当前位置:文档之家› 3.2.1 复数代数形式的加、减运算及其几何意义

3.2.1 复数代数形式的加、减运算及其几何意义

3.2.1 复数代数形式的加、减运算及其几何意义
3.2.1 复数代数形式的加、减运算及其几何意义

复数代数形式的四则运算

3.2.1 复数代数形式的加、减运算及其几何意义

预习课本P107~108,思考并完成下列问题

(1)复数的加法、减法如何进行?复数加法、减法的几何意义如何?

(2)复数的加、减法与向量间的加减运算是否相同?

1.复数的加、减法法则

设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R), 则z 1+z 2=(a +c )+(b +d )i , z 1-z 2=(a -c )+(b -d )i. 2.复数加法运算律

设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1, (z 1+z 2)+z 3=z 1+(z 2+z 3). 3.复数加、减法的几何意义

设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→

为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→

的终点并指向OZ 1――→

的向量所对应的复数.

[点睛] 对复数加、减法几何意义的理解

它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处

理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.

1.判断(正确的打“√”,错误的打“×”) (1)复数与向量一一对应.( )

(2)复数与复数相加减后结果只能是实数.( )

(3)因为虚数不能比较大小,所以虚数的模也不能比较大小.( ) 答案:(1)× (2)× (3)×

2.已知复数z 1=3+4i ,z 2=3-4i ,则z 1+z 2等于( ) A .8i B .6 C .6+8i D .6-8i

答案:B

3.已知复数z 满足z +i -3=3-i ,则z 等于( ) A .0 B .2i C .6 D .6-2i

答案:D

4.在复平面内,复数1+i 与1+3i 分别对应向量OA ――→和OB ――→

,其中O 为坐标原点,则|AB ――→

|等于( )

A. 2 B .2 C.10 D .4

答案:B

[典例] (1)计算:(2-3i)+(-4+2i)=________.

(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________.

[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.

(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,

所以?????

5x -5y =5,-3x +4y =-3,

解得x =1,y =0,

所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,

所以|z 1+z 2|= 2. [答案] (1)-2-i (2) 2

复数代数形式的加、减法运算技巧

(1)复数代数形式的加、减法运算实质就是将实部与实部相加减,虚部与虚部相加减之后分别作为结果的实部与虚部,因此要准确地提取复数的实部与虚部.

(2)算式中若出现字母,首先确定其是否为实数,再确定复数的实部与虚部,最后把实部与实部、虚部与虚部分别相加减.

(3)复数的运算可以类比多项式的运算:若有括号,括号优先;若无括号,可以从左到右依次进行计算.

[活学活用]

已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.

解析:由条件知z 1+z 2=a 2

-2a -3+(a 2

-1)i ,又z 1+z 2是纯虚数,所以?????

a 2-2a -3=0,

a 2

-1≠0,

解得a =3.

答案:3

复数加减运算的几何意义

[典例]

表示0,3+2i ,-2+4i.求:

(1) AO ――→

表示的复数; (2)对角线CA ――→

表示的复数; (3)对角线OB ――→

表示的复数.

[解] (1)因为AO ――→=-OA ――→,所以AO ――→

表示的复数为-3-2i.

(2)因为CA ――→=OA ――→--OC ――→,所以对角线CA ――→

表示的复数为(3+2i)-(-2+4i)=5-2i.

(3)因为对角线OB ――→=OA ――→+OC ――→,所以对角线OB ――→

表示的复数为(3+2i)+(-2+4i)=1+6i.

复数与向量的对应关系的两个关注点

(1)复数z =a +b i(a ,b ∈R)是与以原点为起点,Z (a ,b )为终点的向量一一对应的. (2)一个向量可以平移,其对应的复数不变,但是其起点与终点所对应的复数可能改变.

[活学活用]

复平面内三点A ,B ,C ,A 点对应的复数为2+i ,向量BA ――→

对应的复数为1+2i ,向量BC ――→

对应的复数为3-i ,求点C 对应的复数.

解:∵BA ――→对应的复数为1+2i ,BC ――→

对应的复数为3-i. ∴AC ――→=BC ――→-BA ――→

对应的复数为(3-i)-(1+2i)=2-3i. 又∵OC ――→=OA ――→+AC ――→,

∴C 点对应的复数为(2+i)+(2-3i)=4-2i.

[典例] ) A .1 B.12 C .2

D. 5

(2)若复数z 满足|z +3+i|≤1,求|z |的最大值和最小值.

[解析] (1)设复数-i ,i ,-1-i 在复平面内对应的点分别为Z1,Z2,Z3, 因为|z+i|+|z-i|=2,

|Z1Z2|=2,所以点Z 的集合为线段Z1Z2.

问题转化为:动点Z 在线段Z1Z2上移动,求|ZZ3|的最小值,因为|Z1Z3|=1. 所以|z+i+1|min=1. [答案] A

(2)解:如图所示, |OM ――→

|=(-3)2+(-1)2=2. 所以|z |max =2+1=3,|z |min =2-1=1.

[一题多变]

1.[变条件、变设问]若本例题(2)条件改为已知|z |=1且z ∈C ,求|z -2-2i|(i 为虚数单

位)的最小值.

解:因为|z |=1且z ∈C ,作图如图:

所以|z -2-2i|的几何意义为单位圆上的点M 到复平面上的点P (2,2)的距离,所以|z -2-2i|的最小值为|OP |-1=22-1.

2.[变条件]若题(2)中条件不变,求|z -3|2+|z -2i|2的最大值和最小值.

解:如图所示,在圆面上任取一点P ,与复数z A =3,z B =2i 对应点A ,B 相连,得向量PA ――→,PB ――→,再以PA ――→,PB ――→

为邻边作平行四边形.

P 为圆面上任一点,z P =z ,

则2|PA ――→|2+2|PB ――→|2=|AB ――→|2+(2|PO ′――→|)2=7+4|PO ′――→

|2,(平行四边形四条边的平方和等于对角线的平方和),

所以|z -3|2+|z -2i|2=12????7+4????z -32-i 2. 而??

?

?

z -

32-i max =|O ′M |+1=1+432, ????z -32-i min

=|O ′M |-1=432-1.

所以|z -3|2+|z -2i|2的最大值为27+243,最小值为27-243.

层级一 学业水平达标

1.已知z =11-20i ,则1-2i -z 等于( ) A .z -1 B .z +1 C .-10+18i

D .10-18i

解析:选C 1-2i -z =1-2i -(11-20i)=-10+18i. 2.若复数z 满足z +(3-4i)=1,则z 的虚部是( ) A .-2 B .4 C .3

D .-4

解析:选B z =1-(3-4i)=-2+4i ,故选B.

3.已知z 1=2+i ,z 2=1+2i ,则复数z =z 2-z 1对应的点位于( ) A .第一象限

B .第二象限

C .第三象限

D .第四象限

解析:选B z =z 2-z 1=(1+2i)-(2+i)=-1+i ,实部小于零,虚部大于零,故位于第二象限.

4.若z 1=2+i ,z 2=3+a i(a ∈R),且z 1+z 2所对应的点在实轴上,则a 的值为( ) A .3 B .2 C .1

D .-1

解析:选D z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i.∵z 1+z 2所对应的点在实轴上,∴1+a =0,∴a =-1.

5.设向量OP ――→,PQ ――→,OQ ――→

对应的复数分别为z 1,z 2,z 3,那么( ) A .z 1+z 2+z 3=0 B .z 1-z 2-z 3=0 C .z 1-z 2+z 3=0

D .z 1+z 2-z 3=0

解析:选D ∵OP ――→+PQ ――→=OQ ――→

,∴z 1+z 2=z 3,即z 1+z 2-z 3=0.

6.已知x ∈R ,y ∈R ,(x i +x )+(y i +4)=(y -i)-(1-3x i),则x =__________,y =__________.

解析:x +4+(x +y )i =(y -1)+(3x -1)i

∴????? x +4=y -1,x +y =3x -1,解得?????

x =6,y =11.

答案:6 11

7.计算|(3-i)+(-1+2i)-(-1-3i)|=________.

解析:|(3-i)+(-1+2i)-(-1-3i)|=|(2+i)-(-1-3i)|=|3+4i|= 32+42=5.

答案:5 8.已知z 1=3

2

a +(a +1)i ,z 2=-33

b +(b +2)i(a ,b ∈R),若z 1-z 2=43,则a +b =________.

解析:∵z 1-z 2=

32a +(a +1)i -[-33b +(b +2)i]=????32a +33b +(a -b -1)i =43,

由复数相等的条件知?????

32a +33b =43,

a -

b -1=0,

解得?

????

a =2,

b =1.∴a +b =3.

答案:3

9.计算下列各式.

(1)(3-2i)-(10-5i)+(2+17i);

(2)(1-2i)-(2-3i)+(3-4i)-(4-5i)+…+(2 015-2 016i). 解:(1)原式=(3-10+2)+(-2+5+17)i =-5+20i.

(2)原式=(1-2+3-4+…+2 013-2 014+2 015)+(-2+3-4+5-…-2 014+2 015-2 016)i =1 008-1 009i.

10.设z 1=x +2i ,z 2=3-y i(x ,y ∈R),且z 1+z 2=5-6i ,求z 1-z 2. 解:∵z 1=x +2i ,z 2=3-y i , ∴z 1+z 2=x +3+(2-y )i =5-6i ,

∴????? x +3=5,2-y =-6,解得?

????

x =2,y =8, ∴z 1=2+2i ,z 2=3-8i ,

∴z 1-z 2=(2+2i)-(3-8i)=-1+10i.

层级二 应试能力达标

1.设z ∈C ,且|z +1|-|z -i|=0,则|z +i|的最小值为( ) A .0 B .1 C.22

D.12

解析:选C 由|z +1|=|z -i|知,在复平面内,复数z 对应的点的轨迹是以(-1,0)和(0,1)为端点的线段的垂直平分线,即直线y =-x ,而|z +i|表示直线y =-x 上的点到点(0,-1)的距离,其最小值等于点(0,-1)到直线y =-x 的距离即为

2

2

. 2.复平面内两点Z 1和Z 2分别对应于复数3+4i 和5-2i ,那么向量Z 1Z 2――→

对应的复数为( )

A .3+4i

B .5-2i

C .-2+6i

D .2-6i

解析:选D Z 1Z 2――→=OZ 2――→-OZ 1――→

,即终点的复数减去起点的复数,∴(5-2i)-(3+4i)=2-6i.

3.△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点是△ABC 的( )

A .外心

B .内心

C .重心

D .垂心

解析:选A 由复数模及复数减法运算的几何意义,结合条件可知复数z 的对应点P 到△ABC 的顶点A ,B ,C 距离相等,∴P 为△ABC 的外心.

4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,若向量OA ――→,OB ――→

对应

的复数分别是3+i ,-1+3i ,则CD ――→

对应的复数是( )

A .2+4i

B .-2+4i

C .-4+2i

D .4-2i

解析:选D 依题意有CD ――→=BA ――→=OA ――→-OB ――→

.而(3+i)-(-1+3i)=4-2i ,故CD ――→

对应的复数为4-2i ,故选D.

5.设复数z 满足z +|z |=2+i ,则z =________. 解析:设z =x +y i(x ,y ∈R),则|z |= x 2+y 2.

∴x +y i +x 2+y 2=2+i.

∴???

x +x 2+y 2=2,y =1,解得?????

x =34,y =1.

∴z =3

4+i.

答案:3

4

+i

6.在复平面内,O 是原点,OA ――→,OC ――→,AB ――→

对应的复数分别为-2+i,3+2i,1+5i ,那么BC ――→

对应的复数为________.

解析:BC ――→=OC ――→-OB ――→=OC ――→-(OA ――→+AB ――→

)=3+2i -(-2+i +1+5i)=(3+2-1)+(2-1-5)i =4-4i.

答案:4-4i

7.在复平面内,A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i. (1)求向量AB ――→,AC ――→,BC ――→

对应的复数; (2)判断△ABC 的形状. (3)求△ABC 的面积.

解:(1)AB ――→

对应的复数为2+i -1=1+i , BC ――→

对应的复数为-1+2i -(2+i)=-3+i , AC ――→

对应的复数为-1+2i -1=-2+2i.

(2)∵|AB ――→|=2,|BC ――→|=10,|AC ――→

|=8=22, ∴|AB ――→|2+|AC ――→|2=|BC ――→

|2,∴△ABC 为直角三角形. (3)S △ABC =1

2

×2×22=2.

8.设z =a +b i(a ,b ∈R),且4(a +b i)+2(a -b i)=33+i ,又ω=sin θ-icos θ,求z 的值和|z -ω|的取值范围.

解:∵4(a +b i)+2(a -b i)=33+i ,∴6a +2b i =33+i ,

∴??

?

6a =33,2b =1,

∴???

a =32,

b =1

2.

∴z =

32+1

2

i , ∴z -ω=???

?32+12i -(sin θ-icos θ) =

????32-sin θ+????12

+cos θi

∴|z -ω|= ????32-sin θ2+????12

+cos θ2

= 2-3sin θ+cos θ =

2-2

???

?32sin θ-12cos θ=

2-2sin ???

?θ-π

6, ∵-1≤sin ???

?θ-π

6≤1, ∴0≤2-2sin ????θ-π

6≤4,∴0≤|z -ω|≤2, 故所求得z =32+1

2

i ,|z -ω|的取值范围是[0,2].

复数代数形式的加减运算及其几何意义(教案)

新授课:3.2.1 复数代数形式的加减运算及其几何意义 教学目标 重点:复数代数形式的加法、减法的运算法则. 难点:复数加法、减法的几何意义. 知识点:.掌握复数代数形式的加、减运算法则; .理解复数代数形式的加、减运算的几何意义. 能力点:培养学生渗透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力. 教育点:通过探究学习,培养学生互助合作的学习习惯,培养学生对数学探索和渴求的思想. 在掌握知识的同时,形成良好的思维品质和锲而不舍的钻研精神. 自主探究点:如何运用复数加法、减法的几何意义来解决问题. 考试点:会计算复数的和与差;能用复数加、减法的几何意义解决简单问题. 易错易混点:复数的加法与减法的综合应用. 拓展点:复数与其他知识的综合. 一、引入新课 复习引入 .虚数单位:它的平方等于,即; .对于复数: 当且仅当时,是实数; 当时,为虚数; 当且时,为纯虚数; 当且仅当时,就是实数. .复数集与其它数集之间的关系:. 一一对应 .复数几何意义: 复数复平面内的向量 我们把实数系扩充到了复数系,那么复数之间是否存在运算呢?答案是肯定的,这节课我们就来研究复数的加减运算. 【设计意图】通过复习回顾复数概念、几何意义等相关知识,使学生对这一知识结构有个清醒的初步认知,逐渐过渡到对复数代数形式的加减运算及其几何意义的学习情境,为探究本节课的新知识作铺垫. 二、探究新知

探究一:复数的加法 .复数的加法法则 我们规定,复数的加法法则如下: 设,是任意两个复数,那么: 提出问题: ()两个复数的和是个什么数,它的值唯一确定吗? ()当时,与实数加法法则一致吗? ()它的实质是什么?类似于实数的哪种运算方法? 学生明确: ()仍然是个复数,且是一个确定的复数; ()一致; ()实质是实部与实部相加,虚部与虚部相加,类似于实数运算中的合并同类项.【设计意图】加深对复数加法法则的理解,且与实数类比,了解规定的合理性:将实数的运算通性、通法扩充到复数,有利于培养学生的学习兴趣和创新精神. .复数加法的运算律 实数的加法有交换律、结合律,复数的加法满足这些运算律吗? 对任意的,有 (交换律), (结合律). 【设计意图】引导学生根据实数加法满足的运算律,大胆尝试推导复数加法的运算律,学生先独立思考,然后小组交流.提高学生的建构能力及主动发现问题,探究问题的能力. .复数加法的几何意义 复数与复平面内的向量有一一对应关系,那么请同学们猜想一下,复数的加法也有这种对应关系吗? 设分别与复数对应,则有,由平面向量的坐标运算有 . 这说明两个向量的和就是与复数对应的向量.因此,复数的加法可以按照向量加法的平行四边形法则来进行.这就是复数加法的几何意义.如图所示:

高中数学选修1,2《复数代数形式的四则运算》教案

高中数学选修1,2《复数代数形式的四则运算》教案 知识与技能:掌握复数的四则运算; 过程与方法:理解并掌握虚数单位与实数进行四则运算的规律 情感态度与价值观:通过复数的四则运算学习与掌握,进一步理解复数引发学生对数学学习的兴趣,激起学生的探索求知欲望。 教学重难点 熟练运用复数的加减法运算法则。 教学过程 教学设计流程 一、导入新课: 复数的概念及其几何意义; 二、推进新课: 建立复数的概念之后,我们自然而然地要讨论复数系的各种运算问题。 设Z1 =a+bi, Z2 =c+di是任意两个复数,我们规定: 1、复数的加法运算法则:Z1+Z2=(a+从)+(b+d)i 2、复数的加法运算律: 交换律:Z1+Z2=Z2+Z1 结合律:Z1+Z2+Z3=Z1+(Z2+Z3) 3、复数加法的几何意义: 4、复数的减法运算法则: Z1-Z2=(a-c)+(b-d)i 5、复数减法的几何意义: 三、例题讲解 例1:计算:(7-3i)+(-1-i)-(6+3i)

课后小结 复数的加法与减法的运算及几何意义 课后习题 课本习题3.2 A组1题、2题、3题. 高中数学选修1-2《复数代数形式的四则运算》教案【二】 教学目标: 知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算 过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题 情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。 教学重点:复数代数形式的除法运算。 教学难点:对复数除法法则的运用。 教学过程: 学生探究过程: 1. 复数的加减法的几何意义是什么? 2. 计算(1) (2) (3) 3. 计算:(1) (2) (类比多项式的乘法引入复数的乘法) 讲解新课: 1.复数代数形式的乘法运算 ①.复数的乘法法则:。 例1.计算(1) (2) (3) (4)

复数的几何意义--教案

复数的几何意义 教学目标 1. 了解复数的几何意义,会用复平面内的点和向量来表示复数。 2. 了解复数加、减法的几何意义,进一步体会数形结合的思想。 教学重点 复数的几何意义与复数的加、减法的几何意义。 教学过程 前面我们是从“数”的角度研究了复数的概念及其四则运算,本节课我们将从“形”的角度来研究复数的几何表示和复数加减法的几何意义。 一、 问题情境 我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示,那么,复数是否也能用点来表示呢? 二、 学生活动 知识回顾: ①形如bi a +的数叫复数,通常用字母z 表示,即bi a z +=),(R b a ∈,其中a 与b 分别叫做复数的实部与虚部。???=≠=+=时为纯虚数)当虚数 (实数 (复数0)(0) 0a b b bi a z 。 ②两个复数相等的充要条件是它们的实部与虚部分别相等 即 ???==?+=+d b c a di c bi a 。 问题1 复数相等的充要条件表明,任何一个复数bi a +都可以由一个有序实数对),(b a 惟一确定,而有序实数对),(b a 与平面直角坐标系中的点是一一对应的,那么,我们怎么用平面内的点来表示复数呢?

问题2 我们知道平面直角坐标系中的点A 与以原点O 为起点、A 为终点的向量OA 是一一对应的,那么复数能用平面向量来表示吗? 三、 建构数学 师生共同活动: 1. 在平面直角坐标系xOy 中,以复数bi a z +=的实部a 为横坐标、虚部b 为纵坐标就确定了点),(b a Z ,我们可以用点),(b a Z 来表示复数bi a +,这就是复数的几何意义。 2. 建立了直角坐标系来表示复数的平面叫做复平面(也称为高斯平面),x 轴叫做实轴,y 轴叫做虚轴。实轴上的的点都表示实数,除原点外虚轴上的点都表示虚数。 3. 因为复平面内的点),(b a Z 与以原点O 为起点、Z 为终点的向量一一对应(实数0与零向量对应),所以我们也可以用向量OZ 来表示复数bi a +,这也是复数的几何意义。 4. 根据上面的讨论,我们可以得到复数bi a z +=、复平 面内的点),(b a Z 和平面向量OZ 这间的关系(如图)。今后, 常把复数bi a z +=说成点Z 或向量(并且规定相等的 向量表示同一个复数) 5. 相对于复数的代数形式bi a z +=,我们把点),(b a Z 称为复数z 的几何形式,向量称为复数的向量形式。 四、数学运用 运用1 (1)例1 在复平面内,分别用点和向量表示下列复数 4,i +2,i -,i 31+-,i 23-

第二讲 复数的模及其几何意义

第二讲 复数的模及其几何意义 (一)复数模的运算 复数()R b a bi a ∈+,的模:z = ; 例1. 已知84z z i +=-,求复数z 。 例2. 已知复数12cos ,sin z i z i θθ=-=+,求12z z ?的最值。 运算律: ; ; ; 例1:已知()()() 2321331i i i z --+=,则—z = 例2:复数()()()223321i a i a i z ---=,则3 2=z ,则a =

(二)复数的几何意义 1. 复数加法,减法的运算的几何意义满足 ; 2. 21z z -表示复平面上 ; 例1:复平面内,说出下列复数z 对应的点的集合构成的图形; (1)1z = (2)1z i -+=(3)4z i z i ++-= (4)|1|||z z i +=- 例2:(1)若 2=z ,则i z +-1的取值范围为 。 (2)已知C z ∈,且132=--i z ,求cos sin z i θθ--?的最大值和最小值。 (3)若 622=-++i z i z ,则i z 5-的取值范围为 。 (4)复平面内,曲线11=+-i z 关于直线x y =的对称曲线方程为 。

例3:已知1z =,设2 1u z i =-+,求u 的取值范围。 例4:已知123,5z z ==,126z z +=,求12z z -的值。 (三)综合问题 例1. 已知复数z 的实部大于零,且满足)()cos sin z i R θθθ= +∈,2z 的虚部为2. (1)求复数z ; (2)设22 z z z z -、、在复平面上的对应点分别为,,A B C ,求AB AC ? 的值.

17.3复数的几何意义和三角形式学习资料

南京商业学校教案 授课日期2015年月日第周时数课型新课课题§17.3复数的几何意义和三角形式 教学目标知识目标:了解复平面的概念;掌握复数的几何表示和向量表示; 理解复数的模、辐角及辐角主值的概念;掌握复数的 三角形式及其特征。 能力目标:会在复平面内描出表示复数的点及向量;会求复数的模和辐角、和辐角主值(特殊角);会进行复数的三 角形式与代数形式的互化。 情感目标:培养学生数形结合的数学思想和辩证唯物主义思想。 教学重点用复平面上的点、向量和三角形式表示复数;复数的模和辐角、辐角主值的概念。 教学难点复数几何表示法的理解;复数几种表示形式的互化;复数辐角的求法。 教学资源课本,教学参考书,学习指导书,网络 教法与学法教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。 学情分析(含更新、补充、删节内容) 复数的几何表示和向量表示是复数的两种常见形式,复数的向量表示学生不易理解的,教学时要充分揭示复数与向量之间的关系,并借助向量进一步加强学生对复数的理解。 板书设计 17.3复数的几何意义和三角形式 1. 复平面例1 例3 2. 复数的几何表示 3.复数的向量表示例2 4.复数的三角形式

教后记

教学程序和教学内容(包括课外作业和板书设计) 师生活动 一、引入新课 根据复数的定义,复数表示为)(R b ,a bi a z ∈+=的形式,我们把这种形式叫做复数的代数形式,复数还有其他表现形式吗?这些表示形式之间有什么关系? 二、讲授新课 1.复平面 在平面上建立直角坐标系xOy ,横轴、纵轴上的坐标分别表示复数的实部和虚部,这样的平面叫做复平面,其中横轴叫做实轴,纵轴叫做虚轴。 2.复数的几何表示 有序实数对()b ,a 与直角坐标系内的点一一对应的,由复数代数形式bi a z +=可以知道,任何一个复数)(R b ,a bi a z ∈+=,都可以有一个有序的实数对(b ,a )唯一确定,即复数 图1 bi a z +=与有序实数对(b ,a )之间一一对应。由此可知,复数bi a z +=与复平面内的点)(b ,a Z 之间是一一对应的(如图1所示),即任何复数bi a z +=都可以用复平面内的点)(b ,a Z 来表示。我们把这种表示形式叫做复数的几何表示。 想一想:实数、纯虚数、虚数表示的点分别在复平面的什么位置? (复平面内,表示实数的点都在实轴上,表示纯虚数的点都在虚轴上,表示非纯虚数的点分别在四个象限内.) 3. 复数的向量表示 直角坐标系内的点)(b ,a Z 与始点在原点的向量)(b ,a OZ =是一一对应的,因此,复数bi a z +=也与向量)(b ,a OZ =一一对应,其中复数0对应零向量,任何复数bi a z +=可以表示为复平面内以原点O 为起点的向量OZ ,我们把这种表示像是叫做复数的向量表示法。 r 学生思考并回答 图2 y Z(b ,a ) O x b a

典型例题:复数的代数形式及其运算

复数的代数形式及其运算 例1.计算: i i i i i 2 1 2 1 ) 1( ) 1( 2005 40 40 + + - + + - - + 解:提示:利用i i i i= ± = ±2005 2,2 ) 1( 原式=0 变式训练1: 2 = (A)1 -(B) 1 22 +(C) 1 22 -+(D)1 解:21 2 ===-+故选C; 例2. 若0 1 2= + +z z,求2006 2005 2003 2002z z z z+ + + 解:提示:利用z z z= =4 3,1 原式=2 ) 1(4 3 2002- = + + +z z z z 变式训练2:已知复数z满足z2+1=0,则(z6+i)(z6-i)=▲ . 解:2 例3. 已知4, a a R >∈,问是否存在复数z,使其满足ai z i z z+ = + ?3 2(a∈R),如果存在,求出z的值,如果不存在,说明理由 解:提示:设) , (R y x yi x z∈ + =利用复数相等的概念有 ? ? ? = = + + a x y y x 2 3 2 2 2 3 4 2 2 2> ? ? = - + + ? a y y i a a z a 2 16 2 2 4 | | 2 - ± - + = ? ≤ ? 变式训练3:若 (2) a i i b i -=+,其中i R b a, ,∈是虚数单位,则a+b= __________

解:3 例4. 证明:在复数范围内,方程255||(1)(1)2i z i z i z i -+--+=+(i 为虚数单位)无解. 证明:原方程化简为 2||(1)(1)1 3.z i z i z i +--+=-设 yi x z += (x 、y∈R,代入上述方程得22221 3.x y xi yi i +--=- 221(1)223(2)x y x y ?+=?∴?+=?? 将(2)代入(1) ,整理得281250. x x -+=160,()f x ?=-<∴方程无实数解,∴原方程在复数范围内无解. 变式训练4:已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a∈R, 若12z z -<1z ,求a 的取值范围. 解:由题意得 z 1=151i i -++=2+3i, 于是12z z -=42a i -+1z =13. 13,得a 2-8a +7<0,1

复数代数形式的四则运算

复数代数形式的四则运算(教学设计)(1) §3.2.1复数代数形式的加减运算及几何意义 教学目标: 知识与技能目标: 掌握复数代数形式的加法、减法运算法则,能进行复数代数形式加法、减法运算,理解并掌握复数加法与减法的几何意义 过程与方法目标: 培养学生参透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力。 情感、态度与价值观目标: 培养学生学习数学的兴趣,勇于创新的精神,并且通过探究学习,培养学生互助合作的学习习惯,形成良好的思维品质和锲而不舍的钻研精神。 教学重点:复数代数形式析加法、减法的运算法则。 教学难点:复数加减法运算的几何意义。 教学过程: 一、复习回顾: 1、复数集C 和复平面内所有的点所成的集合是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应. 这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法 2、. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=, b a -),(2121y y x x --= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差 3、 若),(11y x A ,),(22y x B ,则()1212,y y x x --= 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标 即 AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1) 二、师生互动、新课讲解: 1、复数代数形式的加减运算 (1)复数z 1与z 2的和的定义:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i . (2)复数z 1与z 2的差的定义:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i . (3)复数的加法运算满足交换律: z 1+z 2=z 2+z 1. 证明:设z 1=a 1+b 1i ,z 2=a 2+b 2i (a 1,b 1,a 2,b 2∈R ). ∵z 1+z 2=(a 1+b 1i )+(a 2+b 2i )=(a 1+a 2)+(b 1+b 2)i . z 2+z 1=(a 2+b 2i )+(a 1+b 1i )=(a 2+a 1)+(b 2+b 1)i . 又∵a 1+a 2=a 2+a 1,b 1+b 2=b 2+b 1. ∴z 1+z 2=z 2+z 1.即复数的加法运算满足交换律. (4)复数的加法运算满足结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3) 证明:设z 1=a 1+b 1i .z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R ). ∵(z 1+z 2)+z 3=[(a 1+b 1i )+(a 2+b 2i )]+(a 3+b 3i ) =[(a 1+a 2)+(b 1+b 2)i ]+(a 3+b 3)i =[(a 1+a 2)+a 3]+[(b 1+b 2)+b 3]i =(a 1+a 2+a 3)+(b 1+b 2+b 3)i . z 1+(z 2+z 3)=(a 1+b 1i )+[(a 2+b 2i )+(a 3+b 3i )]

3.2.1 复数代数形式的加、减运算及其几何意义

复数代数形式的四则运算 3.2.1 复数代数形式的加、减运算及其几何意义 预习课本P107~108,思考并完成下列问题 (1)复数的加法、减法如何进行?复数加法、减法的几何意义如何? (2)复数的加、减法与向量间的加减运算是否相同? 1.复数的加、减法法则 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R), 则z 1+z 2=(a +c )+(b +d )i , z 1-z 2=(a -c )+(b -d )i. 2.复数加法运算律 设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1, (z 1+z 2)+z 3=z 1+(z 2+z 3). 3.复数加、减法的几何意义 设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→ 为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→ 的终点并指向OZ 1――→ 的向量所对应的复数. [点睛] 对复数加、减法几何意义的理解 它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处

理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中. 1.判断(正确的打“√”,错误的打“×”) (1)复数与向量一一对应.( ) (2)复数与复数相加减后结果只能是实数.( ) (3)因为虚数不能比较大小,所以虚数的模也不能比较大小.( ) 答案:(1)× (2)× (3)× 2.已知复数z 1=3+4i ,z 2=3-4i ,则z 1+z 2等于( ) A .8i B .6 C .6+8i D .6-8i 答案:B 3.已知复数z 满足z +i -3=3-i ,则z 等于( ) A .0 B .2i C .6 D .6-2i 答案:D 4.在复平面内,复数1+i 与1+3i 分别对应向量OA ――→和OB ――→ ,其中O 为坐标原点,则|AB ――→ |等于( ) A. 2 B .2 C.10 D .4 答案:B [典例] (1)计算:(2-3i)+(-4+2i)=________. (2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________. [解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i. (2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i , 所以????? 5x -5y =5,-3x +4y =-3, 解得x =1,y =0, 所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,

7.1.2 复数的几何意义

7.1.2复数的几何意义 课标要求素养要求 理解复数的代数表示及其几何意义,掌 握用向量的模表示复数模的方法,理解 共轭复数的概念. 通过复数代数形式及其几何意义的理 解、复数模的运用,共轭复数的概念的 理解,体会数学抽象及数学运算素养. 教材知识探究 19世纪末20世纪初,著名的德国数学家高斯在证明代数 基本定理时,首次引进“复数”这个名词,他把复数与平 面内的点一一对应起来,创立了复平面,依赖平面内的点 或有向线段(向量)建立了复数的几何基础. 复数的几何意义,从形的角度表明了复数的“存在性”, 为进一步研究复数奠定了基础. 问题实数可用数轴上的点来表示,类比一下,复数怎样来表示呢? 提示任何一个复数z=a+b i,都和一个有序实数对(a,b)一一对应,因此,复数集与平面直角坐标系中的点集之间可以建立一一对应. 1.复平面复平面中点的横坐标表示复数的实部,点的纵坐标表示复数的虚部 2.复数的几何意义 (1)复数z=a+b i(a,b∈R)复平面内的点Z(a,b). (2)复数z=a+b i(a,b∈R)平面向量OZ → . 3.复数的模

(1)定义:向量OZ → 的模叫做复数z =a +b i(a ,b ∈R )的模或绝对值. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=a 2+b 2(a ,b ∈R ). 如果b =0,那么z =a +b i 是一个实数,它的模就等于|a |(a 的绝对值). 4.共轭复数 一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭 复数,虚部不等于0的两个共轭复数也叫做共轭虚数.复数z 的共轭复数用z - __表 示,即如果z =a +b i ,那么z - =a -b i. 教材拓展补遗 [微判断] 1.在复平面内,对应于实数的点都在实轴上.(√) 2.在复平面内,虚轴上的点所对应的复数都是纯虚数.(×) 3.复数的模一定是正实数.(×) 4.两个共轭复数的和是实数.(√) 5.两个复数互为共轭复数是它们的模相等的必要条件.(×) 提示 1.在复平面内对应于实数的点都在实轴上是正确的. 2.原点在虚轴上,但不是纯虚数. 3.复数的模可以为0. 4.根据共轭复数的定义可知正确. 5.应该是充分条件. [微训练] 1.向量a =(1,-2)所对应的复数的共轭复数是( ) A.1+2i B.1-2i C.-1+2i D.-2+i 解析 因为复数与向量一一对应,所以向量a =(1,-2)的复数形式为z =1-2i , 所以z - =1+2i. 答案 A 2.已知复数z 的实部为-1,虚部为2,则|z |=________.

复数代数形式的加减运算及其几何意义优秀教学设计

复数代数形式的加减运算及其几何意义 【教学目标】 知识与技能:掌握复数的加法运算及意义情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念;画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用 【教学重难点】 重点:复数加法运算,复数与从原点出发的向量的对应关系。 难点:复数加法运算的运算率,复数加减法运算的几何意义。 【教学准备】 多媒体、实物投影仪 。 【教学设想】 复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定。 【教学过程】 一、复习回顾: 1.复数的定义: 2.复数的代数形式: 3.复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当 时,复数a +bi (a 、b ∈R )是实数a ;当 时,复数z =a +bi 叫做虚数;当 时,z =bi 叫做纯虚数;当且仅当 时,z 就是实数0.

4.复数集与其它数集之间的关系: 。 5.两个复数相等的定义: 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就 只有当两个复数不全是实数时才不能比较大小 6.复平面、实轴、虚轴: 点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可 用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫 做复平面,也叫高斯平面,x 轴叫做实轴,y 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0复数集C 和复平面内所有的点所成的集合是一一对应关系,即复数z a bi =+←??? →一一对应复平面内的点(,)Z a b 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 二、讲解新课: 复数代数形式的加减运算 1.复数z 1与z 2的和的定义:z 1+z 2=(a +bi )+(c +di )= 2.复数z 1与z 2的差的定义:z 1-z 2=(a +bi )-(c +di )= 3.复数的加法运算满足交换律: z 1+z 2=z 2+z 1. 证明: 4.复数的加法运算满足结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3) 证明:设z 1=a 1+b 1i 。z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R )。

复数的概念、几何意义及运算

高考数学一轮复习专题训练(40) 复数的概念、几何意义及运算 班级________姓名____________学号______成绩______日期____月____日 一、填空题 1. 复数z= 1 1-i 的虚部是________. 2. 设z=(2-i)2(i为虚数单位),则复数z的模为________. 3. 若复数a+i 1+i 为纯虚数,则实数a的值是________. 4. 若复数z=2-i 3-4i ,则z的共轭复数为z=________. 5. 在复平面内,复数1-i 2+i +i2 019对应的点位于第 ________象限. 6. 若复数z= 1 a-2 +(a2-4)i(a∈R)是实数,则a= ________.

7. 已知i是虚数单位,则满足z-i=|3+4i|的复数z在复平面上对应点在第________象限. 8. 满足条件|z-i|=|z+3|的复数z在复平面上对应点的轨迹是________. 9. 已知i是虚数单位,a、b∈R,则“a=b=1”是“(a +b i)2=2i”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”) 10. 若复数(m2-3m-4)+(m2-5m+6)i表示的点在虚轴上,则实数m的值为________. 11. 设a∈R,若复数a+i 1+i (i为虚数单位)的实部和虚部相 等,则a=________. 12. 已知方程x2+(4+i)x+4+a i=0(a∈R)有实根b,且z=a+b i,则复数z=________. 13. 若复数(x-2)+y i(x,y∈R)的模为3,则y x的最大值

复数的几何意义

3.1.2 复数的几何意义 1.理解复平面、实轴、虚轴等概念. 2.理解可以用复平面内的点或以原点为起点的向量来表示复数以及它们之间的一一对应关系.(重点) 3.理解复数模的概念,会求复数的模.(难点) [基础·初探] 教材整理 复数的几何意义及复数的模 阅读教材P 52~P 53内容,完成下列问题. 1.复平面 建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数. 2.复数的几何意义 (1)复数z =a +b i(a ,b ∈R )――――→一一对应 复平面内的点Z (a ,b ). (2)复数z =a +b i(a ,b ∈R ) ――――→一一对应 平面向量OZ →. 为方便起见,我们常把复数z =a +b i 说成点Z 或说成向量OZ → ,并且规定,相等的向量表示同一个复数. 3.复数的模 向量OZ → 的模r 叫做复数z =a +b i 的模,记作|z |或|a +b i|,且r =a 2+b 2(r ≥0,

且r∈R). 判断(正确的打“√”,错误的打“×”) (1)在复平面内,对应于实数的点都在实轴上.() (2)复数的模一定是正实数.() (3)复数z1>z2的充要条件是|z1|>|z2|.() 【解析】(1)正确.根据实轴的定义,x轴叫实轴,实轴上的点都表示实数,反过来,实数对应的点都在实轴上,如实轴上的点(2,0)表示实数2. (2)错误.复数的模一定是实数但不一定是正实数,如:0也是复数,它的模为0不是正实数. (3)错误.两个复数不一定能比较大小,但两个复数的模总能比较大小. 【答案】(1)√(2)×(3)× [小组合作型] 的点满足下列条件时,求a的值(或取值范围). (1)在实轴上; (2)在第三象限; (3)在抛物线y2=4x上. 【精彩点拨】解答本题可先确定复数z的实部、虚部,再根据要求列出关于a的方程(组)或不等式(组)求解. 【自主解答】复数z=(a2-1)+(2a-1)i的实部为a2-1,虚部为2a-1,在复平面内对应的点为(a2-1,2a-1). (1)若z对应的点在实轴上,则有 2a-1=0,解得a=1 2. (2)若z对应的点在第三象限,则有

复数代数形式的四则运算教案

复数代数形式的四则运算 —乘除运算 授课人:霍阳郜格陈丹董秀清宋广东 指导教师:黄海鹏 一、教学目标:1、理解复数代数形式的四则运算法则 2、能运用运算律进行复数的四则运算 3、培养类比思想和逆向思维 4、培养学生探索精神和良好的自学习惯 二、教学重点:复数的加减运算、乘除运算 三、教学难点:灵活准确地进行复数代数形式的四则运算及类比思想 四、教学方式:学生自主探究教师指导学习 五、教学用具:多媒体 六、教学过程 (一)知识回顾 1、复数的乘法运算 设z1=a+bi,z2=c+di(a,b,c,d∈R)是任意两个复数, 则它们积为z1?z2=(a+bi) (c+di)=(ac-bd)+(bc+ad)i 复数的积仍然为一个复数,复数的乘法与多项式的乘法相似。 复数乘法满足(1)交换律:z1?z2=z2?z1; (2)结合律(z1?z2)?z3=z1?(z2?z3); (3)分配律z1 (z2+z3)=z1z2+z1z3 2、共轭复数 实部相等而虚部互为相反数的两个数。复数z的共轭复数用z表示。 若z=a+bi,则z=a-bi (a,b∈R) z z=a2+b2z+z=2a z-z=2bi 3、复数的除法运算(乘法的逆运算)

复数a +bi 除以复数c +di 的商是指 满足(c +di) (x +yi)=a +bi 的复数x +yi ,记作 di c bi a ++ (c +di ≠0) 根据复数相等的定义:di c bi a ++=22 d c bd ac +++22d c a d bc +-i 利用共轭复数性质: di c bi a ++=))(())((di c di c di c bi a -+-+=22)()(d c a d bc bd ac +--+=22d c bd ac +++22d c ad bc +-i (二) 习题讲解 例1、 已知复数)(,)31()1)(31(R a ai z w i i i i z ∈+=+--+-=,当2≤z w 时, 求a 的取值范围。 思路:先根据四则运算法则算化简z ,然后得w ,然后球的 z w ,进而求其模,解不等式。 例2、已知复数z 满足5=z 且z i ?-)43(是纯虚数,则z =___________ 思路:先求z 在代入模的运算,进而用共轭得出 例3、已知复数1121)12(,2z i i z z i z -++=+=(1)求2z (2)在ABC ?的三个内角C B ,,A 依次成等差数列,且2 cos 2cos 2C i A u +=,求2z u +的取值范围。 思路:(1)将1z 代入式子求2z (2)利用三角形内角和、等差数列性质求得B ,再利用二倍角公式求得u 的最简解析式,进而利用三角函数的值域求范围。 七、 小结

新人教版高中数学必修第二册 第7章 复数 7.1.2 复数的几何意义

7.1.2 复数的几何意义 考点 学习目标 核心素养 复平面 了解复平面的概念 数学抽象 复数的几何意义 理解复数、复平面内的点、复平面内的向量之间的对应关系 直观想象 复数的模 掌握复数的模的概念,会求复数的模 数学运算 共轭复数 掌握共轭复数的概念,并会求一个复数的共轭复数 数学运算 问题导学 预习教材P70-P72的内容,思考以下问题: 1.复平面是如何定义的? 2.复数与复平面内的点及向量的关系如何?复数的模是实数还是虚数? 3.复数z =a +b i 的共轭复数是什么? 1.复平面 建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数. 2.复数的两种几何意义 (1)复数z =a +b i(a ,b ∈R )←――→一一对应 复平面内的点Z (a ,b ). (2)复数z =a +b i(a ,b ∈R ) ←――→一一对应平面向量OZ →. ■名师点拨 (1)复平面内的点Z 的坐标是(a ,b ),而不是(a ,b i).也就是说,复平面内的虚轴上的单位长度是1,而不是i. (2)当a =0,b ≠0时,a +b i =0+b i =b i 是纯虚数,所以虚轴上的点(0,b )(b ≠0)都表示纯虚数. (3)复数z =a +b i(a ,b ∈R )中的z ,书写时应小写;复平面内的点Z (a ,b )中的Z ,书写时应大写. 3.复数的模

复数z =a +b i(a ,b ∈R )对应的向量为OZ →,则OZ → 的模叫做复数z 的模或绝对值,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2. ■名师点拨 如果b =0,那么z =a +b i 是一个实数a ,它的模等于|a |(a 的绝对值). 4.共轭复数 (1)一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数. (2)虚部不等于0的两个共轭复数也叫做共轭虚数. (3)复数z 的共轭复数用z -表示,即如果z =a +b i ,那么z - =a -b i . ■名师点拨 复数z =a +b i 在复平面内对应的点为(a ,b ),复数z - =a -b i 在复平面内对应的点为(a ,-b ),所以两个互为共轭复数的复数,它们所对应的点关于x 轴对称. 判断(正确的打“√”,错误的打“×”) (1)原点是实轴和虚轴的交点.( ) (2)实轴上的点表示实数,虚轴上的点表示纯虚数.( ) (3)若|z 1|=|z 2|,则z 1=z 2.( ) (4)若z 1与z 2互为共轭复数,则|z 1|=|z 2|.( ) 答案:(1)√ (2)× (3)× (4)√ 复数1-2i 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D 复数z =1+3i 的模等于( ) A .2 B .4 C.10 D .2 2 答案:C 复数z =-2+5i 的共轭复数z - =________. 答案:-2-5i

(完整word版)复数的概念与几何意义

第三章第一节 数系的扩充与复数的概念 学习目标 1.在问题情境中了解数系的扩充过程,体会数与现实世界的联系。 2.理解复数基本概念以及复数相等的充要条件。 自学探究 问题1. 在实数集中方程x 2-1=0是什么? 方程x 2 +1=0有实数解吗?联系从自然数系到实数系的扩充过程,你能 设想一种方法,使这个方程有解吗? 问题2.复数的概念是什么? 问题3.若复数a+bi=c+di ,则实数a 、b 、c 、d 满足什么条件? 问题4.你能对复数集进行恰当地分类吗?并举出相应例子。 练习题: (一)完成课本104页1,2,3 (二)1.实数m 取何值时,复数z=m+1+(m-1)i 是实数?虚数?纯虚数? 2.已知i 是虚数单位,复数Z=(m 2 -4)+(m+2)i ,当m 取何实数时,Z 是:(1)实数 (2)纯虚数 3. 如果222(32)z a a a a i =+-+-+为实数,求实数a 的值。 4.若(32)(5)172x y x y i i ++-=-,则,x y 的值是? 5.已知复数a bi +与3(4)k i +-相等,且a bi +的实部、虚部分别是方程x 2 -4x+3=0的两根,试求:,,a b k 的值。 [思考]:你能得出判断一个数是实数、虚数,纯虚数的方法吗? 第三章第二节 复数的几何意义 学习目标 1.通过复数与从原点出发的向量的对应关系了解复数的几何意义,从中体会数形结合的思想; 2.从复数几何意义的引入过程中体会用几何研究代数问题的方法。 自学探究 问题1.在直角坐标系中,有序实数对与点一一对应,类比此种对应,复数能与什么建立一一对应? 问题2.复数Z= (,)a bi a b R +∈( 可以与复平面的向量对应吗?复数的几何意义是什么? 问题3.怎样求一个复数的模? 练习题: (一)完成课本105页1,2,3;106页A 组全做 (二) 1. 若复数1z =,求z 的模。 2.若复数22(34)(56)Z m m m m i =--+--表示的点在虚轴上,求实数m 的取值,并求z 的模。 3.在复平面内指出与复数112z i =+ ,2z = ,3z =,42z i =-+对应的点1Z ,2Z ,3Z ,4Z . 试 判断这4个点是否在同一个圆上?并证明你的结论.

复数的代数形式及运算

第三节 复数的代数形式及运算 【目录】 题型1 复数代数形式的运算 题型2 复数代数形式的综合应用 三、解答题 题型1 复数代数形式的运算 1.计算:(1) 5 4)31()22(i i -+; (2) 1996 )12(32132i i i -+++-。 解:(1)原式= ==-=+--+= -?+w w i i i i i 22)2() 2 321(2])1[() 2 31(2)1(5 25 225 4 i i 31)2321(2+-=+-。 (其中ω=i 2 3 21+- ) 。 (2)原式=998998 9982)22(])12[(321) 321(i i i i i i i i +=-+=-+++=i+i 4×249+2=i+i 2=-1+i. 2.设f(x, y)=x 2 y-3xy+y 2 -x+8,求: (1)f(1+i, 2-i)的值; (2)[f(2-5i, 2-5i)]-1 的值。 解:(1)f(1+ i, 2-i)=(1+i)2·(2-i)-3(1+i)(2-i)+(2-i)2 -(1+i)+8 =2i(2-i)-3(3+i)+(3-4i)-1-i+8=2+4i-9-3i+3-4i+7-i=3-4i ; (2)若x=y ,则f(x, y)=x 3 -2x 2 -x+8,又x=2-5i ,∴(x-2)2 =(-5i)2 ,即x 2 -4x+9=0, 而x 3 -2x 2 -x+8=(x 2 -4x+9)(x+2)-2x-10, ∴f(2-5i, 2-5i)=0-2(2-5i)-10=-14+25i, ∴[f(2-5i, 2-5i)]-1 = i i i 108 5 10872165221614)52()14(52142 2--=--= +---. (3)∵(1-i 3)10 =1-C 110·i 3+C 210·(i 3)2 -C 3 10·(i 3)3 +…,∴(1-i 3)10 的展开式中奇数项之和 为复数(1-i 3)10 的实数。又(1-i 3)10 =[-2·10)]2321(i +- =210ω10=210ω=210)2 3 21(i +-=-29+29i 3,∴(1-i 3)10 的展开式中各奇数项的和为-29 。 3.求同时满足下列两个条件的所有复数z : (1)z z 10+ 是实数,且1

复数的乘法及其几何意义

[文件] sxgdja0012.doc [科目] 数学 [年级] 高中 [章节] [关键词] 复数/乘法/几何意义 [标题] 复数的乘法及其几何意义 [内容] 北京市五中 肖钰 教学目标 1.掌握用复数的三角形式进行乘法运算的法则及其推导过程. 2.掌握复数乘法的几何意义. 3.让学生领悟到“转化”这一重要数学思想方法. 4.培养学生探索问题、分析问题、解决问题的能力. 教学重点与难点 重点:复数的三角形式是本节内容的出发点,复数的乘法运算. 难点:复数乘法运算的几何意义,不易为学生掌握. 教学过程设计 师:前面我们学习了复数的代数形式的运算和复数的三角形式,请大家用5分钟的时间,完 成以下两道题的演算. (利用投影仪出示) 1.(1-2i )(2+i )(4+3i ); 2.化复数- ?? ? ??+3cos 3sin 21ππi 为代数形式和三解形式. (5分钟后) 师:第1题检查了复数乘法运算,答案是25,第2题检查了复数的三角形式概念及复数代数形式与三角形式的互化.答案是:?? ? ??+-- 67sin 67cos 21; 4143ππi i .如果有的同学演算 错了,应想一想怎样错的?错的原因是什么?怎样纠正? 请同学们再考虑下面一个问题: 如果把复数z 1,z 2分别写成 z 1=r 1(cos θ1+sin θ1), z 2=r 2(cos θ2+isin θ2). z1·z2这乘法运算怎样进行呢? 想出算法后,请大家在笔记本上演算,允许同学之间交换意义. (教师在教室里巡视,稍过几分钟,请一位已经做完的同学在黑板上写出推导过程) 学生板演: z1·z2=(cos θ1+isin θ1)·r 2(cos θ2+isin θ2) =(r 1cos θ1+ir1sin θ1)·(r2cos θ2+ir2sin θ2) =(r 1r 2cos θ1cos θ2-r 1r 2sin θ1sin θ2)+i (r 1r 2sin θ1cos θ2+r 1r 2cos θ1sin θ2) =r 1r 2[(cos θ1cos θ2-sin θ1sin θ2)+i (sin θ1cos θ2+cos θ1sin θ2)] =r 1r 2[cos (θ1+θ2)+isin (θ1+θ2)]. 师:很好,你是怎样想出来的?为什么这样想?

相关主题
文本预览
相关文档 最新文档