当前位置:文档之家› 液压泵液压缸液压马达的型号及参数以及

液压泵液压缸液压马达的型号及参数以及

液压泵液压缸液压马达的型号及参数以及
液压泵液压缸液压马达的型号及参数以及

液压、气动

一、液压传动

1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。

2、组成原件

1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵

2 、调节、控制压力能的液压控制阀

3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达)

4 、传递压力能和液体本身调整所必需的液压辅件

液压系统的形式

3、部分元件规格及参数

衡力,磨损严重,泄漏较大。

叶片泵:分为双作用叶片泵和单作用叶片泵。这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。

柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。

一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。还有一些其他形式的液压泵,如螺杆泵等,但应用不如上述3种普遍。

适用工况和应用举例

【KCB/2CY型齿轮油泵】工作原理:

2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。A为入吸腔,B为排出腔。泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。

KCB/2Y型齿轮油泵型号参数和安装尺寸如下:

【KCB/2CY型齿轮油泵】性能参数:

【KCB/2CY型齿轮油泵】安装尺寸图:

KCB18.3~83.3与2CY1.1~5安装尺寸图

KCB200~960与2CY8~150安装尺寸图

双联叶片泵(两个单级泵并联组成,有多种规格)

分类:1、按照额定转速选择:分为高度和低速两大类,高速液压马达的基本形式有齿轮式、螺杆式、叶片式和轴向柱塞式等,高速液压马达主要具有转速较高,转动惯性小,便于启动和

制动,调速和换向的灵敏度高。低速液压马达的基本形式为径向柱塞式,主要具有排量大、体积大、转速低、传动机构较简化。 ???????

2、按照结构类型选择:分为叶片式、轴向柱塞式、摆动式等。叶片马达具有体积小、转动惯性小、动作灵敏、可以实现换向频率高,但泄漏较大,不能低速工作。轴向柱塞马达具有输出扭矩小。

常用液压马达的主要技术参数

适用工况和应用实例:

1、XHM液压马达型号与参数

. 马达结构及外形示意:

结构及外形示意:

液压缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件。

它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。

液压油缸介绍以及安装尺寸标准HS01·210L 系列拉杆液压缸

二、气动

气动是利用撞击作用或转动作用产生的空气压力使其运动或作功,气动就是以压缩空气为动力源,带动机械完成伸缩或旋转动作。

特点

1、气动装置结构简单、轻便、安装维护简单。压力等级低、使用安全相对液压系统安全一些。

2、工作介质是取之不尽的空气、空气本身不花钱。排气处理简单,不污染环境,但电能消耗较大,能源转换率很低,初期成本较低,但使用成本较高。

3、输出力以及工作速度的调节非常容易。气缸的动作速度一般为50~500mm/s。但运行速度稳定性不高。

4、可靠性不太高,使用寿命受气源洁净度和使用频率的影响较大。

优缺点

1) 以空气为工作介质,容易取得;用后的空气排到大气中,处理方便,与液压传动相比不必设置回油装置。

2) 因空气的粘度很小, 流动过程中能量损失也很小,节能、高效,适用于集中供应和远距离输送。

3) 与液压传动相比, 气动动作反应快, 维护简单,工作介质清洁,不存在介质变质及补充等问题。

4) 工作环境适应性好,特别适合在易燃,易爆,多尘埃,强磁,强辐射,振动等恶劣条件下工作,外泄露不污染环境,在食品、轻工、纺织、印刷、精密检测等环境中采用最为适宜。

5)因空气本身无润滑性能, 故在气路中应设置给油润滑装置

气动系统的基本构成?

组成的气动回路是为了驱动用于各种不同目的的机械装置,其最重要的三个控制内容是:力的大小、力的方向和运动速度。与生产装置相连接的各种类型的气缸,靠压力控制阀、方向控制阀和流量控制阀分别实现对三个内容的控制,即:?

压力控制阀——控制气动输出力的大小?方向控制阀——控制气缸的运动方向?速度控制阀——控制气缸的运动速度?一个气动系统通常包括:?气源设备:包括空压机、气罐??

气源处理元件:包括后冷却器、过滤器、干燥器和排水器??

压力控制阀:包括增压阀、减压阀、安全服、顺序阀、压力比例阀、真空发生器??

润滑元件:油雾器、集中润滑元件?

气动元件?

气源装置及辅件?

气源装置包括压缩空气的发生装置以及压缩空气的存贮、净化等辅助装置。它为气动系统提供合乎质量要求的压缩空气,是气动系统的一个重要组成部分。?

气源装置一般由气压发生装置、净化及贮存压缩空气的装置和设备、传输压缩空气的管道系统和气动三大件四部分组成。

旋涡气泵的型号和参数:

气动马达

气动马达也称为风动马达,是指将压缩空气的压力能转换为旋转的机械能的装置。一般作为更复杂装置或机器的旋转动力源。气动马达按结构分类为:叶片式气动马达,活塞式气动马达,紧凑叶片式气动马达,紧凑活塞式气动马达。

活塞式气动马达技术参数

型号额定马力(HP) 额定转速(RPM) 额定扭矩(N.

m)

耗气量(L/min) 工作压力(Mpa)

重量

(KG)

TMH010 0.1 1100 0.64 180 0.6 1.8 TMH015A 0.15 1100 0.96 210 0.6 2.4 TMH0200.2900 1.562750.6 2.4 TMH0250.25900 1.953150.6 3.2 TMH025A0.33900 2.73150.6 3.6 TMH0500.5720 4.85800.6 5.3

第三章液压泵和液压马达

第三章液压泵和液压马达 3.1概念 一.液压泵和液压马达的工作原理 单作用柱塞泵为例 原理:液压泵是靠密封油圈容积的变化来进行工作的,所以称为容积式泵。泵的输油量取决于密封工作油腔的数目以及容积变化的大小和频率。 二.液压泵和液压马达的分类 ???? ?? ????? ??????? ??????????? ???? ?? 内 齿轮泵外螺杆泵定量泵定量叶片泵定量径向柱塞泵泵定量轴向柱塞泵 变量叶片泵变量泵变量径向柱塞泵 变量轴向柱塞泵 ?????? ??? ??????????????????????? ?? ???????????齿轮 定量螺杆叶片,径向,轴向高速叶片变量径向马达轴向径向柱塞式轴向柱塞式低速叶片马达摆线马达 三.液压泵和液压马达的基本性能要求 性能要求: (1)结构简单、紧凑、体积小、重量轻、维护方便、价格低廉、使用寿命长 (2)摩擦损失小、泄漏小、发热小、效率高 (3)对油污染不敏感 (4)自吸能力强 (5)输出流量脉动小、运转平稳、噪声小 主要向性能参数: 1.工作压力和额定压力 额定压力:在正常条件下按试验标准规定能连续运转的最高压力。 低压 中压 中高压 高压 超高压 5.2≤ 2.5~8 8~16 16~32 〉32 a Mp 2.液压泵和液压马达的排量和流量 排量v t q =vn 理论流量 t q 泵 t l t l q =q -q =q -k p 实际流量q 马达 t l t l q =q +q =q +k p 其中: l k —泄漏系数或流量损失系数 3.液压泵和液压马达的功率和效率 理论功率: 泵 t t P pq pvn == 马达 2t t t P T nT ωπ== 其中: t T —理论转矩 ω—角速度

液压泵液压缸液压马达的型号及参数以及

液压、气动 一、液压传动 1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。 2、组成原件 1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵 2 、调节、控制压力能的液压控制阀 3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达) 4 、传递压力能和液体本身调整所必需的液压辅件 液压系统的形式 3、部分元件规格及参数 衡力,磨损严重,泄漏较大。 叶片泵:分为双作用叶片泵和单作用叶片泵。这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。 柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。 一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。还有一些其他形式的液压泵,如螺杆泵等,

但应用不如上述3种普遍。 适用工况和应用举例

【KCB/2CY型齿轮油泵】工作原理: 2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。A为入吸腔,B为排出腔。泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。 KCB/2Y型齿轮油泵型号参数和安装尺寸如下: 【KCB/2CY型齿轮油泵】性能参数:

【KCB/2CY型齿轮油泵】安装尺寸图:KCB18.3~83.3与2CY1.1~5安装尺寸图 电动机 KCB200~960与2CY8~150安装尺寸图

液压油泵性能参数

液压油泵性能参数 液压泵是靠密封容腔容积的变化来工作的。如何为机械选择适合的液压油泵?首先我们要了解液压油泵的工作原理和性能参数中,下面由金中液压系统厂家设计部告诉大家液压油泵的性能参数: 工作压力指液压泵出口处的实际压力值。工作压力值取决于液压泵输出到液压系统中的液体在流动过程中所受的阻力。阻力(负载)增大,则工作压力升高;反之则工作压力降低。 额定压力指液压泵在连续工作过程中允许达到的最高压力。额定压力值的大小由液压泵零部件的结构强度和密封性来决定。超过这个压力值,液压油泵有可能发生机械或密封方面的损坏 排量V指在无泄漏情况下,液压泵转一转所能排出的油液体积。可见,排量的大小 只与液压泵中密封工作容腔的几何尺寸和个数有关。排量的常用单位是(ml/r)。 理论流量qt 指在无泄漏情况下,液压泵单位时间内输出的油液体积。其值等于泵的 排量V和泵轴转数n的乘积,即qt=Vn(m3/s) 实际流量q指单位时间内液压泵实际输出油液体积。由于工作过程中泵的出口压力 不等于零,因而存在内部泄漏量Δq(泵的工作压力越高,泄漏量越大),使得泵的实际流量小于泵的理论流量,即 q=qt-△q 显然,当液压泵处于卸荷(非工作)状态时,这时输出的实际流量近似为理论流量。 额定流量qn 泵在额定转数和额定压力下输出的实际流量。 输入功率Pi 驱动液压泵的机械功率,由电动机或柴油机给出,即pi=ωT 输出功率po液压泵输出的液压功率,即泵的实际流量q与泵的进、出口压差Δp的乘积po=△pq 当忽略能量转换及输送过程中的损失时,液压泵的输出功率应该等于输入功率,即泵的理论功率为pi=△pq=△pVn=ωTt 式中, ω—液压泵转动的角速度;Tt—液压泵的理论转矩 际上,液压泵在工作中是有能量损失的,这种损失分为容积损失和机械损失。 容积损失主要是液压泵内部泄漏造成的流量损失。容积损失的大小用容积效率表 征,即 实际上,液压泵在工作中是有能量损失的,这种损失分为容积损失和机械损失。 容积损失主要是液压泵内部泄漏造成的流量损失。容积损失的大小用容积效率表 征,即 式中取泄漏量Δq=klp。这是因为液压泵工作构件之间的间隙很小,泄漏液体的流动状态可以看作是层流,即泄漏量和泵的工作压力p成正比。kl是液压泵的泄漏系数。 机械损失指液压泵内流体粘性和机械摩擦造成的转矩损失。机械损失的大小用机械 效率表征,即 式中,ΔT是损失掉的转矩。 液压泵的总效率泵的总效率是泵的输出功率与输入功率之比,即 液压泵的总效率、容积效率和机械效率可以通过实验测得。图3.2给出了某液压泵的性能

液压泵液压马达功率计算

液压泵液压马达功率计算 This model paper was revised by the Standardization Office on December 10, 2020

应用:(1)已知液压泵的排量是为136毫升/ 120kgf/cm 2,计Q=qn=136(毫升/转)×970转/分 =131920(毫升/分) =131.92(升/分) 系统所需功率 考虑到泵的效率,电机功率一般为所需功率的1.05~1.25倍 N D =()N=28.5~32.4(kW ) 查有关电机手册,所选电机的功率为30kW 时比较适合。 (2)已知现有液压泵的排量是为136毫升/转,所配套的电机为22kW ,计算系统能达到 的最高工作压力。 解:已知Q=qn=131.92(升/分),N D =22kW 将公式变形 考虑到泵的效率,系统能达到的最高工作压力不能超过90kgf/cm 2。 液压泵全自动测试台 液压泵全自动测试台是根据各国对液压泵出厂试验的标准设计制造,可测 试液压叶片泵(单联泵、双联泵、多联泵)、齿轮泵、柱塞泵等的动静态性能。测试范围、测试项目、测试要求符合JB/T7039-2006、JB/T7041-2006、JB/T7043-2006等有关国家标准,试验测试和控制精度:B 或C 级。液压泵全自动测试台是液压泵生产和维修企业的最重要检测设备。 液压泵全自动测试台:主要由驱动电动机、控制和测试阀组、检测计量装 置、油箱冷却、数据处理和记录输出部分等组成,驱动电动机选用了先进的变频电机,转速可在0—3000rpm 内进行无级调速,满足各类不同转速的液压泵的试验条件,也可测试各类液压泵在不同转速下的性能指标。控制阀选用了目前先进的比例控制装置,同时配置手动控制装置,因此测试时可以采用计算机自动控制和检测,也可以切换为手动控制和检测。压力、流量、转速和扭矩的测量采用数字和模拟两种方法,数字便于用计算机采集、整理和记录,模拟便于现场观察控制。油箱的散热是由水冷却装置完成,可以满足液压泵的满功率运行要求。测试台还可根据客户要求进行设计和开发,满足不同用户的特殊的个性要求。 功率回收式液压泵全自动测试台:功率回收式液压泵性能测试台是目前最 先进的节能试验方式,它解决了被压加载方式使油温上升过快,不能做连续试验和疲劳寿命试验的缺点。这种新型测试台最高可节省70%的能耗,可直接为用户带来可观的经)(9.2561292.131120612kW Q P N =?=?=

第三章液压泵和液压马达

第三章液压泵和液压马达 一.判断题. 1. 因存在泄漏,因此输入液压马达的实际流量大于其理论流量,而液压泵的实际输出流量小于其理论流量.( ) 2.液压泵的容积效率与液压泵的泄漏量有关,而与液压泵的转速无关.() 3. 流量可改变的液压泵称为变量泵.( ) 4. 定量泵是指输出流量不随泵的输出压力改变的泵.( ) 5. 当液压泵的进、出口压力差为零时,泵、输出的流量即为理论流量.( ) 6. 齿轮泵的吸油腔就是轮齿不断进入啮合的那个腔.() 7. 齿轮泵多采用变位修正齿轮是为了减小齿轮重合度,消除困油现象.( ) 8. 双作用叶片泵每转一周,每个密封容积就完成二次吸油和压油.() 9. 单作用叶片泵转子与定子中心重合时,可获稳定大流量的输油.() 10.对于限压式变量叶片泵,当泵的压力达到最大时,泵的输出流量为零.() 11.双作用叶片泵既可作为定量泵使用,又可作为变量泵使用.() 12.双作用叶片泵因两个吸油窗口、两个压油窗口是对称布置,因此作用在转子和定子上的液压径向力平衡,轴承承受径向力小、寿命长.( ) 13.双作用叶片泵的转子叶片槽根部全部通压力油是为了保证叶片紧贴定子内环.( ) 14.配流轴式径向柱塞泵的排量q与定子相对转子的偏心成正比,改变偏心即可改变排量.( ) 15.液压泵产生困油现象的充分且必要的条件是:存在闭死容积且容积大小发生变化.( ) 16.液压马达与液压泵从能量转换观点上看是互逆的,因此所有的液压泵均可以用来做马达使用.( ) 17. 液压泵输油量的大小取决于密封容积的大小.( ) 18. 外啮合齿轮泵中,轮齿不断进入啮合的那一侧油腔是吸油腔.( ) 二.选择题.

液压泵和液压马达习题及答案

第四章 液压泵和液压马达 液压泵完成吸油和排油,必须具备什么条件 泵靠密封工作腔的容积变化进行工作,容积增加吸油,容积减小排油。 什么是齿轮泵的困油现象有何危害如何解决 一部分的油液困在两轮齿之间的密闭空间,空间减小,油液受积压,发热,空间增大,局部真空,气穴、振动、噪声。在两侧盖板上开卸荷槽。 齿轮泵、双作用叶片泵、单作用叶片泵各有哪些特点。如何正确判断转向、油腔和进出油口。 齿轮泵结构简单、尺寸小、重量轻、价格低、流量压力脉动大、泄漏大。 叶片泵流量压力脉动小、噪声小、结构复杂、吸油差、对污染敏感。 单作用叶片泵可做成变量泵。 叶片泵根据叶片方向判断转向。根据容积变化判断进出油口。 为什么轴向柱塞泵适用于高压 柱塞泵配合精度高、泄漏小、容积效率高。 已知泵的额定压力和额定流量,管道压力损失忽略不计,图c 中的支路上装有节流小孔,试说明图示各种工况下泵出口处的工作压力值。 a) b) c) d) e) F F T ,n M 题图 a) b)油回油箱,出口压力为0。 c) 节流小孔流量ρP A C q d ???=20

出口压力 20)( 2A C q P d ?=?ρ d) 出口压力A F P = e) 功率关系M T T V q T T q P ? ?=?=?πω2 出口压力M V T P ?=π2 设液压泵转速为950r/min ,排量为V P =168m l /r ,在额定压力和同样转速下,测得的实际流量为150l /min ,额定工况下的总效率为,求: 1) 泵的理论流量q t ; 2) 泵的容积效率ηv ; 3) 泵的机械效率ηm ; 4) 泵在额定工况下,所需电机驱动功率P ; 5) 驱动泵的转矩T 。 1)理论流量min /6.159/168min /950l r ml r V n q p t =?=?= 2) 容积效率94.06 .159150===t v q q η 3) 机械效率93.094 .087.0===v m ηηη 4) 电机功率kW l Mpa q p P 48.887.0min//15095.2/=?=?=η 5) 转矩Nm n P P T 3.85602===πω 某液压马达排量V M =250ml/r ,入口压力为,出口压力为,总效率η=,容积效率ηV =。当输入流量为×10-3m 3/s 时,试求: 1) 液压马达的输出转矩; 2) 液压马达的实际转速。 1)功率关系n T V n p p m m ??=???-πη2)(21 输出转矩Nm V p p T m m 5.3622)(21=??-=π η v m ηη η=

第二章液压泵和液压马达练习题

第二章液压泵和液压马达三、习题 (一)填空题 1.常用的液压泵有、和三大类。 2.液压泵的工作压力是,其大小由决定。 3.液压泵的公称压力是的最高工作压力。 4.液压泵的排量是指。 5.液压泵的公称流量。 6.液压泵或液压马达的总效率是和的乘积。 7.在齿轮泵中,为了,在齿轮泵的端盖上开困油卸荷槽。 8.在CB-B型齿轮泵中,减小径向不平衡力的措施是。 9.是影响齿轮泵压力升高的主要原因。在中高压齿轮泵中,采取的措施是采用、、自动补偿装置。 10.双作用叶片泵定子内表面的工作曲线是由、和组成。常用的过渡曲线是。 11.在YB1型叶片泵中,为了使叶片顶部和定子内表面紧密接触,采取的措施是。 12.在高压叶片泵中,为了减小叶片对定子压紧力的方法有和。 13.变量叶片泵通过改变,来改变输出流量,轴向柱塞泵通过改变,来改变输出流量。 14.在SCYl4-1B型轴向柱塞泵中,定心弹簧的作用是。 15.在叶片马达中,叶片要放置,叶片马达的体积小,转动惯量小,动作灵敏,适用于的场合。由于泄漏大,叶片马达一般用于、、和的场合。 (二)判断题 1.液压泵的工作压力取决于液压泵的公称压力。( ) 2.YB1型叶片泵中的叶片是依靠离心力紧贴在定子内表面上。( ) 3.YB1型叶片泵中的叶片向前倾,YBX型叶片泵中的叶片向后倾。( ) 4.液压泵在公称压力下的流量就是液压泵的理论流量。( ) 5.液压马达的实际输入流量大于理论流量。( ) 6.CB-B型齿轮泵可作液压马达用。( ) (三)选择题

1.液压泵实际工作压力称为;泵在连续运转时,允许使用的最高工作压力称为;泵在短时间内过载时所允许的极限压力称为。 A.最大压力 B.工作压力 C.吸入压力 D.公称压力 2.泵在单位时间内由其密封容积的几何尺寸变化计算而得的排出液体的体积称为。 A.实际流量 B.公称流量 C.理论流量 3.液压泵的理论流量实际流量。 A.大于 B.小于C.等于 4.YB1型叶片泵中的叶片靠紧贴在定子内表面;YBX型变量叶片泵中的叶片靠紧贴在定子内表面。 A.叶片的离心力 B.叶片根部的油液压力 C.叶片的离心力和叶片根部的油液压力 5.CB-B型齿轮泵中,泄漏途径有三条,其中对容积效率的影响最大。 A.轴向间隙 B.径向间隙 C.啮合处间隙 6.对于要求运转平稳,流量均匀,脉动小的中、低压系统中,应选用。 A.CB-B型齿轮泵 B.YB1型叶片泵 C.径向柱塞泵 7.液压泵的最大工作压力应其公称压力,最大输出流量应其公称流量。 A.大于 B.小于 C.等于 D.大于或等于 E.小于或等于 8.公称压力为6.3MPa的液压泵,其出口接油箱。则液压泵的工作压力为。A.6.3MPa B.O C.6.2MPa (四)问答题 1.液压泵要完成吸油和压油,必须具备的条件是什么? 2.在齿轮中,开困油卸荷槽的原则是什么? 3.在齿轮泵中,为什么会产生径向不平衡力? 4.高压叶片泵的结构特点是什么? 5.限压式变量叶片泵的工作特性是什么? (五)计算题 1.某液压泵的工作压力为10MPa,实际输出流量为60L/min,容积效率为0.9,机械效率为O.94,试求: 1)液压泵的输出功率。 2)驱动该液压泵的电动机所需功率。 2.某液压马达的排量为V M=100mL/r,输入压力为p=10MPa,背压力为1MPa,容积效率ηMV=O.96,机械效率ηMm=0.86,若输入流量为40L/min,求液压马达的输出转速、转矩、输入功率和输出功率。 3.已知液压泵的输出压V M=100mL/r力p=12MPa,其机械效率ηm=0.94,容积效率ηV=0.92,排量V=10mL/r;马达的排量为V M=100mL/r,马达的机械效率为ηMm=0.92,马达的容积效率ηMV=O.85,

液压泵与液压马达的区别和联系

液压马达与液压泵的区别详解 液压马达习惯上是指输出旋转运动的,将液压泵提供的液压能转变为机械能的能量转换装置. 三维网技术论坛- {, ^8 V/ f- H* c 一、液压马达的特点及分类https://www.doczj.com/doc/6316851269.html,1 C& y/ D1 w& E$ e- v https://www.doczj.com/doc/6316851269.html,& |& U) l, p( s8 |; O 从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。 三维网技术论坛+ X3 D r6 g9 U% a" U- \ 但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。 5 Y) [' G7 R1 M' h$ v8 d 液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。按液压马达的额定转速分为高速和低速两大类。额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。通常高速液压马达输出转矩不大所以又称为高速小转矩液压马达。低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大,所以又称为低速大转矩液压马达。 _- s" u, J/ S1 k; y 二、液压马达的工作原理 三维,cad,机械,技术,汽车,catia,pro/e,ug,inventor,solidedge,solidworks,caxa,时空,镇江8 G# E' v6 i& e7 ?& Q 1.叶片式液压马达 由于压力油作用,受力不平衡使转子产生转矩。叶片式液压马达的输出转矩与液压马达的排量和液压马达进出油口之间的压力差有关,其转速由输入液压马达的流量大小来决定。由于液压马达一般都要求能正反转,所以叶片式液压马达的叶片要径向放置。为了使叶片根部始终通有压力油,在回、压油腔通人叶片根部的通路上应设置单向阀,为了确保叶片式液压马达在压力油通人后能正常启动,必须使叶片顶部和定子内表面紧密接触,以保证良好的密封,因此在叶片根部应设置预紧弹簧。叶片式液压马达体积小,转动惯量小,动作灵敏,可适用于换向频率较高的场合,但泄漏量较大,低速工作时不稳定。因此叶片式液压马达一般用于转速高、转矩小和动作要求灵敏的场合。三维网技术论坛7 j9 N7 B" W6 l5

液压泵的技术参数

液压泵的主要技术参数 (1)泵的排量(mL/r)泵每旋转一周、所能排出的液体体积。 (2)泵的理论流量(L/min)在额定转数时、用计算方法得到的单位时间内泵能排出的最大流量。(3)泵的额定流量(L/min)在正常工作条件下;保证泵长时间运转所能输出的最大流量。 (4)泵的额定压力(MPa)在正常工作条件下,能保证泵能长时间运转的最高压力。 (5)泵的最高压力(MPa)允许泵在短时间内超过额定压力运转时的最高压力。 (6)泵的额定转数(r/min)在额定压力下,能保证长时间正常运转的最高转数。 (7)泵的最高转数(r/min)在额定压力下,允许泵在短时间内超过额定转速运转时的最高转数。(8)泵的容积效率(%)泵的实际输出流量与理论流量的比值。 (9)泵的总效率(%)泵输出的液压功率与输入的机械功率的比值。 (10)泵的驱动功率(kW)在正常工作条件下能驱动液压泵的机械功率。 2.2 液压泵的常用计算公式(见表2) 表2 液压泵的常用计算公式 液压泵功率= 60压力 转速 排量? ? 第三章液压泵 3.1重点、难点分析 本章的重点是容积式泵和液压马达的工作原理;泵和液压马达的性能参数的定义、相互间的关系、量值的计算;常用液压泵和马达的典型结构、工作原

理、性能特点及适用场合;外反馈限压式变量叶片泵的特性曲线(曲线形状分析、曲线调整方法)等内容。学习容积式泵和马达的性能参数及参数计算关系,是为了在使用中能正确选用与合理匹配元件;掌握常用液压泵和马达的工作原理、性能特点及适用场合是为了合理使用与恰当分析泵及马达的故障,也便于分析液压系统的工作状态。 本章内容的难点是容积式泵和液压马达的主要性能参数的含义及其相互间的关系;容积式泵和液压马达的工作原理;容积式泵和液压马达的困油、泄漏、流量脉动、定子曲线、叶片倾角等相关问题;。限压式变量泵的原理与变量特性;高压泵的结构特点。 1.液压泵与液压马达的性能参数 液压泵与液压马达的性能参数主要有:压力、流量、效率、功率、扭矩等。 (1)泵的压力 泵的压力包括额定压力、工作压力和最大压力。液压泵(马达)的额定压力是指泵(马达)在标准工况下连续运转时所允许达到的最大工作压力,它与泵 (马达)的结构形式与容积效率有关;液压泵(马达)的工作压力p B (p M )是指泵 (马达)工作时从泵(马达)出口实际测量的压力,其大小取决于负载;泵的最大压力是指泵在短时间内所允许超载运行的极限压力,它受泵本身密封性能和零件强度等因素的限制;工作压力小于或等于额定压力,额定压力小于最大压力。 (2)泵的流量 泵的流量分为排量、理论流量、实际流量和瞬时流量。泵(马达)的排量V B(V M)是指在不考虑泄漏的情况下,泵(马达)的轴转过一转所能输出(输入)

浅谈液压泵的主要性能参数

浅谈液压泵的主要性能参数 液压泵的主要参数有压力、排量、流量、功率和效率等。 1.压力 液压泵压力有工作压力、额定压力、最高允许压力和吸人压力等。用P表示,单位为Mpa 1)工作压力p 工作压力是指液压泵实际工作时的输出压力。工作压力的大小取决于负载和管路的压力损失,随着外负的变化而变化,和液压泵的流量无关。 2)液压泵的额定压力Pn 液压泵的额定压力指液压泵在正常工作条件下,按试验标淮规定的连续运转最高巧-力。液压泵的实际工作压力要小于额定压力,如果工作压力大于额定压力时,液压泵就过载。3)最高允许压力Pmax 最高允许压力是指液压泵按试验标准规定的,允许短时间超过额定压力运行的最大压力值。 4)吸人压力 吸人压力是指液压泵进口处的压力。为了保证液压泵正常工作而不产生气穴,应限制液压泵的吸油髙度,即最低吸人压力必须大于相应的空气分离压力。 2,排量和流量 1)排量 排量是指液压泵每转一周,由其密封容积几何尺寸变化计算而得排出的液体体积。排量用V 表示,其单位为L/r排量可啁节的液压泵为变量泵,徘量不可调节的液压泵为定量泵。 流量 液压泵的流量是指在单位时间内排出的液体体积,有理论流量、实际流量和额定流量之分。用q表示,单位为L/min。 (1)理论流量q1。理论流量是指在不考虑液压泵的泄漏流量的情况下,在单位时间内所徘出的液体的体积。裉然,如果液压泵的排量为V,其主轴转速为",则该液压泵的理论流量为q1=Vn (2)实际流量qp。实际流量是指液压泵在工作时,考虑液压泵泄漏而输出的流量。它等于理论流量减去泄漏流量△q即 qp=q1-△q (3)额定流量qn额定流量是指液压泵在正常工作条件下,试验标准规定(如在额定压力和额定转速下)必须保证的流量。实际流量和额定流量都小于理论流量。 3)功率 液压泵的功率有输人功率、理论输出功率和实际输出功率。用P表示.单位是W 或KW。(1)输入功率P1。液压泵是通过电动机带动,输人的是转矩T和转速n;即输人能量为机械能。输人功率p1,指作用在液压泵主轴上的机械功率。

液压马达工作原理

液压马达 液压马达习惯上是指输出旋转运动的,将液压泵提供的液压能转变 为机械能的能量转换装置. 一、液压马达的特点及分类 从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积 和相应的配油机构。 但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。 液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。按液压马达的额定转速分为高速和低速两大类。额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,

便于启动和制动,调节(调速及换向)灵敏度高。通常高速液压马达输出转矩不大所以又称为高速小转矩液压马达。低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大,所以又称为低速大转矩液压马达。 二、液压马达的工作原理 1.叶片式液压马达 由于压力油作用,受力不平衡使转子产生转矩。叶片式液压马达的输出转矩与液压马达的排量和液压马达进出油口之间的压力差有关,其转速由输入液压马达的流量大小来决定。由于液压马达一般都要求能正反转,所以叶片式液压马达的叶片要径向放置。为了使叶片根部始终通有压力油,在回、压油腔通人叶片根部的通路上应设置单向阀,为了确保叶片式液压马达在压力油通人后能正常启动,必须使叶片顶部和定子内表面紧密接触,以保证良好的密封,因此在叶片根部应设置预紧弹簧。叶片式液压马达体积小,转动惯量小,动作灵敏,可适用于换向频率较高的场合,但泄漏量较大,低速工作时不稳

液压马达工作原理(与泵的区别)

从工作原理上讲,液压传动中的液压泵和液压马达都是靠工作积的容积变化而工作的。因此说泵可以作马达用,马达可作泵用。实际上由于两者工作状态不一样,为了更好发挥各自工作性能,在结构上存在差别,所以不能通用。 高速液压马达的主要特点是:转速较高、转动惯量小、便于起动和制动,调节(调速和换向)灵敏度高。通常高速马达的输出转矩不大,仅几十N〃m 到几百N〃m,∴又称高速小转矩液压马达。 低速液压马达的特点:排量大、体积小、转速低,可低到每分钟几转,能直接与工作机构连接,不需减速装置,使传动机构大大简化。低速马达输出转矩较大,可达几千N〃m到几万N〃m,∴又称低速大转矩马达。 3、液压泵与液压马达的异同 ①各种液压泵和液压马达均是利用“密封容积(腔)”的周期性变化来工作的。工作中均需要有配流盘等装置辅助,而且,“密封容积”分为高压区和低压区两个独立部分。 ②二者在工作中均会产生困油现象和径向力不平衡,液压冲击、流量脉动和液体泄漏等一些共同的物理现象。 ③液压泵和马达是机械能和压力能互相转换的动力装置,转换过程中均有能量损失,所以均有容积效率、机械效率和总效率,三者效率之间关系也相同,计算效率时,要清楚输入量与输出量的关系。 ④液压泵和马达工作原理是可逆的,理论上输入与输出量有相同的数学关系;

⑤液压泵和液压马达最重要的结构参数都是排量,排量的大小反映了液压泵和液压马达的性能。 ①动力不同液压马达是靠输入液体压力来启动工作的,而液压泵是由电动机等其他动力装置直接带动的,因此结构上有所不同。马达容积密封必须可靠,为此,叶片式马达叶片根部装有燕尾弹簧,使其始终贴紧定子,以便马达顺利起动。 ②配流机构进出油口的不同液压马达有正、反转要求,所以配流机构是对称的,进出油口孔径相同;而液压泵一般为单向旋转,其配流机构及卸荷槽不对称,进出油口孔径不同。 ③自吸性的差异液压马达依靠压力油工作,不需要有自吸性;而液压泵必须有自吸能力。 ④防止泄漏形式不同液压泵采用内泄漏形式,内部泄漏口直接与液压泵吸油口相通;而马达是双向运转,高低压油口互相变换,所以采用外泄漏式结构。(故泵、马达不能互逆通用) 液压马达容积效率比泵低 ⑥液压马达起动转矩大,为使起动转矩与工作状态尽量接近,要求其转矩脉动要小,内部摩擦要小,齿数、叶片数、柱塞数应比液压泵多,马达的轴向间隙补偿装置的压紧力比泵小,以减小摩擦。 对于液压马达的选用 (单向.双向.定量.变量,根据运动部件的运动要求而定) 1、高速、低转矩时用齿轮马达, (ηv低、转矩脉动性较大); 2、正反向转动变化频率较高,要求动作灵敏、高速、低转矩的场合,一般用叶片马达, (∵其转动惯量小); 3、在高速下,功率和转矩变化范围较大时,用轴向柱塞马达; 4、低速、大转矩,一般用径向柱塞马达。

液压泵使用说明书

液压泵使用说明书

液压泵站

目录 第一章一般说明 1-1 前言 1-2 液压站出厂保证 第二章液压站的运转 2-1 液压站运转前的注意事项 2-2 液压站的运转说明及注意事项 第三章系统的结构 3-1 液压系统的结构 3-2 电气系统 第四章液压站的常见故障处理及维护保养4-1 常见故障诊断与排除 4-2 易损件明细表

第一章一般说明 1-1 前言 本说明书就系统的组成、参数和功能操作及常见故障加以说明。 一般说来液压系统大部分的故障和事故,通过制定的维修方案也就是定期维护是可以预防和避免的。所以本厂建议用户根据此说明书制定适合该套系统的维修计划,进行定期的维护以减少故障停机。 1-2本厂对液压站出厂后的质量保证 我厂提供的液压系统总成,在产品交验一年内发生的故障,经确认责任在我厂的,我厂将负全部责任,进行免费维修或调换。但对于以下的几种情况,我厂不负任何责任。 1)用户擅自更改超载保护装置的场合。如,用户超载使用而造 成的故障及元件的损坏由用户自己负责。 2)用户对液压系统使用方法不当的场合。如,以后对过滤器修 理检查后,漏装过滤器滤芯。 3)由于系统液压油在劣化状态下使用而造成的事故由用户自己 承担责任。 4)不经我厂同意,擅自分解拆装油泵、控制阀、电动机等零部 件而造成的损失本公司不承担任何责任。

5)因不可抗拒的自然因素带来的损坏。 6)下列消耗品亦不属于保证系列: 密封件、工作介质、滤芯等易耗品不属于保证系列内的对象。

第二章液压系统的运转 2-1 运转前的确认事项 a)确认油箱工作油的液位; b)检查连接控制板上的主开关; c)检查过滤器的清洁度,如有必要,可更换; d)检查控制装置是否有报警信号,如有必要,复位存在的信号。2-2液压站的运转说明及注意事项 准备工作完成后,请按以下程序进行操作: a)合上主电源开关; b)按下电源控制按钮; c)按下工作需要开启泵; d)系统处于无人监控状态时,必须停机。

液压泵、液压马达与液压缸的工作原理、区别及应用

是为液压传动提供加压液体的一种液压元件,是泵的一种。是一种能量转换装置,它的功能是把驱动它的动力机(如电动机和内燃机等)的机械能转换成输到系统中去的液体的压力能。 左图为单柱塞泵的工作原理图。凸轮由电动机带动旋转。当凸轮推动柱塞向上运动时,柱塞和缸体形成的密封体积减小,油液从密封体积中挤出,经单向阀排到需要的地方去。当凸轮旋转至曲线的下降部位时,弹簧迫使柱塞向下,形成一定真空度,油箱中的油液在大气压力的作用下进入密封容积。凸轮使柱塞不断地升降,密封容积周期性地减小和增大,泵就不断吸油和排油。 液压泵的分类 1、按流量是否可调节可分为:变量泵和定量泵。输出流量可以根据需要来调节的称为变量泵,流量不能调节的称为定量泵。 2、按液压系统中常用的泵结构分为:齿轮泵、叶片泵和柱塞泵 3种。 (1)齿轮泵:体积较小,结构较简单,对油的清洁度要求不严,价格较便宜;但泵轴受不平衡力,磨损严重,泄漏较大。泵一般设有差压式安全阀作为超载保护,安全阀全回流压力为泵额定排出压力倍。也可在允许排出压力范围内根据实际需要另行调整。但是此安全阀不能作减压阀长期工作,需要时可在管路上另行安装。该泵轴端密封设计为两种形式,一种是机械密封,另一种是填料密封,可根据具体使用情况和用户要求确定 左图为外啮合齿轮泵的工作原理图。壳体、端盖和齿轮的各个齿槽组成了许多密封工作腔。当齿轮按如图所示的方向旋转时,右侧左侧吸油腔由于相互啮合的齿轮齿轮逐级分开,密封工作腔容积增大,形成部分真空,油箱中的油液被吸进来,将齿槽充满,并随着齿轮旋转,把油液带到右侧压油腔中;右侧因为齿轮在这面啮合,密封工作腔容积缩小,油液便被挤出去——吸油区和压油区是由相互啮合的轮齿以及泵体分开的。 (2)叶片泵:分为双作用叶片泵和单作用叶片泵。这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。 (3)柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。 一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。还有一些其他形式的液压泵,如螺杆泵等,但应用不如上述3种普遍。 液压马达 液压马达习惯上是指输出旋转运动的,将液压泵提供的液压能转变为机械能的能量转换装置,对外做功的执行原件。 工作原理:

泵型号各字母代表的意思

B: 单级单吸悬臂式离心泵。 D: 节段式多级泵。 DG: 节段式多级锅炉给水泵。 DL: 立轴多级泵。 DS: 首级用双吸叶轮的节段式多级泵。F: 耐腐蚀泵。 JC: 长轴深井泵。 KD: 中开式多级泵。 KDS: 首级用双吸叶轮的中开式多级泵。QJ: 井用潜水泵。 QX.: 单相干式下泵式潜水泵。 QS: 充水上泵式潜水泵。 QY: 充油上泵式潜水泵。 R: 热水泵。 S: 单级双吸式离心泵。 WB: 高扬程横轴污水泵。 Y: 液压泵。 YG: 管道式液压泵。 ZB: 自吸式离心泵。 目前离心泵产品型号一共有32种,分别是:SG管道离心泵、 ISW卧式管道离心泵、

QDLF不锈钢多级离心泵、GC锅炉给水离心泵、 DL立式多级离心泵、GDL多级管道离心泵、PBG屏蔽式管道离心泵、YG立式管道油泵、ISWR卧式热水泵、ISWH卧式化工泵 ISWB卧式管道油泵、ISG立式管道离心泵、IRG立式热水循环泵、IHG立式管道化工泵、ISGB便拆式管道离心泵ISGD低转速离心泵、ISWD低转速离心泵、 IS单级单吸清水离心泵、IH单级单吸化工离心泵、FS卧式玻璃钢离心泵、 S型玻璃钢离心泵、GBW浓硫酸离心泵、FSB型氟塑料合金离心泵、AFB、FB耐腐蚀离心泵、

TSWA卧式多级离心泵 、ZX自吸式离心泵、 S、Sh单级双吸离心泵、 LG高层建筑给水多级离心泵、 CDLF不锈钢立式多级离心泵、 D多级离心泵、 CYZ-A自吸式离心泵、 IHF氟塑料合金化工离心泵。 油泵的型号及技术参数 AY型离心油泵:流量Q 6.25~500m3/h 扬程H 60~300m AY型系列离心油泵可用在石油精致、石油化工和化学工业及其它输送不含固体颗粒的石油、液化石油气等介质。 DY型多级离心泵:流量Q 10~540m3/s 扬程H 87~690m

液压泵使用说明书

液压泵使用说明书 The latest revision on November 22, 2020

液压泵站

目录 第一章一般说明 1-1 前言 1-2 液压站出厂保证 第二章液压站的运转 2-1 液压站运转前的注意事项 2-2 液压站的运转说明及注意事项 第三章系统的结构 3-1 液压系统的结构 3-2 电气系统 第四章液压站的常见故障处理及维护保养4-1 常见故障诊断与排除 4-2 易损件明细表

第一章一般说明 1-1 前言 本说明书就系统的组成、参数和功能操作及常见故障加以说明。 一般说来液压系统大部分的故障和事故,通过制定的维修方案也就是定期维护是可以预防和避免的。所以本厂建议用户根据此说明书制定适合该套系统的维修计划,进行定期的维护以减少故障停机。 1-2本厂对液压站出厂后的质量保证 我厂提供的液压系统总成,在产品交验一年内发生的故障,经确认责任在我厂的,我厂将负全部责任,进行免费维修或调换。但对于以下的几种情况,我厂不负任何责任。 1)用户擅自更改超载保护装置的场合。如,用户超载使用而造成的 故障及元件的损坏由用户自己负责。 2)用户对液压系统使用方法不当的场合。如,以后对过滤器修理检 查后,漏装过滤器滤芯。 3)由于系统液压油在劣化状态下使用而造成的事故由用户自己承担 责任。 4)不经我厂同意,擅自分解拆装油泵、控制阀、电动机等零部件而 造成的损失本公司不承担任何责任。 5)因不可抗拒的自然因素带来的损坏。 6)下列消耗品亦不属于保证系列: 密封件、工作介质、滤芯等易耗品不属于保证系列内的对象。

第二章液压系统的运转 2-1 运转前的确认事项 a)确认油箱工作油的液位; b)检查连接控制板上的主开关; c)检查过滤器的清洁度,如有必要,可更换; d)检查控制装置是否有报警信号,如有必要,复位存在的信号。2-2液压站的运转说明及注意事项 准备工作完成后,请按以下程序进行操作: a)合上主电源开关; b)按下电源控制按钮; c)按下工作需要开启泵; d)系统处于无人监控状态时,必须停机。

液压柱塞泵马达常见故障分析

液压柱塞泵马达常见故障分析 一、密封问题 1、密封耐压带来的问题 液压泵马达制造技术发展到今天,其设计和制造还远远不够完美,虽然制造商的工程师每天致力于改进产品和发展新技术,但是现有的产品已经有很多突出的问题了。我们先来说说液压泵的密封问题: 液压泵在工作的时候,主轴与壳体之间必然有相对运动,二者之间必须使用密封件来封住壳体里面的油,使之不会外漏,从而污染环境并破坏液压系统的平衡。在早期的机械密封被淘汰过程中,钢骨架油封技术也得到了长足的发展并被广泛地使用于各种液压泵上,今天的骨架密封由于材料优异,结构优化,已经能够承受较高的回油压力,保证液压泵工作时无外泄。 钢骨架橡胶密封一般是用于回转密封,使用在液压泵上主要是为了使壳体回油不外泄并能够保证壳体回油压力的稳定,例如,对于一般的液压柱塞泵来讲,样本上都有规定回油(壳体)压力的参数,一般正常压力为3bar,冷启动为5bar,但是现代加工技术制造出来的油封,常用的压力一般是0.1bar~10bar,特殊设计的轴封压力可达80bar,这样,我的选择油封余地就非常大。 对于某些特定的工况,我们在设计的时候就必须考虑到系统回油压力发生变化后的相关情况,例如,当一台工程机械设计完成并投入使用后,其液压系统的回油形式也基本确定了,这时我们就需要分析工况来了解此台机械的液压系统回油压力。 当系统在高温的情况下,我们将发动机的转速开到最大,设备的负荷也加到最大,再将液压泵的排量开到最大,这时,如果系统有内泄的话,则系统压力就会下降,同时液压系统的回油量增大,因为回油管路的状态是设定了的,所以,系统的回油压力也是随着内泄量的增大而增大。如果在系统正常工作的过程中,液压泵的内部突然出现故障而产生大量内泄的时候,回油量会陡然增高,回油压力更大。 是不是选择高耐压的油封,以保证泵在任何状态下都不漏油就高枕无忧了呢?回答是否定的。 图一,普通骨架密封剖面图 见图一,对于普通骨架密封来讲,由于其设计的特点,其耐压比较低,一般在5BAR 以下,对于正常回油的液压泵可能还可以使用,但是,如果回油压力稍微有波动的话,则骨架密封的唇口就会被冲开,导致外泄。 图二,短唇口骨架密封剖面图 见图二,这种设计的骨架密封,其耐压已经可以达到5BAR以上,使用起来比较可靠,而且在系统出现故障时,压力突然升高,密封又可以被冲开,可以保护液压柱塞泵

液压泵和液压马达的主要特点

液压泵和液压马达的主要特点 齿轮泵(马达) 结构简单,工艺性好,体积小,重量轻,维护方便,使用寿命长,但工作压力较低,流量脉动和压力脉动较大,如高压下不采用端面补偿时,其容积效率将明显下降。 内啮合齿轮泵与外啮合齿轮泵相比,其优点是结构更紧凑、体积小、吸油性能好、流量均匀性较好,但结构较复杂,加工性较差。 叶片泵 结构紧凑,外形尺寸小,运动平稳,流量均匀,噪声小,寿命长,但与齿轮泵相比对油液污染较敏感,结构较复杂。 单作用式叶片泵有一个排油口和一个吸油口,转子旋转一周,每两片间的容积各吸、排油一次,若在结构上把转子和定子的偏心距做成可变的,就是变量叶片泵。单作用式叶片泵适用于低压大流量的场合双作用式叶片泵转子每转一周,叶片在槽内往复运动两次,完成两次吸油和排油。由于它有两个吸油区和两个排油区,相对转子中心对称分布,所以作用在转子上的作用力相互平衡,流量比较均匀。 柱塞泵 精度高,密封性能好,工作压力高,因此得到广泛应用。但它结构比较复杂,制造精度高,价格贵,对油液污染敏感。 轴向柱塞泵是柱塞平行缸体轴线,沿轴向运动;径向柱塞泵的柱塞垂直于配油轴,沿径向运动,这两类泵均可作为液压马达用。 螺杆泵 螺杆泵实质上是一种齿轮泵,其特点是结构简单,重量轻;流量及压力的脉动小,输送均匀,无紊流,无搅动,很少产生气泡;工作可靠,噪声小,运转平稳性比齿轮泵和叶片泵高,容积效率高,吸入扬程高。但加工较难,不能改变流量。适用于机床或精密机械的液压传动系统。一般应用两螺杆或三螺杆泵,有立式及卧式两种安装方式。一般船用螺杆泵用立式安装。 齿轮马达 结构简单,制造容易,但输出的转矩和转速脉动性较大,但当转速高于1000r/min时,其转矩脉动受到抑制,因此,齿轮马达适用于高转速低转矩情况下。 叶片马达 结构紧凑,外形尺寸小,运动平稳,噪声小,负载转矩较小。 轴向柱塞马达 结构紧凑,径向尺寸小,转动惯量小,转速高,易于变量,能用多种方式自动调节流量,适用范围广。

相关主题
文本预览
相关文档 最新文档