当前位置:文档之家› 统计热力学

统计热力学

统计热力学
统计热力学

第七章统计热力学基础

热力学:

基础:三大定律

研究对象:(大量粒子构成的)宏观平衡体系

研究方法:状态函数法

手段:利用可测量量p-T-V+C p,m和状态方程

结果:求状态函数(U,H,S,G,等)的改变值,以确定变化过程所涉及的能量和方向。

但是,热力学本身无法确定体系的状态方程,需借助实验。很显然,体系的宏观热力学性质取决于其微观运动状态,是大量粒子微观运动的统计平均结果。

热力学宏观性质体系的微观运动状态

统计热力学

统计热力学:

基础:微观粒子普遍遵循的(量子)力学定律

对象:大量粒子所构成的体系的微观运动状态

工具:统计力学原理

目的:大量粒子某一性质的微观统计平均的结果(值)与系统的热力学宏观性质相关联。

7.1概述

统计热力学是宏观热力学与量子化学相关联的桥梁。通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观

性质。

微观运动状态有多种描述方法:

经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;

量子力学用代表能量的能级和波函数描述。

由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。

Boltzmann给出了宏观性质—熵(S)与微观性质—热力学几率(Ω)之间的定量关系:=Ω。

S k

ln

热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的无法做到,也没有必要。因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。因此,有了数学上完全容许的ln ln W D,max。

所以,S=k ln W D,max

这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。

波尔兹曼分布就是一种最概然分布,该分布公式中包含重要概念—配分函数。用波尔兹曼分布求任何宏观状态函数时,最后都转化为宏观状态函数与配分函数之间的定量关系。

配分函数与分子的能量有关,而分子的能量又与分子运动形式有关。因此,必须讨论分子运动形式及能量公式,各种运动形式的配分函数及分子的全配分函数的计算。

确定配分函数的计算方法后,最终建立各个宏观性质与配分函数之间的定量关系。本章知识点架构纲目图如下:

7.2主要知识点

7.2.1统计系统的分类:

独立子系统与相依子系统:粒子间无相互作用或相互作用可忽略的系统,称为独立子系统,如理想气体;

粒子间相互作用不可忽略的系统,称为相依子系统。如液体、固体、实际气体。

定域子系统与离域子系统:系统中粒子运动是定域化,粒子位置可编号而区别,称为定域子(或可辨粒子)系统,如晶体;

系统中粒子运动是非定域化的,无固定位置而无法区别,称离域子(或不可辨粒子、或全同粒子)系统,如液体、气体;

说明:(1) 系统的微观性质和宏观性质是通过统计力学联系起来的;

(2) 统计热力学主要研究平衡系统;

7.2.2统计热力学基本假定

假定1 一定的宏观状态对应着数目巨大的微观状态。说明可以(也必须)用统计的方法对微观状态进行研究。

假定2 等概率假设:对于U、V、N确定的平衡态系统(平衡态孤立体系),任一可能出现的微观状态都有相同的数学概率P=1/。假定2是统计热力学的最基本假定。

假定3 统计平均等效性假设:某宏观量的观察值等于一定约束(例如U、V、N一定) 条件下对一切可能的微观运动状态相应量的统计平均值。该假设表明可以通过对微观量的统计计算得到宏观量。

说明:对于一个粒子数N、体积V和内能U确定的系统,根据等概率假定,其微观状态数最大的那套分布称为最概然分布。

7.2.3粒子各运动形式的能级及能级的简并度

独粒子系统分子处于某能级i的总能量为该能级各独立运动能量之和

,,v,i ,,i t i r i e i n i εεεεεε=++++

简并度:某一能级所对应的所有不同的量子态的数目称为该能级的简并度。 (1) 三维平动子

22

22222

22222/3

()88y x z t x y z n n n h h n n n m a b c mV

ε??=++=++ ? ??? (,,1,2,)x y z n n n =L 粒子的平动动能决定于粒子质量、势箱体积和三个平动量子数,适用条件:独立三维平动子。

(2) 刚性转子 对双原子分子:

22(1)8r h J J I

επ=

+ (0,1,2)J =L 其中:20I R μ=,12

12

m m m m μ=

+

转动能级是量子化的,量子数为J 。能级r ε简并度 21r g J =+

转子的转动能只与转动量子数和转动惯量有关。适用条件:独立线性转子。

(3) 一维谐振子 v 12h ευν??

=+

???

(0,1,2)v =L 谐振子的能量只与振动频率和振动量子数有关。适用条件:一维谐振子。一维谐振子的振动是非简并的,简并度v 1g =

。其中:ν=

,k 为力常数。

一维谐振子能级特征:

a.. 一维谐振子的能级是量子化的、非简并的;

b. 能级只取决于振动频率,零点能为1

2

h εν=

; c.能级是等间距的,任意相邻两个能级之差为h εν?=。 (4) 电子及原子核

全部粒子的电子运动及核运动均处于基态。电子运动及核运动基态的简并度为常数。若电子运动的总角动量量子数为J ,电子基态简并度,021e g J =+;

若核自旋量子数为n S ,则原子核基态能级的简并度,021n n g S =+,对多原子分子,

,0(21)n n g S =+∏。

说明:1)分子的能级间隔的大小顺序是核能>电子能>振动能 > 转动能 > 平动能 2)平动子相邻能级间的能级差非常小,因此,平动子的能级常可近似为连续变化,即平动子的量子化效应不突出,可近似用经典力学方法处理。 3)由N 个原子组成的分子,总自由度数为3N ;

线性分子转动自由度数为2,非线性分子转动自由度数为3; 线性分子与非线性分子振动自由度数分别为(3N -5)和(3N -6)。

7.2.4微观状态、能级分布、分布数、状态分布 系统的微观状态:是指某一瞬间的状态。

宏观体系中的微观状态是用系统中各粒子的量子态来描述。在经典力学中系统的微观状态是用“相空间”即空间位置坐标和动量描述;

在量子力学中用波函数ψ、能级ε来描述。 (1) 能级分布:在满足粒子数守恒(i

N n =

∑)和能量守恒(i i

U n ε=∑)条件下,

独立子系统中总粒子数 N 在各能级i ε上的分布,称能级分布。

定域子系统:某种能级分布的微观状态数i i i

i !!n D g W N n =∏

离域子系统:某种能级分布的微观状态数i i i i i

(1)!

!(1)!D g n W n g +-=

-∏ 若离域子系统温度不太低(即i i )g n ?时,i

i i i

!n D g W n =∏

意义:某种分布的微观状态数决定于粒子数,能级的简并度和能级分布数。

统计热力学基础复习整理版汇总

统计热力学基础 一、单选题 1) 统计热力学主要研究(A )。 (A) 平衡体系(B) 近平衡体系(C) 非平衡体系(D) 耗散结构(E) 单个粒子的行为 2) 体系的微观性质和宏观性质是通过( C)联系起来的。 (A) 热力学(B) 化学动力学(C) 统计力学(D) 经典力学(E) 量子力学 3) 统计热力学研究的主要对象是:( D) (A) 微观粒子的各种变化规律(B) 宏观体系的各种性质 (C) 微观粒子的运动规律(D) 宏观系统的平衡性质 (E) 体系的宏观性质与微观结构的关系 4) 下述诸体系中,属独粒子体系的是:(D ) (A) 纯液体(B) 理想液态溶液(C) 理想的原子晶体(D) 理想气体(E) 真实气体 5) 对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:(B ) (A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理(E) 能量均分原理 6) 在台称上有7个砝码,质量分别为1g、2g、5g、10g、50g、100g,则能够称量的质量共有:(B ) (A) 5040 种(B) 127 种(C) 106 种(D) 126 种 7) 在节目单上共有20个节目序号,只知其中独唱节目和独舞节目各占10个,每人可以在节目单上任意挑选两个不同的节目序号,则两次都选上独唱节目的几率是:(A ) (A) 9/38 (B) 1/4 (C) 1/180 (D) 10/38 8) 以0到9这十个数字组成不重复的三位数共有(A ) (A) 648个(B) 720个(C) 504个(D) 495个 9) 各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:(B ) (A)?ε t > ?ε r > ?ε v > ?ε e(B)?ε t < ?ε r < ?ε v < ?ε e (C) ?ε e > ?ε v > ?ε t > ?ε r(D)?ε v > ?ε e > ?ε t > ?ε r (E)?ε r > ?ε t > ?ε e > ?ε v 10) 在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:(C ) (A) 气体和晶体皆属定域子体系(B) 气体和晶体皆属离域子体系 (C) 气体属离域子体系而晶体属定域子体系(D) 气体属定域子体系而晶体属离域子体系 11) 对于定域子体系分布X所拥有的微观状态t x为:( B)

热力学统计物理总复习知识点

热力学部分 第一章热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 幵系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡? 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:dW PdV,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝热过程中内能U是一个态函数:W U B U A 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: U B U A W Q ;微分形式:dU dQ dW 11、态函数焓H: H U pV,等压过程:H U p V,与热力学第一定律的公式一比 较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即U U(T)o

(完整word版)统计热力学--小结与习题

第9章 统计热力学初步小结与练习 核心内容:配分函数(q )及其与热力学函数(U,S …)之间的关系 主要内容:各种运动形式的q 及由q 求U,S …的计算公式 一、内容提要 1、微观粒子的运动形式和能级公式 n e r t εεεεεε++++=v 式中,ε:粒子的总能量,t ε:粒子整体的平动能,r ε:转动能,v ε:振动能, e ε:电子运动能,n ε:核运动能。 (1)三维平动子 )(8222222 2c n b n a n m h z y x t ++=ε 式中,h :普朗克常数;m :粒子的质量;a ,b ,c :容器的三个边长,n x ,n y ,n z 分别为x ,y ,z 轴方向的平动量子数,取值1,2,3……。 对立方容器 )(82 223 22z y x t n n n mV h ++= ε 基态n x = 1,n y = 1,n z = 1,简并度10,=t g ,而其他能级的简并度要具体情况具体分析,如3 2286mV h t =ε的能级,其简并度g = 3。 (2)刚性转子 双原子分子 )1(822+= J J I h r πε

式中,J :转动量子数,取值0,1,2……,I :转动惯量,20R I μ=, μ:分子的折合质量,2 12 1m m m m += μ,0R :分子的平衡键长,能级r ε的 简并度 g r = 2J+1 (3)一维谐振子 νυεh )2 1(v += 式中,ν:分子的振动频率,υ:振动量子数,取值0,1,2……,各能级都是非简并的,g v = 1 对三维谐振子, νυυυεh z y x )2 3 (v +++= 2 )2)(1(v ++=s s g , 其中s=υx + υy + υz (4)运动自由度:描述粒子的空间位置所必须的独立坐标的数目。 2、能级分布的微态数和Boltzmann 分布 (1)能级分布的微态数 能级分布:N 个粒子分布在各个能级上的粒子数,叫做能级 分布数,每一套能级分布数称为一种分布。 微态数:实现一种分布的方式数。 定域子系统能级分布微态数 ∏=i i n i D n g N W i !!

统计热力学深刻复知识题及答案解析

第三章 统计热力学 复习题及答案 1.混合晶体是由晶格点阵中随机放置N C 个C 分子和D 分子组成的。 (1) 证明分子能够占据格点的花样为 !!)!(D C D C N N N N W += ,若N N N D C 2 1 ==,利用斯特林公式证明 N W 2= (2) 若==D C N N 2,利用上式计算得42=W =16,但实际上只能排出6种花样,究竟何者正确? 为什么? 解:(1)证明:取)(D C N N +的全排列,则总共排列的花样数为)!(D C N N +种,现C N 个相同的C 和D N 个相同的D 。故花样数为!!)!(D C D C N N N N W += 当N N N D C 2 1 ==时 2])!21 [(!)!21()!21()! 21 21(N N N N N N W = += 取自然对数: N N N N N N N N N N N N N N N N N N N N N N N N N N W 2ln 2ln 2 1 ln ln 21ln ln )21ln(ln )2 1 ln(ln ]21)21ln(21[2ln )!21ln(2!ln ln ==-=--=-=+--=---=-= N W 2=∴ (2)实际排出6种花样是正确的,因为Stirling 是一个近似公式适用于N 很大时才误差较小。而在N 为4时,用 42=W 来计算就会产生较大误差。 2.(1)设有三个穿绿色、两个穿灰色和一个穿蓝色制服得军人一起列队,试问有多少种对型?现设穿绿色制服得可有三种肩章并任取其中一种佩带,穿灰色制服的可有两种肩章,而穿蓝色的可有两种肩章,试 列出求算队型数目的公式。

统计热力学

第六章 统计热力学初步 单项选择 1.设N 个不同的球分配在两个盒子中,分配到A 盒中的球数为M ,则错误的是( D.E ) A .体系的总微观状态数为 ∑∑==-== ΩN M N M M N M N t 0 0)!(!! B .体系的总微观状态数为N 2=Ω C .最可几分布的微观状态数为mp t =?? ? ????? ??2!2!!N N N D .t mp

第三章统计热力学

第六章统计热力学 一、选择题 1. 下面有关统计热力学的描述,正确的是: ( ) (A) 统计热力学研究的是大量分子的微观平衡体系; (B) 统计热力学研究的是大量分子的宏观平衡体系; (C) 统计热力学是热力学的理论基础; (D) 统计热力学和热力学是相互独立互不相关的两门学科。 2. 在统计热力学中,物系的分类常按其组成的粒子能否被辨别来进行,按此原则,下列 说法正确的是: ( ) (A) 晶体属离域物系而气体属定域物系; (B) 气体和晶体皆属离域物系; (C) 气体和晶体皆属定域物系; (D) 气体属离域物系而晶体属定域物系。 3. 在研究N、V、U有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U,这是因为 所研究的体系是: ( ) (A) 体系是封闭的,粒子是独立的;(B) 体系是孤立的,粒子是相依的; (C) 体系是孤立的,粒子是独立的;(D) 体系是封闭的,粒子是相依的。 4. 某种分子的许多可能级是εo、ε1、ε2,简并度为g0 = 1、g1 = 2、g2 = 1。5个可别粒子,按N0 = 2、N1 = 2、N2 = 1的分布方式分配在三个能级上,则该分布方式的样式为:( ) (A) 30 ; (B) 120 ;(C) 480 ;(D) 3 5. 假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3。四个这样的 分子构成的定域体系,其总能量为3ε时,体系的微观状态数为: ( ) (A) 40 ; (B) 24 ;(C) 20 ;(D) 28 6. 对热力学性质(U、V、N)确定的体系,下面描述中不对的是: ( ) (A) 体系中各能级的能量和简并度一定;(B) 体系的微观状态数一定; (C) 体系中粒子在各能级上的分布数一定;(D) 体系的吉布斯自由能一定。 7. 对于定位体系,N个粒子分布方式D所拥有微观状态数W D为: ( ) (A) W D = N!πN i g i/N i!; (B) W D = N!πg i Ni/Ni!; (C) W D = N!πg i Ni/Ni;(D) W D = πg i Ni/Ni!。 8. 设一粒子体系由三个线性谐振子组成,体系的能量为 (11/2) hν,三个谐振子分别在三 个固定点a、b、c上振动,体系总的微观状态数为: ( ) (A) 12 ; (B) 15 ;(C) 9 ;(D) 6 9. 使用麦克斯韦 - 玻尔兹曼分布定律,要求粒子数N很大,这是因为在推出该定律时:( ) (A) 假定粒子是可别的;(B) 应用了斯特令近似公式; (C) 忽略了粒子之间的相互作用;(D) 应用拉氏待定乘因子法。 10. 式子∑N i = N和∑N iεi = U的含义是: ( ) (A) 表示在等概率假设条件下,密封的独立粒子平衡体系; (B) 表示在等概率假设条件下,密封的独立粒子非平衡体系; (C) 表示密闭的独立粒子平衡体系; (D) 表示密闭的非独立粒子平衡体系。 11. 下面关于排列组合和拉格朗日求极值问题的描述正确的是: ( ) (A) 排列组合都是对可别粒子而言的,排列考虑顺序,组合不考虑顺序; (B) 排列是对可别粒子而言的,而组合是对不可别粒子而言的; (C) 拉格朗日未定因子法适用于自变量相互独立的多元函数的求极值问题; (D) 拉格朗日未定因子法适用于一定限制条件下的不连续多元函数的求极值问题。 12. 对于玻尔兹曼分布定律n i =(N/Q)·g n·exp(-εi/kT) 的说法:⑴ n i是第i能级上的粒 子分布数;⑵ 随着能级升高,εi增大,n i总是减少的;⑶ 它只适用于可区分的独立 粒子体系;⑷ 它适用于任何的大量粒子体系。其中正确的是: ( ) (A) ⑴ ⑶; (B) ⑶ ⑷;(C) ⑴ ⑵;(D) ⑵ ⑷ 13. 玻尔兹曼统计认为: ( ) (A) 玻尔兹曼分布不是最可几分布但却代表平衡分布; (B) 玻尔兹曼分布只是最可几分布但不代表平衡分布;

物理化学答案 第九章 统计热力学初步

第九章统计热力学初步 1.按照能量均分定律,每摩尔气体分子在各平动自由度上的平均动能为。现有1 mol CO气体于0 oC、101.325 kPa条件下置于立方容器中,试求: (1)每个CO分子的平动能; (2)能量与此相当的CO分子的平动量子数平方和 解:(1)CO分子有三个自由度,因此, (2)由三维势箱中粒子的能级公式 2.某平动能级的,使球该能级的统计权重。 解:根据计算可知,、和只有分别取2,4,5时上式成立。因此,该能级的统计权重为g = 3! = 6,对应于状态。 3.气体CO分子的转动惯量,试求转动量子数J为4与3两能级的 能量差,并求时的。 解:假设该分子可用刚性转子描述,其能级公式为 4.三维谐振子的能级公式为,式中s为量子数,即

。试证明能级的统计权重为 解:方法1,该问题相当于将s个无区别的球放在x,y,z三个不同盒子中,每个盒子容纳的球数不受限制的放置方式数。 x盒中放置球数0,y, z中的放置数s + 1 x盒中放置球数1,y, z中的放置数s ………………………………………. x盒中放置球数s,y, z中的放置数1 方法二,用构成一三维空间,为该空间的一个平面,其与三个轴均相交于s。该平面上为整数的点的总数即为所求问题的解。这些点为平面在平面上的交点: 由图可知, 5.某系统由3个一维谐振子组成,分别围绕着 A, B, C三个定点做振动,总能量为。试 列出该系统各种可能的能级分布方式。 解:由题意可知方程组 的解即为系统可能的分布方式。 方程组化简为,其解为 3

6 3 3 6.计算上题中各种能级分布拥有的微态数及系统的总微态数。 解:对应于分布的微态数为 所以 3 6 3 3 15 10.在体积为V的立方形容器中有极大数目的三维平动子,其,式计算该系统在平衡情况下,的平动能级上粒子的分布数n与基态能级 的分布数之比。 解:根据Boltzmann分布 基态的统计权重,能级的统计权重(量子数1,2,3),因此 11.若将双原子分子看作一维谐振子,则气体HCl分子与I2分子的振动能级间隔分别是 和。试分别计算上述两种分子在相邻振动能级上分布数之比。 解:谐振子的能级为非简并的,且为等间隔分布的 12.试证明离域子系统的平衡分布与定域子系统同样符合波尔兹曼分布,即

统计热力学基本方法

第五章 统计热力学基本方法 在第四章我们论证了最概然分布的微观状态数lnt m 可以代替平衡系统的总微观状态数ln Ω,而最概然分布的微观状态数又可以用粒子配分函数来表示。在此基础上,为了达到从粒子的微观性质计算系统的宏观热力学性质之目的,本章还需重点解决以下两个问题:(1)导出系统的热力学量与分子配分函数之间的定量关系;(2)解决分子配分函数的计算问题。 §5.1 热力学量与配分函数的关系 本节的主要目的是推导出系统的热力学函数与表征分子微观性质的分子配分函数间的定量关系。在此之前先证明β = - 1/(kT ) 一 求待定乘子β 对独立可别粒子系统: ln Ω = ln t m = ln (N !∏i i i ! g i N N ) = ln N ! +i i i ln g N ∑ - ∑i i !ln N 将Stirling 近似公式代入、展开得 ln Ω = N ln N +i i i ln g N ∑ - ∑i i i ln N N 代入Boltzmann 关系式 (4—6)得 S = k (N ln N +i i i ln g N ∑ - ∑i i i ln N N ) 按Boltzmann 分布律公式 N i = q N g i exp (βεi ) ,代入上式的ln N i 中,利用粒子数与能量守恒关系得 独立可别粒子系统: S = k (N ln q -βU ) (5—1a) 独立不可别粒子系统: S = k (N ln q -βU - ln N ! ) (5—1b) 上式表明S 是(U ,N ,β)的函数,而β是U ,N ,V 的函数,当N 一定时,根据复合函数的偏微分法则 N V N U N N V U S U S U S ,,,,??? ? ??????? ????+??? ????=??? ????βββ 对(5—1a,b )式微分结果均为 N V U S ,??? ????N V N V U U q N k k ,,ln ??? ??????? ?????-???? ????+-=βββ (5—2) 又 q = )ex p(g i i i βε ∑ 所以 N V q ,ln ???? ????β = N V q q ,1???? ????β= )ex p(g 1i i i i βεε∑q =N U (5—3) 代入(5—2)式得 N V U S ,? ?? ????= - k β 对照热力学中的特征偏微商关系 T U S N V 1,= ? ?? ???? 便可以得到 kT 1-=β

第三章 统计热力学基础 (2)

第三章统计热力学基础 返回上一页 1. 设有一个体系,由三个定位的单维简谐振子所组成,体系能量为11/2 hν,这三个振子在三个固定的位置上振动,试求体系全部的微观状态数。 2. 当热力学体系的熵函数S增加0.418 J/K时,则体系的微观状态数增加多少?用ΔΩ/Ω1表示。 3. 对于双原子分子,证明:U r=NkT U v=NkT 设基态振动能为零,≈1+x 。 4.将N2气在电弧中加热,从光谱中观察到处于第一激发态的相对分子数 N(v=1)/N(v=0)=0.26,式中ν为振动量子数N(v=0)为基态占有的分子数,N(v=1)为第一激发振动态占有的分子数,已知N2的振动频率ν= 6.99×,

(1) 计算气体温度。 (2) 计算振动能量在总能量(包括平动,转动和振动)中所占的百分数。 5.设某理想气体A,其分子的最低能级是非简并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级。 (1)写出A分子的总配分函数的表达式。 (2)设ε=kT,求出相邻两能级上最概然分子数之比n1/n0。 (3)设ε=kT,试计算1 摩尔该气体的平均能量是多少? 6.某气体的第一电子激发态比基态能量高400 kJ/mol,试计算 (1)在300 K时,第一激发态分子所占的百分数? (2)若要使激发态的分子数占10%,则需多少温度?

7.零族元素氩(Ar)可看作理想气体,相对分子量为40,取分子的基态(设其简并度为1)作为能量零点,第一激发态(设其简并度为2)与基态能量差为ε,忽略其它高能级。 (1)写出氩分子的总的配分函数表达式。 (2)设ε=5kT,求在第一激发态上最可几分布的分子数占总分子数的百分数。(3)计算1 mol Ar气在标准状态下的统计熵值。设Ar 的核和电子的简并度均等于1。 8. Na原子气体(设为理想气体)凝聚成一表面膜 (1)若Na原子在膜内可自由运动(即二维平动),试写出此凝聚过程的摩尔平动熵变的统计表达式。 (2)若 Na原子在膜内不动,其凝聚过程的摩尔平动熵变的统计表达式又将如何? (要用相对原子质量Ar,体积V,表面积A,温度T等表示的表达式)

第三章 统计热力学基础.

第三章 统计热力学基础 思考题: 1.当系统的U ,V ,N 一定时,由于粒子可以处于不同的能级上,因而分布数不同所以系统总微观数不能确定,这句话是否正确? 2.由离域子系统和定域子系统熵与配分函数的关系可以看出,定域子系统熵比离域子系统的熵大S=klnN!,但是一般说来晶体总比同温度下气体的熵小,为什么? 3.分子能量零点的选择不同,所有热力学函数的值都要改变,对吗? 4.三维平动子第一激发态的简并度是多少?一维谐振子第一激发态的简并度是多少? 5.对于单原子理想气体在室温下的一般物理化学过程,若要通过配分函数来求过程热力学函数的变化值,只须知道g t 这一配分函数值就行了,对吗? 选择题: 1.1mol 双原子理想气体常温下热力学能为: (A)RT 23 (B) RT 25 (C) RT 2 7 (D) 无法确定 2.下列化合物中,298.15K 时标准摩尔熵ΔS 0最大的是: (A) He (B) N 2 (C) CO (D) 一样大 3.在作N 、V 、U 有确定值的粒子体系的统计分布时,令∑n i = N ,∑n i εi = U ,这是因为所研究的体系是: (A) 体系是封闭的,粒子是独立的 (B) 体系是孤立的,粒子是相依的 (C) 体系是孤立的,粒子是独立的 (D) 体系是封闭的,粒子是相依的 4.下列哪个体系不具有玻尔兹曼-麦克斯韦统计特点 : (A) 每一个可能的微观状态以相同的几率出现 (B) 各能级的各量子态上分配的粒子数,受保里不相容原理的限制 (C) 体系由独立可别的粒子组成,U = ∑n i εi (D) 宏观状态参量 N 、U 、V 为定值的封闭体系 5. HI 的转动特征温度Θr =9.0K ,300K 时HI 的摩尔转动熵为: (A) 37.45J ·K -1·mol -1 (B) 31.70J ·K -1·mol -1 (C) 29.15J ·K -1·mol -1 (D) 都不正确 6. 对于单原子分子理想气体,当温度升高时,小于分子平均能量的能级上分布的粒子数: (A) 不变 (B) 增多 (C) 减少 (D) 不能确定 7. O 2的转动惯量J = 19.3 × 10-47 kg ·m 2,则O 2的转动特征温度是: (A) 10K (B) 5K (C) 2.07K (D) 8K 8. 各种运动形式的配分函数中与压力有关的是: (A) 电子配分函数 ; (B) 平动配分函数 ; (C) 转动配分函数 ; (D) 振动配分函数 。

第七章 统计热力学基础

第七章统计热力学基础 一、单选题 1.统计热力学主要研究()。 (A) 平衡体系(B) 近平衡体系(C) 非平衡体系 (D) 耗散结构(E) 单个粒子的行为 2.体系的微观性质和宏观性质是通过()联系起来的。 (A) 热力学(B) 化学动力学(C) 统计力学(D) 经典力学(E) 量子力学 3.统计热力学研究的主要对象是:() (A) 微观粒子的各种变化规律(B) 宏观体系的各种性质 (C) 微观粒子的运动规律(D) 宏观系统的平衡性质 (E) 体系的宏观性质与微观结构的关系 4.下述诸体系中,属独粒子体系的是:() (A) 纯液体(B) 理想液态溶液(C) 理想的原子晶体 (D) 理想气体(E) 真实气体 5.对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:() (A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论 (D) 统计学原理(E) 能量均分原理

6.在台称上有7个砝码,质量分别为1g、2g、5g、10g、50g、100g,则能够称量的质量共有:() (A) 5040 种(B) 127 种(C) 106 种(D) 126 种 7.在节目单上共有20个节目序号,只知其中独唱节目和独舞节目各占10个,每人可以在节目单上任意挑选两个不同的节目序号,则两次都选上独唱节目的几率是:() (A) 9/38 (B) 1/4 (C) 1/180 (D) 10/38 8.以0到9这十个数字组成不重复的三位数共有() (A) 648个(B) 720个(C) 504个(D) 495个 9.各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:() (A)△e t >△e r >△e v >△e e(B)△e t <△e r <△e v <△e e (C) △e e >△e v >△e t >△e r(D)△e v >△e e >△e t >△e r (E)△e r >△e t >△e e >△e v 10.在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:() (A) 气体和晶体皆属定域子体系(C) 气体属离域子体系而晶体属定域子体系 (B) 气体和晶体皆属离域子体系(D) 气体属定域子体系而晶体属离域子体系 11.对于定位系统分布X所拥有的微观状态t x为:(B) (A)(B)

统计热力学

统计热力学 统计热力学是宏观热力学与量子化学相关联的桥梁。通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。由于热力学是对大量粒子组成的宏观系统而言,这决定统计热力学也是研究大量粒子组成的宏观系统,对这种大样本系统,最合适的研究方法就是统计平均方法。 微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。 由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。Boltzmann 给出了宏观性质—熵(S )与微观性质—热力学几率(Ω)之间的定量关系:ln S k =Ω。 热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。因此,有了数学上完全容许的ln Ω≈ln W D,max ,所以,S =k ln W D,max 。这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。 波尔兹曼分布就是一种最概然分布,该分布公式中包含重要概念—配分函数。用波尔兹曼分布求任何宏观状态函数时,最后都转化为宏观状态函数与配分函数之间的定量关系。 配分函数与分子的能量有关,而分子的能量又与分子运动形式有关。因此,必须讨论分子运动形式及能量公式,各种运动形式的配分函数及分子的全配分函数的计算。 确定配分函数的计算方法后,最终建立各个宏观性质与配分函数之间的定量关系。

统计热力学

课程论文(设计) 学 院 化 学 化 工 学 院 专 业 应 用 化 学 年 级 2011 级 姓 名 李俊姣 课 程 统计热力学 指导教师 成 绩 2014年6月15日

目录 摘要 (2) 关键词 (2) Abstrac (2) keywords (2) 引言 (2) 1统计热力学的发展历程 (3) 2统计热力学取得的成果 (3) 3统计热力学发展现状 (4) 4统计热力学的意义 (4) 5统计热力学的发展展望 (5) 6结语 (5) 7相关文献 (5) 1

统计热力学 学生姓名:李俊姣学号:20115052029 化学化工学院2011级应用化学 摘要:统计热力学应用统计力学方法研究平衡系统的热力学性质。统计热力学认为物质的宏观性质是大量微观粒子运动量的统计平均值的体现。统计热力学从系统内部粒子的微观性质及其结构的数据出发,在统计原理的基础上,运用力学和统计规律推求大量粒子运动的统计平均结果,从而得到宏观性质。统计力学把热运动的宏观现象和微观机制联系起来,给经典热力学的唯象理论提供了数学证明。随着计算机和量子力学的发展,统计热力学会在工程上有更为广泛的应用。 关键词:统计热力学微观经典热力学 Abstract: Statistical thermodynamics statistical mechanics method is applied to study the thermodynamic properties of balance system. Macroscopic properties of statistical thermodynamics that matter is a reflection of a large number of microscopic particles exercise statistical average. Statistical thermodynamics from inside the system the data of the microscopic properties and the structure of the particles, on the basis of the principles of statistics, applied mechanics and statistical laws derive a lot of statistical average particle movement as a result, the macroscopic properties is obtained. Statistical mechanics macroscopic phenomena and microcosmic mechanism of the thermal motion, to the classical thermodynamics of phenomenological theory provides a mathematical proof. With the development of computer and quantum mechanics, statistical thermodynamic learn to have more extensive application in engineering. Keywords: Microscopic classical statistical thermodynamics thermodynamics 引言 热力学是以热力学三定律为基础,以大量分子的集合体作为研究对象,利用热力学数据,通过严密的逻辑推理,进而讨论平衡系统的各宏观性质之间的相互关系及其变化规律,揭示变化过程的方向和限度。从热力学所得到的结论对宏观平衡系统具有高度的普适性和可靠性,但是,热力学处理问题时没有考虑物质的微观结构,而任何物质的各种宏观性质都是微观粒子运动的客观反映。人们希望从物质的微观结构出发来了解其各种宏观性质,这是经典热力学所不能满足的,而统计热力学在这点上弥补了经典热力学的不足。 统计热力学从微观粒子所遵循的量子规律出发,研究的对象是大量分子的集合体,用统计的方法推断出宏观物质的各种性质之间的联系,阐明热力学定律的微观含义,揭示热力学函数的微观属性。统计热力学可以根据统计单元的力学性质(如速率,动量,位置,振动等),用统计的方法来推求系统的宏观热力学性质(如压力,热容,熵等)。 2

统计热力学初步

第九章 统计热力学初步 引言: 统计热力学:研究微观粒子运动规律与热力学宏观性质(体系中大量微观粒子行为的统计结果或总体表现)之间联系的科学。因为在研究中运用了普遍的力学运动定律,也称“统计力学”。 Boltzmann 统计:适用粒子间相互作用可以忽略的体系 经典统计 Gibbs 统计:考虑粒子间的相互作用 统计方法 Bose-Einstein 统计 量子统计 Fermi-Dirac 统计 (1)统计物系分类 1、独立子物系与相依子物系 独立子物系:粒子的相互作用可以忽略的物系,也称“独立子系”,如理想 气体。 内能: ∑==N j j U 1 ε N — 物系中粒子的个数 j ε — 第j 个粒子的各种运动能 相依子物系:粒子的相互作用不能忽略的物系,也称“非独立子系”,如真 实气体、液体。 内能: p N j j U U +∑==1 ε P U — 粒子相互作用的总位能 注意:以上是根据粒子的相互作用情况不同来划分粒子物系。 2、离域子物系与定域子物系 离域子物系:粒子运动状态混乱,无固定位置,也称“等同粒子物系”。由 于各粒子彼此无法分辨,可视为“等同”。理想气体可视为“独立离域子物系”。 定域子物系:粒子运动定域化的物系,也称“可别粒子物系”,因为粒子由 于定域而可分辨。如晶体中的各粒子是在固定的点阵点附近振动,可以认为晶体就是“定域子物系”。 若将晶体中各粒子看成彼此独立作简谐运动,则晶体就属于

“独立定域子物系”。 注意:以上是根据粒子运动情况不同来划分粒子物系。 (2)粒子的运动形式及能级公式 1、粒子的运动形式(分子视为粒子) 移动(称平动) 分子围绕通过质心的轴的转动 粒子运动 原子在平衡位置附近的振动 原子内部的电子运动 核运动等等 假定粒子只有以上五种运动形式,且彼此独立,则: 核电振转平εεεεεε++++=j 即:n e v r t j εεεεεε++++= 这里只介绍Boltzmann 统计方法。 §9.1 粒子各种运动形式的能级及能级的简并度 1.分子的平动 根据量子理论,粒子的各运动形式的能量都是量子化的,即能量是不连续的。由量子力学可得到: 长度为a 的直线区间内自由运动的“一维平动子”,有 m a h n x t 82 2 2=ε 长、宽各为a 、b 的平面上自由运动的“二维平动子”,有 m h b n a n y x t 822222?? ?? ??+=ε 长、宽、高各为a 、b 、c 空间内自由运动的“三维平动子”,有 m h c n b n a n z y x t 82222222??? ? ??++=ε m — 粒子(分子)的质量 h — 普朗克(Plank )常数,h = 6.626×10-34 J.s -1 z y x n n n 、、 — 平动量子数,可取1,2,3,… 等整数。 注意:量子数不是粒子的个数

第三章 统计热力学

第三章 统计热力学 一、内容提示 统计热力学研究对象是由大量微观粒子(分子、原子)构成的宏观系统,统计热力学根据微观粒子遵循的力学定律、从微观性质和结构数据(核间距离、键角、振动频率等)出发,应用统计的方法,直接推求系统的宏观性质,从而建立宏观性质与微观性质的联系,要掌握的内容:统计单位的分类;一些基本概念:如能级、简并度、分布和微态,统计热力学的基本假定,最概率分布与平衡分布,玻尔兹曼分布和配分函数,配分函与热力学的关系配分函数的分离,分子全配分函数。 三、判断说明原因 1、当系统折U 、N 、V 一定时,由于粒子可以处于不同的能级上,因而分布数不同,所以系统总的微态数Ω不能确定; 2、玻尔兹曼分布就是最概率分布,也是平衡分布; 3、分子能量零点的选择不同,各能级的能量值也不同; 4、分子能量零点的选择不同,分子的配分函数值也不同; 5、由压力趋于零的氧气组成的系统是独立粒子系统; 6、与分子运动空间有关的分子运动的配分函数是振动配分函数; 7、分子的能量零点的选择不同,玻兹曼公式也不同; 8、在低温下,可以用q r =Hr T 来计算双原子分子的转动配分函数; 9、一定量的纯理想气体恒温变化时平动配分函数q t 发生变化; 10、全配分函数的q 总=qt+q r +q v +q e +q n 。 三、填空: 1、由N 个分子组成的理想气体系统,一种分布的微态数为 ,N 个原子组成的原子晶体系统,一种分布的微态数为 ;

2、由N 个分子组成的理想气体系统,具有微态数最多的分布是 ,这种分布的微态数W B = ; 3、对于一个U 、V 、N 一定的系统,任何一种分布都必须满足的两个条件是 和 ; 4、CO 分子的平动自由度为 ,转动自由度为 ,振动自由度为 ; 5、Cl 2分子的振动频率为1.663×1013S -1,300K 时,相邻两振动能级上分子数之比v v n n 1 += ; 6、1mol 双原子理想气体的平动能U t = 转动能Ur= ; 7、1mol 双原子理想气体常温下热力学能为 ; 8、O 2的转动慢量I=19.3×10-47kg ,则O 2的转动特征温度是 ; 9、下列物质中,298.15k 时标准摩尔熵S m 最大的是(He 、N 2、CO )。 10、分子能量零点的选择不同,所有热力学函数的值都要改变。 第三章 统计热力学基础课后习题解答 2、当热力学体系的熵函数S 增加0.418 J ·K -1时,则体系的微观状态数增加多少? 分析:本题关键是知道关系S=kln Ω,Ω=k S e Ω1=R S S e ?+ △Ω=Ω1-Ω=k S k S S e -?+ k S k S k S S e e e e k S ??+=-=Ω?Ω 3、对双原子分子,证明:Ur=NkT 证明:双原子分子是定位系统

第9章 统计热力学初步习题答案

第9章 统计热力学初步 9.2 某平动能级的()45222 =++z y x n n n ,试求该能级的统计权重。 解:根据计算可知,x n 、y n 和z n 只有分别取2,4,5时上式成立。 因此,该能级的统计权重为g = 3! = 6,对应于状态452245425254245,,,,ψψψψψ542ψ。 9.5 某系统由3个一维谐振子组成,分别围绕着A , B , C 三个定点做振动,总能量为211νh 。试列出该系统各种可能的能级分布方式。 解:由题意可知方程组 n j ≤3 其解即为系统可能的分布方式。 已知一维谐振子的能级公式为:ε =(ν+1/2)h ν,可能的分布方式如下: 9.8 若将双原子分子看作一维谐振子,则气体HCl 分子与I 2分子的振动能级间隔分别是J 1094.520-?和J 10426.020-?。试分别计算上述两种分子在相邻振动能级上分布数之比。 解:谐振子的能级为非简并的,且为等间隔分布的.根据玻耳兹曼分布,有 ()????=?-=-+271 I for 0.3553 HCl for 10409.5exp kT n n j j ε 对于HCl : 对于I 2:

9.23 试由p V A T -=??? ????导出理想气体服从NkT pV = 解:正则系综特征函数()T V N Q kT A ,,ln -=,对理想气体 ()()!ln ln ln !ln ln ! ln ,,ln N k q q q q NkT q NkT N kT q NkT N q kT T V N Q kT A n e v r t N +--=+-=-=-= 只有平动配分函数与体积有关,且与体积的一次方程正比,因此: NkT pV V NkT V q NkT V A T t T =∴-=??? ????-=??? ???? ln 9.24 试证明:含有N 个粒子的离域子系统于平衡时, (1)! ln N q kT A N -= (2))ln (!ln V q NkTV N q k G N ??+-= 证:(1)A 的定义式为TS U A -= 离域子系统 Nk T U N q Nk S ++=ln 代入定义式,得 NkT N q NkT A --=ln 根据斯特林公式的近似式: N N N N -=ln !ln 有 ! ln N q kT A N -= (2)已知 pV A G += 将!ln N q kT A N -=及T T N T V q NkT N N q kT p V A )ln (])!/ln([)(??-=??-=-=??代入上式,得 )ln (!ln V q NkTV N q k G N ??+-=

统计热力学习题

第六章统计热力学 一 . 选择题 1. 玻尔兹曼熵定理一般不适用于: ( ) (A) 独立子体系 (B) 理想气体 (C) 量子气体 (D) 单个粒子 2.下列各体系中属于独立粒子体系的是: ( ) (A) 绝对零度的晶体 (B) 理想液体混合物 (C) 纯气体 (D) 理想气体的混合物 3. 玻尔兹曼分布 _______ 。 (A) 是最概然分布,但不是平衡分布。(B) 是平衡分布,但不是最概然分布。 (C) 即是最概然分布,又是平衡分布。(D) 不是最概然分布,也不是平衡分布。 4. 在 N 个 NO 分子组成的晶体中,每个分子都有两种可能的排列方式,即 NO 和 ON,也可将晶体视为 NO 和 ON 的混合物,在 0K 时该体系的熵值 (A) S O = 0 (B) S O = kln2 (C) S O = Nkln2 (D) S O = 2klnN 5. 在分子运动的各配分函数中与压力有关的是: ( ) (A)电子运动的配分函数 (B)平均配分函数 (C)转动配分函数 (D)振动配分函数 6. 已知 CO 的转动惯量 I = 1.45×10-26 kg.m2,则 CO 的转动特征温度为: (A) 0.36 K (B) 2.78 K (C) 2.78×107 K (D) 5.56 K 7. 关于配分函数,下面哪一点是不正确的 ( ) (A) 粒子的配分函数是一个粒子所有可能状态的玻尔兹曼因子之和; (B) 并不是所有配分函数都无量纲; (C) 粒子的配分函数只有在独立粒子体系中才有意义; (D) 只有平动配分函数才与体系的压力有关。 8. 热力学函数与分子配分函数的关系式对于定域粒子体系和离域粒子体系都相同的是 ( ) (A) G,F,S (B) U,H,S (C) U,H,C V (D) H,G,C V 9. 粒子的配分函数 q 是 ( ) (A) 一个粒子的 (B) 对一个粒子的玻尔兹曼因子取和; (C) 粒子的简并度和玻尔兹曼因子的乘积取和; (D) 对一个粒子的所有可能状态的玻尔兹曼因子取和。 10. NHВ分子的平动、转动振动、自由度分别为: ( ) (A) 3,2,7 (B) 3,2,6 (C) 3,3,7 (D) 3,3,6 11. 双原子分子的振动配分函数 q ={1 - exp(-hν/kT)}-1是表示 ( ) (A) 振动处于基态 (B)选取基态能量为零 (C) 振动处于基态且选基态能量为零 (D)振动可以处于激发态,选取基态能量为零 12. 双原子分子以平衡位置为能量零点,其振动的零点能等于: ( ) (A) kT (B) (1/2)kT (C) hν (D) (1/2)hν

相关主题
文本预览
相关文档 最新文档