xe=0.22时: 在

X=Xe

则1/Xtt=0.7969 再查图3-29,αX=0.4 Xe=0.088查设计书P96图3-29

得:α’=0.8

2)泡核沸腾压抑因数:α=(αE+α’)/2=0.45 泡核沸腾表面传热系数: =6293.4w/( m 2? K)

3)单独存在为基准的对流表面传热系数 :

= 1342.7w/( m 2?

K)

沸腾表面传热系数:KE

对流沸腾因子 : = 1.93

两相对流表面传热系数: = 2589.05w/( m 2?

K)

00001

1

αα+

+++=O m w i i i i L R d d R d d R d d K ???

?????

? ??-????

??=σρρμλαd P r A d Q P d i v b b b P i r i

b nb 31

.033

.069

.068.01225.0()[]P x R d

r i

b i e 4

.08

.01023.0-=λ

α()

X F tt tp 15

.05.3=ααi tp tp F =?

??

? ??-=λρμα322

/88.13

/13

/1g R eo o

μ

M 4Re =

筛板精馏塔设计示例

3.5筛板精馏塔设计示例 3.5.1 化工原理课程设计任务书 设计题目:分离苯-甲苯混合液的筛板精馏塔 在一常压操作的连续精馏塔内分离苯-甲苯混合液。已知原料液的处理量为4000kg/h,组成为0.41(苯的质量分率),要求塔顶馏出液的组成为0.96,塔底釜液的组成为0.01。 设计条件如下:表3-18 操作压力 进料热状态回流比单板压降全塔效率建厂地址 4kPa(塔顶常压)自选自选w0.7kPa ET=52%天津地区 试根据上述工艺条件作岀筛板塔的设计计算。 3.5.2 设计计算1设计方案的确定 本设计任务为分离苯一甲苯混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料, 将原料液通过预热器加热至泡点后送人精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 2精馏塔的物料衡算 (1)原料液及塔顶、塔底产品的摩尔分率 苯的摩尔质量—~':'■- 甲苯的摩尔质量匚丁 0.41/78. H 0.41/78J1 +0.59/92.13 (2)原料液及塔顶、塔底产品的平均摩尔质量 二0.450X7E.11 + (l-0 450)x9213 =託尾如畑H ^=0.966x78 1U(1-0.9 13 few? ^ = 0.012x73.11 + (1-0.012)x92.13 = 91.9^/^? (3 )物料衡算 F = = 46.6 A 原料处理量二二一 0.450

总物料衡算46.61 = D+ W 苯物料衡算46.6 1X0.45 = 0.966D + 0.012 W 联立解得D = 21.40 kmol / h W=25.21kmol/h 3塔板数的确定 (1)理论板层数NT的求取 苯一甲苯属理想物系,可采用图解法求理论板层数。 ①由手册查得苯一甲苯物系的气液平衡数据,绘出x~y图,见图3-22。 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图3-19中对角线上,自点e(0.45,0.45 )作垂线ef即为进料线(q线),该线与平衡线的交点坐标为 y q = 0.667 xq = 0.450 故最小回流比为? 2 1■' 取操作回流比为77■■ ■―■:--' ③求精馏塔的气、液相负荷 L = R^D= 2.76x 21.40 = 7+1)D =(2 76 +l)x 21 40 = 80.46^;^ Z r= L + ^ = 59.06+46,^1 =

丙烯—丙烷板式精馏塔设计

过程工艺与设备课程设计 丙烯——丙烷精馏塔设计 课程名称:化工原理课程设计 班级: 姓名: 学号: 指导老师: 完成时间:

前言 本设计说明书包括概述、流程简介、精馏塔、再沸器、辅助设备、管路设计和控制方案共7章。 说明中对精馏塔的设计计算做了详细的阐述,对于再沸器、辅助设备和管路的设计也做了正确的说明。 鉴于设计者经验有限,本设计中还存在许多错误,希望各位老师给予指正 感老师的指导和参阅!

目录第一节:标题丙烯—丙烷板式精馏塔设计 第二节:丙烯—丙烷板式精馏塔设计任务书第三节:精馏方案简介 第四节:精馏工艺流程草图及说明 第五节:精馏工艺计算及主体设备设计 第六节:辅助设备的计算及选型 第七节:设计结果一览表 第八节:对本设计的评述 第九节:工艺流程简图

第十节:参考文献 第一章 任务书 设计条件 1、 工艺条件: 饱和液体进料 进料丙烯含量%65x F = (摩尔百分数)。 塔顶丙烯含量%98x D ≥ 釜液丙烯含量%2x W ≤ 总板效率为0.6

2、操作条件: 塔顶操作压力1.62MPa(表压) 加热剂及加热方法:加热剂——热水 加热方法——间壁换热冷却剂:循环冷却水 回流比系数:R/Rmin=1.2 3、塔板形式:浮阀 4、处理量:F=50kml/h 5、安装地点: 6、塔板设计位置:塔顶 安装地点:。 处理量:64kmol/h 产品质量:进料65% 塔顶产品98% 塔底产品<2%

1、工艺条件:丙烯—丙烷 饱和液体进料 进料丙烯含量65% (摩尔百分数) 塔顶丙烯含量98% 釜液丙烯含量<2% 总板效率为0.6 2、操作条件: 塔顶操作压力1.62MPa(表压) 加热剂及加热方法: 加热剂——热水 加热方法——间壁换热

乙醇——水筛板精馏塔工艺设计-课程设计

学院 化工原理课程设计任务书 专业: 班级: 姓名: 学号: 设计时间: 设计题目:乙醇——水筛板精馏塔工艺设计 (取至南京某厂药用酒精生产现场) 设计条件: 1. 常压操作,P=1 atm(绝压)。 2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。因沿 程热损失,进精馏塔时原料液温度降为90℃。 3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分 率)。 5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。 。 6.操作回流比R=(1.1——2.0)R min 设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计 算和选型。 2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负 荷性能图,筛孔布置图以及塔的工艺条件图。 3.写出该精流塔的设计说明书,包括设计结果汇总和对自己 设计的评价。 指导教师:时间

1设计任务 1.1 任务 1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒 精生产现场) 1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。 2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。 因沿程热损失,进精馏塔时原料液温度降为90℃。 3.塔顶产品为浓度92.41%(质量分率)的药用乙醇, 产量为40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03% (质量分率)。 5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶 采用全凝器,泡点回流。 6.操作回流比R=(1.1—2.0) R。 min 1.1.3 设计任务 1.完成该精馏塔工艺设计,包括辅助设备及进出口接 管的计算和选型。 2.画出带控制点的工艺流程示意图,t-x-y相平衡 图,塔板负荷性能图,筛孔布置图以及塔的工艺条 件图。 3.写出该精馏塔的设计说明书,包括设计结果汇总 和对自己设计的评价。 1.2 设计方案论证及确定 1.2.1 生产时日 设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。 1.2.2 选择塔型 精馏塔属气—液传质设备。气—液传质设备主要分为板式塔和填料塔两大类。该塔设计生产时日要求较大,由板式塔与填料塔比较[1]知:板式塔直径放大

丙烷脱氢制丙烯工艺流程(精)讲课稿

丙烷脱氢制丙烯工艺流程 丙烷脱氢制丙烯技术及经济分析<<隐藏 丙烷脱氢制丙烯经济及技术分析许艺〔金陵石油化工有限责任公司,106204摘要丙烯是重要的有机化工原料,除用于生产聚丙烯外,还是生产丙烯睛,丁醉、辛醉、环氧丙烷、异丙醉、丙苯、丙烯酸、碳基醇及壬基酚等产品的主要原料,丙烯的齐聚物是提高汽油辛烷值的主要成分,丙烷催化脱氢制丙烯比烃类燕气裂解能产生更多的丙烯。当用燕气裂解生产丙烯时,丙烯收率最多只有3%、3而用催化脱氢法生产丙烯,总收率可达7%一6用唯一原料生产唯一产品,48%,催化脱氮的设备投资比烃类蒸气裂解低3%。并且采用催化脱氢的方法,3能有效地利用液化石油气资源使之转变为有用的烯烃。关健词丙烷丙烯脱氢丙烯是最早采用的石油化工原料,也是生产石袖化工产品的重要烯烃之一。各种分析表明,丙烯的需求增长速度已超过乙烯,而且这种趋势一直会延续。全球丙烯的消费量将由19年的49780万t0增加到20年的5 0万t000020及21年的7万t50。其中, 0亚洲的增长速度最高。19年到19年亚太地区丙烯91 96衍生产品的需求以年均9%的速度增长,而全球年均需求增长率为55.%a丙烯除用于生产聚丙烯外,还大量地作为生产丙烯睛、丁醇、辛醉、环氧丙烷、异丙醉、丙苯、丙烯酸、拨基醇及壬基酚等产品的主要原料,另外丙烯的齐聚物是提高汽油辛烷值的主要成分。丙烯与其它化学品不一样,它一般是以联产品或副产品得到。目前全球丙烯大约有7%来自蒸气裂0解乙烯的联产,82%来自炼厂(主要是催化裂化装置精炼副产,0自2世纪9年代以来由于现有来源不敷0需要,丙烷脱氢已成为第三位的丙烯来源,9年丙189烷脱氢生产的丙烯约占世界丙烯总产量的2%。全、户、加‘小户,球现有丙烷脱氢生产装置概况见表l a丙烷催化脱氢制丙烯比烃类蒸气裂解能产生更多的丙烯。当用蒸气裂解生产丙烯时,丙烯收率最多只有3%、3而用催化脱氢法生产丙烯,总收率可达7%一9用唯一原料生产唯一产品,48%,催化脱氢的设备投资比烃类蒸气裂解低3。并且采用催化脱3氢的方法,能有效地利用液化石油气资源使之转变为有用的烯烃。衰1丙煌脱兔生产装i概况表t所在地2 0年第1卷第3037

分离乙醇—水混合液的筛板精馏塔设计

分离乙醇—水混合液的筛 板精馏塔设计 This model paper was revised by the Standardization Office on December 10, 2020

课题名称:化工课程设计任务书 系别:化环学院 专业:化工2班 学号: 姓名: 指导教师: 时间:2011年12月01-16日 附 化工原理—化工设备机械基础课程设计任务书-1专业化工班级 0409402 设计人 一. 设计题目 分离乙醇—水混合液的筛板精馏塔设计 二. 原始数据及条件 生产能力:年处理量8万吨(开工率300天/年),每天工作24小时; 原料:乙醇含量为20%(质量百分比,下同)的常温液体;

分离要求:塔顶,乙醇含量不低于90%, 塔底,乙醇含量不高于 8%; 操作条件: 三. 设计要求: (一)编制一份设计说明书,主要内容包括: 1. 前言 2. 设计方案的确定和流程的说明 3. 塔的工艺计算 4. 塔和塔板主要工艺尺寸的设计 a. 塔高、塔径及塔板结构尺寸的确定 b. 塔板的流体力学验算

c. 塔板的负荷性能图 5. 附属设备的选型和计算 6. 设计结果一览表 7. 注明参考和使用的设计资料 8. 对本设计的评述或有关问题的分析讨论。 (二)绘制一个带控制点的工艺流程图(2#图) (三)绘制精馏塔的工艺条件图(1#图纸) 四. 设计日期:2011年 12月01日至 2011 年12 月16日 五. 指导教师:谭志斗、石新雨 推荐教材及主要参考书: 1.王国胜, 裴世红,孙怀宇. 化工原理课程设计. 大连:大连理工大学出版社,2005 2.贾绍义,柴诚敬.化工原理课程设计. 天津:天津科学技术出版社,2002. 3、马江权,冷一欣. 化工原理课程设计. 北京:中国石化出版社,2009. 4、《化工工艺设计手册》,上、下册; 5、《化学工程设计手册》;上、下册; 6、化工设备设计全书编辑委员会.化工设备设计全书-塔设备;化学工业出版社:北京. 2004,01

丙烷脱氢制丙烯工艺[要略]

丙烷脱氢制丙烯工艺[要略] 丙烷脱氢制丙烯工艺 三问“丙烷脱氢”——丙烯新工艺“丙烷脱氢”是现今国内丙烯生产新工艺的热点之一,备注市场的关注和青睐。“丙烷脱氢”是现今国内丙烯生产新工艺的热点之一,备注市场的关注和青睐。<<隐藏 国内丙烯市场存在较大的需求缺口,为了使得下游产品市场更健康长久发展,解决原料丙烯的缺量问题,市场中跃跃欲试的企业越来越多。目前有两个热点,其一煤化工路线,煤制烯烃;其二,丙烷脱氢。丙烷脱氢工艺因其丙烯收率相对较高,目前备受市场关注和青睐。目前较为成熟的丙烷脱氢工艺主要有三种:Oleflex 工艺、Catofin 工艺和 PDH 工艺。 Oleflex 工艺由 UOP 公司开发并于 1990 年实现工业化生产,工艺主要采用催化剂连续再生方法,该工艺制取丙烯的产率约为86×4%,氢气产率约为3×5%。 Catofin 工艺是由鲁姆斯等公司联合开发,可生产丙烯、异丁烯、正丁二烯等产品。该工艺采用固定床催化反应器,并用取切换操作的方法,丙烯转化率高达 90%左右。 PDH 工艺是由德国林德公司和巴斯夫公司合作开发,主要生产丙烯和异丁烯。该工艺采用装填催化剂的管式反应器。目前该项目在国内仍是一片空白。天津渤海化工集团投资建设目前国内首套、世界单套规模最大的丙烯生产装置——60 万吨/年丙烷脱氢制丙烯,项目引进鲁玛斯技术公司专有的 Catofin 脱氢技术,该项目位于天津临港工业园区内,投资 34.8 亿元,计划 2012-2013 年投产。原料丙烷将由日本丸红提供。面对新鲜事物,蜂拥者不乏少数,目前国内很多厂家也都在酝酿上马丙烷脱氢项目,特别是下游工厂,主要是应对棘手的原料供应问题。想法总是好的,但是笔者心存几个疑虑,想和大家分享一下。第一,国内尚没有成功案例。一切为新的事物,即便天津渤海化工集团项目真能如期投产,那么从试运行到商业化运作,

年处理量为2万吨丙烯-丙烷分离过程精馏塔设计--文献综述

北京化工大学北方学院 NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY (2012)届本科生毕业设计 (理工类) 文献综述 题目:年处理量为2万吨丙烯-丙烷分离过程精馏塔设计学院:理工学院专业:应用化学 学号: 0000000000 姓名: 000000 指导教师: 00000 教研室主任(负责人): 000000

文献综述 前言 丙烯,是三大合成材料的基本原料,在化工生产中扮演着重要的角色。主要用于生产丙烯腈、异丙烯、丙酮和环氧丙烷等。[1] 丙烷脱氢制备丙烯技术是现在最常用的技术之一,比烃类蒸汽裂解技术能产生更多的丙烯。但当使用丙烷脱氢制备丙烯技术制备丙烯时,总收率只有74%~86%,丙烷不能全部转化为丙烯,反应产物会是丙烷与丙烯的混合物[2]。因此,研究丙烯与丙烷的分离技术至关重要。 精馏是分离液体混合物最常用的一种单元操作,在化工、炼油、石油化工等工业中具有广泛应用。精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相组分挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移。实现原料混合物中各组成成分的分离过程是同时进行传质传热的过程[3]。本文就将对丙烯和丙烷的精馏塔设计进行相关的研究,以便今后能设计出更为高效安全的精馏塔。

一、精馏原理 利用混合物中各组分挥发能力的差异,通过液相和气相的回流,使气、液两相逆向多级接触,在热能驱动和相平衡关系的约束下,使得易挥发组分(轻组分)不断从液相往气相中转移,而难挥发组分却由气相向液相中迁移,使混合物得到不断分离,称该过程为精馏。该过程中,传热、传质过程同时进行,属传质过程控制。其精馏塔如图所示。原料从塔中部适当位置进塔,将塔分为两段,上段为精馏段,不含进料,下段含进料板为提留段,冷凝器从塔顶提供液相回流,再沸器从塔底提供气相回流。气、液相回流是精馏重要特点。在精馏段,气相在上升的过程中,气相轻组分不断得到精制,在气相中不断地增浓,在塔顶获轻组分产品。[4] 二、精馏装置流程 精馏就是通过多级蒸馏,式混合气、液两相经过多次混合接触和分离,并经行质量和热量的传递,是混合物中的组分达到高程度的分离,进而得到高纯度的产品. [5] 其流程如下:丙烯-丙烷混合气体经预热器加热到指定温度后送入精馏塔的进料板,在进料板上与自塔上部下降的的回流液体汇合后,逐板溢流,最后流入塔底。在每层板上,回流液体与上升蒸汽互相接触,进行热和质的传递过程。操作时,连续的从再沸器取出部分液体气化,产生上升蒸汽,依次通过各层塔板。塔顶蒸汽进入冷凝器中被冷凝,并将部分冷凝液用泵送回塔顶或是自然回流作为回流液,其余部分经冷凝器冷凝后送出作为塔顶产品。塔釜采用间接蒸汽和再沸器共热。塔底产品经冷却后送入贮槽。[6] 三、板式精馏塔设计 精馏塔是提供混合物气、液两相接触条件、实现传质过程的设备。该设备可分为两类,一类是板式精馏塔,第二类是填料精馏塔。本设计中我们主要讨论的是板式精馏塔。 板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种[7]。 1、泡罩塔

精馏塔工艺工艺设计计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; –––––塔内所需要的理论板层数; –––––总板效率; –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; –––––气体体积流量,m 3 u –––––空塔气速, u =(0.6~0.8) (3-3) V V L C u ρρρ-=m a x (3-4) 式中 L ρ–––––液相密度,3

V ρ–––––气相密度,3 C –––––负荷因子, 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子, L σ–––––操作物系的液体表面张力, 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,。 (2) 踏板设计 开孔区面积a A : ??? ? ? ?+-=-r x r x r x A a 1 222s i n 1802π (3-11)

丙烯—丙烷板式精馏塔设计

大型作业报告(2010/2011学年第二学期) 课程名称化工原理课程设计 学生学号 院(系) 专业 班级 时间 学生 指导教师:_ 2011年1月13日 前言

化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质. 芳香族化合物是化工生产中的重要的原材料,而苯和甲苯是各有其重要作用。苯是化工工业和医药工业的重要基本原料,可用来制备染料,树脂,农药,合成药物,合成橡胶,合成纤维和洗涤剂等等;甲苯不仅是有机化工合成的优良溶剂,而且可以合成异氰酸酯,甲酚等化工产品,同时也可以用来制造三硝基甲苯,苯甲酸,对苯二甲酸,防腐剂,染料,泡沫塑料,合成纤维等。 精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。实现原料混合物中各组成分离该过程是同时进行传质传热的过程。本次设计任务为设计一定处理量的精馏塔,实现苯——甲苯的分离。苯——甲苯体系比较容易分离,待处理料液清洁。因此用筛板塔。 筛板塔也是很早出现的一种板式塔,20世纪50年代起对筛板塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,筛板塔具有下列优点:生产能力(20%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。 本课程设计的主要内容是过程的物料衡算,热量衡算,工艺计算,结构设计和校核。 目录

丙烯、丙烷精馏装置设计

过程工艺与设备课程设计(精馏塔及辅助设备设计) 设计日期: 2010年7月6日 班级:化机0701班 姓名:梁昊穹 指导老师:韩志忠

化工原理是化工及其相关专业学生的一门重要的技术基础课,其课程设计涉及多学科知识,包括化工,制图,控制,机械等各种学科,是一项综合性很强的工作;是锻炼工程观念和培养设计思维的好方法,是为以后的各种设计准备条件;是化工原理教学的关键环节,也是巩固和深化理论知识的重要环节。 本设计说明书包括概述、方案流程简介、精馏塔、再沸器、辅助设备、管路设计和控制方案共七章。 说明中对精馏塔的设计计算做了较为详细的阐述,对于再沸器、辅助设备和管路和控制方案的设计也做了简要的说明。 在设计过程中,得到了韩志忠老师的指导,得到了同学们的帮助,同学们一起讨论更让我感受到设计工作是一种集体性的劳动,少走了许多弯路,避免了不少错误,也提高了效率。 鉴于学生的经验和知识水平有限,设计中难免存在错误和不足之处,请老师给予指正 感谢老师的指导和参阅!

前言- - - - - - - - - - - - - - - - - - - - - - - - - 2 第一章概述- - - - - - - - - - - - - - - - - - - - - - 5 1.1精馏塔- - - - - - - - - - - - - - - - - - - - - - 5 1.2再沸器- - - - - - - - - - - - - - - - - - - - - - 5 1.3冷凝器- - - - - - - - - - - - - - - - - - - - - - 6 第二章方案流程简介- - - - - - - - - - - - - - - - - - 7 2.1 精馏装置流程- - - - - - - - - - - - - - - - - - - 7 2.2 工艺流程- - - - - - - - - - - - - - - - - - - - - 7 2.3 调节装置- - - - - - - - - - - - - - - - - - - - - 8 2.4 设备选用- - - - - - - - - - - - - - - - - - - - - 8 2.5 处理能力及产品质量- - - - - - - - - - - - - - - - 8 第三章精馏过程系统设计- - - - - - - - - - - - - - - - 9 3.1设计条件- - - - - - - - - - - - - - - - - - - - - - 9 3.2物料衡算及热量衡算- - - - - - - - - - - - - - - - - 10 3.3塔板数的计算- - - - - - - - - - - - - - - - - - - - 11 3.4精馏塔工艺设计- - - - - - - - - - - - - - - - - - - 16 3.5溢流装置的设计- - - - - - - - - - - - - - - - - - - 17 3.6塔板布置和其余结构尺寸的选取- - - - - - - - - - - - 18 3.7塔板流动性能校核- - - - - - - - - - - - - - - - - - 19 3.8负荷性能图- - - - - - - - - - - - - - - - - - - - 21 3.9 塔计算结果表- - - - - - - - - - - - - - - - - - -24

乙烯装置丙烯精馏塔优化设计_曹媛维

第40卷第9期2012年9月化学工程 CHEMICAL ENGINEERING (CHINA )Vol.40No.9Sep.2012 收稿日期:2011-11-01作者简介:曹媛维(1979—),女,硕士,工程师,主要从事乙烯装置的工艺设计工作,电话:(010)58676692, E-mail :caoyuanwei@hqcec.com 。乙烯装置丙烯精馏塔优化设计 曹媛维 (中国寰球工程公司,北京100029) 摘要:针对近年来大型乙烯装置中的丙烯精馏塔操作不稳定、能耗大的问题,利用PRO /Ⅱ软件模拟分析该塔流程,总结出随着装置规模大型化该塔采用多溢流塔板形式,计算中应考虑塔板形式对板效率取值的影响。当进料组成与设计工况不符或装置负荷增大时导致产品不达标的情况,可增设进料口在非设计工况下不同位置进料以满足分离的要求, 并且塔顶冷凝器和塔底再沸器需要考虑充分的设计余量。并创造性提出了,在传统工艺流程基础上在塔顶冷凝器后增设排放冷凝器进一步回收丙烯的节能优化方案,为实际生产提供建议性指导。关键词:丙烯精馏塔;操作波动;PRO /Ⅱ模拟中图分类号:TQ 051.81 文献标识码:B 文章编号:1005-9954(2012)09-0074-05DOI :10.3969/j.issn.1005-9954.2012.09.0017 Optimization design of propylene rectifying column in ethylene plant CAO Yuan-wei (China HuanQiu Contracting &Engineering Corporation ,Beijing 100029,China ) Abstract :According to high energy consumption and instable operation problems of propylene rectifying column in large-scale ethylene plants ,the propylene rectifying column system was simulated with PRO/Ⅱsoftware.The conclusion is that the influence of the tray type on the tray efficiency should be considered in calculation ,and it is better to use multi-overflow tray type for large-scale ethylene plant.If the propylene product is substandard in the inconsistent feed composition case or the increased duty case , the added feed nozzles are prefered to switch the diffierent feed location for different case.Enough design margin should be considered for the top condenser and the bottom reboiler.The energy saving optimization scheme that adding a new vent condenser after the top condenser to recover more propylene product is creatively put forward ,which provides the constructive guidance for the actual production.Key words :propylene rectifying column ;operation fluctuation ;PRO /Ⅱsimulation 丙烯主要用于生产聚丙烯、丙烯腈、环氧丙烷以 及异丙醇等, 是仅次于乙烯的重要石油化工原料[1] 。丙烯衍生物的快速发展带动了丙烯需求的快速增长, 据估计从2006年到2015年全球范围内丙烯需求仍以4.9%的速度持续增长,中国的丙烯需求预计年均 增长达到6.3%[2] 。目前从市场份额看,来自乙烯装置的丙烯占到59%,从炼厂轻烃分离装置回收的丙烯占到35%。本文针对乙烯装置实际运行中丙烯精馏塔进料组成和负荷波动大导致产品不合格、能耗高的问题,利用流程模拟软件PRO /Ⅱ优化该塔操作参数,并探索性地提出在冷凝器出口增设排放冷凝器进一步回收丙烯产品的工艺,为丙烯精馏塔在实际操作 中低能耗、平稳运行提供理论指导和建议。1原始工况的模拟计算 1.1 模拟计算条件 本模拟计算以80万t /a 乙烯装置丙烯精馏塔为例,该塔进料组成条件如表1所示。采出丙烯产品的规格按照GB/T 7716—2002中聚合级丙烯优等品(摩 尔分数99.6%),塔釜丙烯控制指标为摩尔分数≤2%。1.2模拟过程1.2.1 模拟图与模拟参数选择 工业生产中由于受到运输和加工制造的限制,将丙烯精馏塔分成双塔串联或并联操作,但在模拟

丙烷脱氢制丙烯.doc11讲解

丙烷脱氢制丙烯 丙烯是重要的有机化工原料,除用于生产聚丙烯外,还是生产丙烯睛,丁醉、辛醉、环氧丙烷、异丙醉、丙苯、丙烯酸、碳基醇及壬基酚等产品的主要原料,丙烯的齐聚物是提高汽油辛烷值的主要成分,丙烷催化脱氢制丙烯比烃类燕气裂解能产生更多的丙烯。当用燕气裂解生产丙烯时,丙烯收率最多只有33%、而用催化脱氢法生产丙烯,总收率可达74%一86%,用唯一原料生产唯一产品,催化脱氮的设备投资比烃类蒸气裂解低33%。并且采用催化脱氢的方法,能有效地利用液化石油气资源使之转变为有用的烯烃 丙烯是最早采用的石油化工原料,也是生产石袖化工产品的重要烯烃之一。各种分析表明,丙烯的需求增长速度已超过乙烯,而且这种趋势一直会延续。全球丙烯的消费量将由1997年的4 800万t增加到2000年的5200万t及2010年的7 500万t。其中,亚洲的增长速度最高。1991年到1996年亚太地区丙烯衍生产品的需求以年均9%的速度增长,而全球年均需求增长率为 5.5 %a 丙烯除用于生产聚丙烯外,还大量地作为生产丙烯睛、丁醇、辛醉、环氧丙烷、异丙醉、丙苯、丙烯酸、拨基醇及壬基酚等产品的主要原料,另外丙烯的齐聚物是提高汽油辛烷值的主要成分。丙烯与其它化学品不一样,它一般是以联产品或副产品得到。目前全球丙烯大约有70%来自蒸气裂解乙烯的联产,28%来自炼厂(主要是催化裂化装置精炼副产,自20世纪90年代以来由于现有来源不敷需要,丙烷脱氢已成为第三位的丙烯来源,1998年丙烷脱氢生产的丙烯约占世界丙烯总产量的2%。全现有丙烷脱氢生产装置概况见表la 丙烷催化脱氢制丙烯比烃类蒸气裂解能产生更多的丙烯。当用蒸气裂解生产丙烯时,丙烯收率最多只有33%、而用催化脱氢法生产丙烯,总收率可达74%一89%,用唯一原料生产唯一产品,催化脱氢的设备投资比烃类蒸气裂解低33。并且采用催化脱氢的方法,能有效地利用液化石油气资源使之转变为有用的烯烃丙烷脱氢制丙烯,原料丙烷主要来自液化石油气(LPG,目前国内的LPG主要作为民用燃料使用。1997年,用作民用燃料的LPG占LP(;商品总量的94.5%。已开工建设的长达4 212 km的“西气东输”管网工程将为长江中下游地区提供120亿扩/。的巨大天然气源;另外,中石化预计明年在东海开发新的天然气资

丙烷制丙烯的最佳发展时期到了

丙烷制丙烯的最佳发展时期到了 近20年来,全球丙烯需求量逐年增长,我国丙烯的供需缺口也在逐年扩大。目前丙烯产量70%左右来源于蒸汽裂解,20%~25%来自催化裂化。然而,在美国页岩气革命和2013年我国实施油品消费税新政的背景下,我国丙烯供应量或会出现紧张,丙烷供给却将相对过剩。为此,业内人士将目光投向了丙烷制丙烯这条路。 从丙烷到丙烯,如果问一个学化学的学生,他会告诉你,这就是一个简单的脱氢反应;但如果将这个问题抛给企业人士,他则会考虑:丙烷原料充足吗?丙烯下游是否过剩?技术团队是否完备?这条工艺会带来多少收益?一些分析人士认为,企业考虑的这些因素在当前都已不成问题,丙烷制丙烯的最佳发展时期到了! 原料有保障: 进口丙烷来源充足 原料的价格和供应量是丙烷脱氢制丙烯装置前景的核心。目前,丙烷的主要来源有炼油厂液化气、油田伴生气和湿性天然气凝析液,国内几乎全部来源于炼油厂。作为国内的两大炼油集团,

中石化和中石油在近两年开始珍惜手中的液化气资源,认为将其富含的碳资源烧掉可惜,都提出了要加强轻烃资源的综合利用。中石化曾在去年启动了炼油轻烃资源综合利用调研,旨在摸清旗下34家炼油企业的轻烃资源总量,找出中石化系统内轻烃资源最有效的整体利用路径;中石油也曾提出,要在2015年前解决液化气碳资源利用的问题。在此背景之下,其他企业的丙烷脱氢装置想要从两大集团手中拿到原料,难度可想而知。 但是,在联想控股战略投资总监严乐平看来,国内建设丙烷脱氢装置,其资源供应是完全可以保证的。他给出的理由是:国内炼油厂丙烷供应量较少且分散,硫含量还较高,因此国内丙烷脱氢企业多数还是要从进口市场采购丙烷,以保证装置的连续稳定运行,而目前液化丙烷市场的贸易量完全可以满足丙烷脱氢装置的原料需求。 中信建投证券研究发展部行业分析师胡??给出的数据证实了严乐平的观点。据统计,当前全球液化丙烷每年的贸易量为3500万~4000万吨,中国每年的进口量仅在150万~300万吨。“以国内所有丙烷脱氢项目100%负荷投产需求估算,我国新增的丙烷需求也只占全球丙烷贸易量的1/6。” 胡??说。

精馏塔设计

精馏塔设计 目录 § 1 设计任务书 (1) § 1.1 设计条件 (1) § 2 概述 (1) § 2.1 塔型选择 (1) § 2.2 精馏塔操作条件的选择 (3) § 2.3 再沸器选择 (4) § 2.4 工艺流程 (4) § 2.5 处理能力及产品质量 (4) § 3 工艺设计 (5) § 3.1 系统物料衡算热量衡算 (5) § 3.2 单元设备计算 (9) § 4 管路设计及泵的选择 (28) § 4.1 进料管线管径 (28) § 4.2 原料泵P-101的选择 (31) § 5 辅助设备的设计和选型 (32)

§ 5.1 贮罐………………………………………………………………………………… 32 § 5.2 换热设备…………………………………………………………………………… 34 § 6 控制方案…………………………………………………………………………………… 34 附录1~………………………………………………………………………………………… 35 参考文献………………………………………………………………………………………… 37 后 记 (38) §1 设计任务书 §1.1 设计条件 工艺条件:饱和液体进料,进料量丙烯含量x f =65%(摩尔百分数) 塔顶丙烯含量D x =98%,釜液丙烯含量w x ≤2%,总板效率为0.6。 操作条件:建议塔顶压力1.62MPa (表压) 安装地点:大连 §2 概述 蒸馏是分离液体混合物(含可液化的气体混合物)常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛的应用。其中,简单蒸馏与平衡蒸馏只能将混合物进行初步的分离。为了获得较高纯度的产品,应

化工原理课程设计--- 乙醇——水筛板精馏塔工艺设计

化工原理课程设计任务书 专业:班级: 姓名: 学号: 设计时间: 设计题目:乙醇——水筛板精馏塔工艺设计 (取至南京某厂药用酒精生产现场) 设计条件: 1. 常压操作,P=1 atm(绝压)。 2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。因沿 程热损失,进精馏塔时原料液温度降为90℃。 3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分 率)。 5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。 。 6.操作回流比R=(1.1——2.0)R min 设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计 算和选型。 2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负 荷性能图,筛孔布置图以及塔的工艺条件图。 3.写出该精流塔的设计说明书,包括设计结果汇总和对自己 设计的评价。 指导教师:时间 1设计任务

1.1 任务 1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒 精生产现场) 1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。 2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。 因沿程热损失,进精馏塔时原料液温度降为90℃。 3.塔顶产品为浓度92.41%(质量分率)的药用乙醇, 产量为40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03% (质量分率)。 5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶 采用全凝器,泡点回流。 6.操作回流比R=(1.1—2.0) R。 min 1.1.3 设计任务 1.完成该精馏塔工艺设计,包括辅助设备及进出口接 管的计算和选型。 2.画出带控制点的工艺流程示意图,t-x-y相平衡 图,塔板负荷性能图,筛孔布置图以及塔的工艺条 件图。 3.写出该精馏塔的设计说明书,包括设计结果汇总 和对自己设计的评价。 1.2 设计方案论证及确定 1.2.1 生产时日 设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。 1.2.2 选择塔型 精馏塔属气—液传质设备。气—液传质设备主要分为板式塔和填料塔两大类。该塔设计生产时日要求较大,由板式塔与填料塔比较[1]知:板式塔直径放大时,塔板效率较稳定,且持液量较大,液气比适应范围大,因此本次精馏塔设备选择板式塔。筛板塔是降液管塔板中结构最简单的,它与泡罩塔相比较具有下列优点:生产能力大10-15%,板效率提高15%左右,而压降可降低30%左右,另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右,安装容易,也便于

丙烷制丙烯

丙烷脱氢制丙烯工业放大侧线试验 可行性报告

丙烷脱氢制丙烯工业放大侧线试验可行性报告 1、概述 丙烯是石化工业主要的烯烃原料之一,是重要的有机化工原料,用于生产聚丙烯、异丙苯、羰基醇、丙烯腈、环氧丙烷、丙烯酸、异丙醇等。近年来,市场对丙烯的需求量激增,供需矛盾突出,丙烯价格日益上涨。 目前丙烯约有70%来自蒸汽裂解装置,28%来自炼厂的催化裂化装置。丙烯价格的持续走高和生产丙烯效益的改进已加快了对替代技术的投资,其中丙烷脱氢制丙烯的生产技术日益受到重视。随着新一轮石化企业的扩建,我国的丙烷原料资源日趋集中和价廉,因此将低附加值的丙烷通过脱氢催化反应制得市场紧缺的丙烯,具有重大的经济和社会效益。国外UOP公司的Oleflex工艺、Air Product & Chemical公司的Catofin工艺、Phillips公司的Star 工艺和Snamprogetti SPA 公司的FBD-4和德国Linde公司的Linde工艺等几种技术已经实现了工业化,但是国内尚没有丙烷脱氢制丙烯的工业生产报道。 2、市场需求及丙烷原料预测 2.1 国外市场分析 世界丙烯的生产和消费主要集中在发达国家和地区,世界10个最大的丙烯生产商的丙烯生产能力约占世界总生产能力的33%,预计世界丙烯的需求量到2010年将达到8600万t。亚太地区的丙烯消费结构主要是聚丙烯聚丙烯和丙烯腈。日本、西欧和美国的丙烯市场发展已经成熟,其需求增长速度较低,亚洲(不包括日本)仍将保持较快的增长速度,亚洲丙烯的供应缺口逐年增加。 由于全球对丙烯的需求稳定保持在6%或6%以上的年增长率,丙烯的其它衍生物对丙烯的需求也保持强劲势头。美国、西欧、日本约占世界丙烯需求量的72.7%。用途大致为聚丙烯50%,丙烯腈12%,环氧丙烷7%,异丙苯7%,异丙醇4%,羰基醇9%,其它9%。在一些发展中国家聚丙烯占丙烯的消费比例高达60%以上。2000年美国丙烯的有效供应量超过了1800万吨,美国的丙烯消费需求以年均4.2%的速度递增,明显高于乙烯的增长速度。西欧同时期的丙烯消费需求将以年均3%的速度增长。亚洲丙烯的供应缺口逐年增加。总之,全球丙烯需求仍将保持较快的增长势头,供需的分布格局不会发生大的变化,而未来的丙烯新增生产能力不能满足快速增长的丙烯需求,未来10年世界仍将面临丙烯原料短缺的局面。 2.2 国内市场分析

丙烷脱氢制丙烯

丙烷脱氢制丙烯 摘要: 丙烷广泛存在与天然气和原油中,利用方法一般都是直接做燃料,造成了资源的极大浪费,同时也污染了环境,对丙烷的资源化利用具有深远意义。丙烯是一种重要的有机化工原料,目前全球对于丙烯的需求量逐年上涨,传统的生产方法已不能满足要求,人们正在寻求更加广泛更加经济的丙烯来源。丙烷脱氢制备丙烯原料来源广泛,设备投资低,能够充分利用油田气,已经引起了重视。本文主要就几种丙烷脱氢制备丙烯的研究进展进行论述,介绍丙烷脱氢制备丙烯的各种工艺。 关键词:丙烷资源化利用;丙烯;丙烷催化脱氢 引言 原油或天然气处理后,可以从成品油中得到丙烷。丙烷通常用来作为发动机、烧烤食品及家用取暖系统的燃料。天然气和石油资源中含有大量的丙烷,油田气中丙烷约占6%,液化石油气约占60%,湿天然气约占15%,这些丙烷必须除去,因为丙烷缩合后会堵塞天然气管道,炼厂气为石油炼厂副产的气态烃,不同来源的炼厂气其组成各异,主要含有C4以下的烷烃[1]。这些来源广泛的丙烷大部分被用作民用燃气,浪费了资源并造成了污染,所以对丙烷的资源化利用引起了广泛关注。目前丙烷的利用主要为制备丙烯和丙烯衍生物如丙烯腈、丙烯醛、丙烯酸以及马来酸酐等,其中丙烯是三大合成原料的基本原料,通过丙烯的聚合、氧化、氨氧化、卤化、烷基化、水合、羰基化、齐聚等反应,可以得到大量的有机化工产品,如聚丙烯、环氧乙烷、丙烯腈、丙烯酸、丙烯醛、丙酮、甘油、乙丙橡胶等[2]。其中聚丙烯增长量最大,具有较高的耐冲击性,机械性质强韧,抗多种有机溶剂和酸碱腐蚀,在工业界有广泛的应用[3]。目前生产丙烯的方法主要为蒸汽裂解乙烯联产丙烯和催化裂化炼厂气,已经不能满足丙烯市场的缺口,所以丙烷脱氢制丙烯具有广阔的发展前景和充分的现实意义。 表1 2010-2014年丙烯产品供需平衡表(单位:万吨/年)年份2010年2011年2012年2013年2014年 产能1610 1810 1888 2096.5 2501

苯-甲苯筛板精馏塔的设计

淮阴工学院 课程设计说明书 作者:学号: 系 (院): 专业: 题目:苯-甲苯筛板精馏塔的设计 指导者: 2010年6月

化工原理课程设计说明书中文摘要 精馏是利用混合液中组分挥发度的差异,实现组分高纯度分离的多级蒸馏操作,即同时实现多次部分汽化和部分冷凝的过程。实现精馏操作的主体设备是精馏塔。 塔设备是能够实现蒸馏的气液传质设备,广泛应用于化工、石油化工、石油等工业中,其结构形式基本上可以分为板式塔和填料塔两大类。 我国石油工业具有一定的水平,但还是一个发展中的国家,摆在我们石油工作者面前的任务是繁重的。因此必须坚持独立自主、自力更生,革新挖潜,全面提高,综合利用,大搞化工原料,赶超世界先进水平。 关键词:精馏塔塔板苯—甲苯塔板负荷

淮阴工学院 化工原理课程设计任务书 设计条件: 设计内容: 1、精馏塔的物料衡算; 2、塔板数、压降的计算; 3、精馏塔的工艺条件及有关物性数据的计算; 4、精馏塔的相关工艺尺寸计算; 5、绘制精馏塔设计条件图。 指导教师:胡涛 2010年 6 月

目录 1. 引言 (6) 1.1 塔设备的分类 (6) 1.2 塔设备在化工生产中的作用和地位 (6) 1.3 设计条件 (6) 1.4 问题研究 (6) 2. 板式塔的设计 (6) 2.1 工业生产对塔板的要求 (6) 2.2 设计方案的确定 (7) 2.2.2 操作压力的选择 (7) 2.2.3 进料热状况的选择 (7) 2.2.4 加热方式的选择 (7) 2.2.5 回流比的选择 (7) 3 工艺流程图 (7) 4. 工艺计算及主体设备的计算 (8) 4.1 精馏塔的物料衡算 (8) 4.1.1 原料液及塔顶、塔底产品的摩尔分率 (8) 4.1.2 原料液及塔顶、塔底产品的平均摩尔质量 (8) 4.1. 3 物料衡算 (8) 4.2 塔板数的确定 (9) 4.2.1 理论板层数NT的求取 (9) 4.2.2 实际板层数的求解 (9) 4.3 精馏塔的工艺条件及有关物性数据计算 (9) 4.3.1 操作压力的计算 (10) 4.3.2 操作温度计算 (11) 4.3.3 平衡摩尔质量的计算 (11) 4.3.4 平均密度的计算 (12) 4.3.5 液体平均表面张力计算 (13) 4.3.6 液体平均粘度计算 (13) 4.4 精馏塔的塔体工艺尺寸计算 (14) 4.4.1 塔径计算 (14) 4.4.2 精馏塔有效高度的计算 (15) 4.5. 塔板主要工艺尺寸的计算 (15) 4.5.1 溢流装置计算 (15) 4.5.2 塔板布置 (16)

相关主题
文本预览
相关文档 最新文档