当前位置:文档之家› 行程问题中的一些常见类型

行程问题中的一些常见类型

行程问题中的一些常见类型
行程问题中的一些常见类型

行程问题集合(一共61题)

注:解答仅供参考,可以用小学的方法去解决,欢迎互相探讨解法。常用知识点:

1、行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。

2、常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。

3、常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。

4、行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。

5、常画画线段图,利用数形结合的方式解决问题。

例1:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间?

分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷

v=s/v=4,则回来时的时间为:,即回来时用了3.5小时。

评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。

例2:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?

分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。

解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷2-0.5=2.5(小时),后半段行驶速度应为:120÷2.5=48(千米/时),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:48-40=8(千米/时)。

答:汽车在后半段路程时速度加快8千米/时。

例3:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时

少行10千米,问行驶这段路程逆水比顺水需要多用几小时?

分析:求时间的问题,先找相应的路程和速度。

解答:轮船顺水速度为231÷11=21(千米/时),轮船逆水速度为21-10=11(千米/时),

逆水比顺水多需要的时间为:21-11=10(小时)

答:行驶这段路程逆水比顺水需要多用10小时。

例4:汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回到甲地,求该车的平均速度。

分析:求平均速度,首先就要考虑总路程除以总时间的方法是否可行。

解答:设从甲地到乙地距离为s千米,则汽车往返用的时间为:s÷48+s÷

72=s/48+s/72=5s/144,平均速度为:2s÷5s/144=144/5×2=57.6(千米/时)

评注:平均速度并不是简单求几个速度的平均值,因为用各速度行驶的时间不一样。

例5:一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?

分析:求速度,首先找相应的路程和时间,平均速度说明了总路程和总时间的关系。

解答:剩下的路程为300-120=180(千米),计划总时间为:300÷50=6(小时),剩下的路程计划用时为:6-120÷40=3(小时),剩下的路程速度应为:180÷3=60(千米/小时),即剩下的路程应以60千米/时行驶。

评注:在简单行程问题中,从所求结果逆推是常用而且有效的方法。

例6:骑自行车从甲地到乙地,以每小时10千米的速度行驶,下午1时到;以每小时15千米的速度行进,上午11时到;如果希望中午12时到,应以怎样的速度行进?

分析:求速度,先找相应的路程和时间,本题中给了以两种方法骑行的结果,这是求路程和时间的关键。

解答:考虑若以10千米/时的速度骑行,在上午11时,距离乙地应该还有10×2=20(千米),也就是说从出发到11时这段时间内,以15千米/时骑行比以10

千米/时骑行快20千米,由此可知这段骑行用时为:20÷(15-10)=4(小时),总路程为15×4=60(千米),若中午12时到达需总用时为5小时,因此骑行速度为60÷5=12(千米/时),即若想12时到达,应以12千米/时速度骑行。

例7:一架飞机所带的燃料最多可以用6小时,飞机去时顺风,时速1500千米,回来时逆风,时速为1200千米,这架飞机最多飞出多远就需往回飞?

分析:求路程,需要速度和时间,题目中来回速度及总时间已知,我们可以选择两种方法:一是求往、返各用多少时间,再与速度相乘,二是求平均速度与总时间相乘,下面给出求往

返时间的方法。

解答:设飞机去时顺风飞行时间为t小时,则有:1500×t=1200×(6-t),2700×t=7200,t=8/3(小时),飞机飞行距离为1500×8/3=4000(千米)

评注:本题利用比例可以更直接求得往、返的时速,往返速度比5:4,因此时间比为4:5,又由总时间6小时即可求得往、返分别用时,在往返的问题中一定要充分利用往返路程相同这个条件。

例8:有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡,平路及下坡的路程相等,某人骑车过桥时,上坡平路,下坡的速度分别为每秒4米、6米、8米,求他过桥的平均速度。

分析:上坡、平路及下坡的路程相等很重要,平均速度还是要由总路程除以总时间求得。

解答:设这座桥上坡、平路、下坡各长为S米,某人骑车过桥总时间为:s÷4+s ÷6+s÷8=s/4+s/6+s/8=13/24s,平均速度为:3s÷13/24s=24/13×3=72/13=5又7/13(秒),即骑车过桥平均速度为5又7/13秒。

评注:求平均速度并不需要具体的路程时间,只要知道各段速度不同的路程或时间之间的关系即可,另外,三段或更多路的问题与两段路没有本质上的差别,不要被这个条件迷惑。

例9:某人要到60千米外的农场去,开始他以每小时5千米的速度步行,后来一辆18千米/时的拖拉机把他送到农场,总共用了5.5小时,问:他步行了多远?

解答:如果5.5小时全部乘拖拉机,可以行进:18×5.5=99(千米),其中99-

60=39(千米),这39千米的距离是在某段时间内这个人在行走而没有乘拖拉机因此少走的距离,这样我们就可以求行走的时间为39÷(18-5)=3(小时),即这个走了3个小时,距离为5×3=15(千米),即这个人步行了15千米。

评注:在以两种速度行进的题目中,假设是以一种速度行进,通过行程并和速度差求时间非常重要的方法。

例10:已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。

分析:本题关键在求得火车行驶120秒和80秒所对应的距离。

解答:设火车长为L米,则火车从开始上桥到完全下桥行驶的距离为(1000+L)米,火车完全在桥上的行驶距离为(1000-L)米,设火车行进速度为u米/秒,

则:

由此知200×u=2000,从而u=10,L=200,即火车长为200米,速度为10米/秒。评注:行程问题中的路程、速度、时间一定要对应才能计算,另外,注意速度、时间、路程的单位也要对应。

例11:甲、乙各走了一段路,甲走的路程比乙少1/5,乙用的时间比甲多了1/8,问甲、乙两人的速度之比是多少?

分析:速度比可以通过路程比和时间比直接求得。

解答:设甲走了S米,用时T秒,则乙走了S÷(1-1/5)=5/4 S(米),用时为:T×(1+1/8)=9/8 T(秒),甲速度为:S/T,乙速度为:5/4 S÷ 9/8 T=10S/9T,甲乙速度比为S/T :10S/9T=9:10

评注:甲、乙路程比4/5,时间比8/9,速度比可直接用:4/5 ÷ 8/9=9/10,即9:10。

例12:一艘轮船在河流的两个码头间航行,顺流需要6小时,逆流要8小时,水流速度为每小时2.5千米,求船在静水中的速度。

分析:顺流船速是静水船速与水流速度之和,而逆流船速是两者之差,由此可见,顺流与逆流船速之差是水流速的2倍,这就是关键。

解答:设船在静水中速度为U千米/时,则:(U+2.5)×6=(U-2.5)×8,解得U=17.5,即船在静水中速度为17.5千米/时。

评注:行船问题是行程问题中常见的一种,解这些题时注意船速、水流之间的关系。

例13:甲、乙两班进行越野行军比赛,甲班以每小时4.5千米的速度走了路程的一半,又以每小时5.5千米的速度走完了另一半,乙班用一半时间以每小时4.5千米的速度行进,另一半时间以每小时5.5千米的速度行进,问:甲、乙两班谁将获胜?

分析:表面上看两班行军都是两种速度各一半,但时间的一半与路程的一半是不同的。

解答:设总路程为S千米,则:甲班用时:T1=S/2 ÷4.5+S/2÷5.5=S/9+

S/11=20/99S(小时),乙班用时:T2=S ÷(4.5+5.5)×2=1/5 S(小时),比较可得:T1>T2,即乙班用时较短,会获胜。

评注:以上解法具体分析了两种方法的用时,其实我们只从性质分析,已用一半时间快走,一半时间慢走,所以快走的路程比慢走的距离长,也就是说乙用快速走的路程超过了总路程的一半,因此自然比甲班快。这道题也代表了一类的问题。例14:甲、乙两人在400米环形跑道上跑步,两人朝相反的方向跑,两个第一次相遇与第二次相遇间隔40秒,已知甲每秒跑6米,问乙每秒跑多少米?

分析:环形跑道上相反而行,形成了相遇问题,也就是路程、时间及速度和关系的问题。

解答:第一次相遇到第二次相遇,两个人一共跑400米,因此速度和为400÷40=10(米/秒),乙速度为10-6=4(米/秒),即乙每秒跑4米。

评注:环形跑道上的相遇问题要注意一定时间内两人行进路程的总和是多少。例15:一辆公共汽车和一辆小轿车同时从相距299千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行52千米,问:几小时后两车第一次相距69千米?再过多少时间两车再次相距69千米?

分析:相遇问题中求时间,就需要速度和及总路程,确定相应总路程是本题重点。解答:第一次相距69千米时,两车共行驶了:299-69=230(千米),所用时间为230÷(40+52)=2.5(小时),再次相距69千米时,两车从第一次相距69

千米起又行驶了:69×2=138(千米),所用时间为:138÷(40+52)=1.5(小时),即2.5小时后两车第一次相距69千米,1.5小时后两车再次相距69千米。评注:相遇问题与简单行程问题一样也要注意距离、速度和及时间的对应关系。例16:一列客车与一列货车同时同地反向而行,货车比客车每小时快6千米,3小时后,两车相距342千米,求两车速度。

分析:已知两车行进总路程及时间,这是典型的相遇问题。

解答:两车速度和为:342÷3=114(千米/小时),货车速度为(114+6)÷2=60(千米/时),客车速度为114-60=54(千米/时),即客车速度54千米/时,货车速度为60千米/时

评注:所谓“相遇问题”并不一定是两人相向而行并相遇的问题,一般地,利用距离和及速度和解题的一类题目也可以称为一类特殊的相遇问题。

例17:甲、乙两辆车的速度分别为每小时52千米和40千米,它们同时从甲地出发开到乙地去,出发6小时,甲车遇到一辆迎面开来的卡车,1小时后,乙车也遇到了这辆卡车,求这辆卡车速度。

分析:题目中没有给任何卡车与甲车相遇前或与乙车相遇后的情况,因此只能分析卡车从与甲车相遇到乙车相遇这段时间的问题。

解答:卡车从甲车相遇到与乙车相遇这段时间与乙车在做一个相遇运动,距离为出发6小时时,甲、乙两车的距离差:(52-40)×6=72(千米),因此卡车与乙车速度和为:72÷1=72(千米/时),卡车速度为72-40=32(千米/时)

评注:在比较复杂的运动中,选取适当时间段和对象求解是非常重要的。

例18:甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A、B两地距离。

分析:已知与中心处的距离,即是知道两车行程之差,这是本题关键。

解答:甲车在相遇时比乙车多走了:8×2=16(千米),由甲车速度是乙的1.2倍,相遇时所走路程甲也是乙的1.2倍,由此可知乙所走路程为16÷(1.2-1)=80(千米),两地距离为(80+8)×2=176(千米),即两地相距176千米。

评注:有效利用各种形式的条件也是重要的技巧。

例19:兄妹二人在周长30米的圆形水池边玩,他们从同一地点同时出发,背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,照这样计算,当他们第十次

相遇时,妹妹还需走多少米才能回到出发点?

分析:本题重点在于计算第十次相遇时他们所走过的路程。

解答:每两次相遇之间,兄妹两人一共走了一圈30米,因此第十次相遇时二人

共走了:30×10=300(米),两人所用时间为:300÷(1.3+1.2)=120(秒),

妹妹走了:1.2×120=144(米),由于30米一圈,因此妹妹再走6米才能回到出

发点。

例20:甲、乙两车同时从A、B两地相向而行,在距B地54千米处相遇,他们

各自到达对方车站后立即返回原地,途中又在距A地42千米处相遇,求两次相

遇地点的距离。

分析:甲、乙共相遇两次,得到第二次相遇时总路程是关键。

解答:第一次相遇时,甲、乙两人走的总路程是A到B距离的3倍,因此乙所走

路程为54×3=162(千米),这时他们相距A地42千米,也就是说A、B距离为:

162-42=120(千米),两次相遇地点距离为120-54-42=24(千米)

评注:除了对总路程的分析以外,还要注意二次相遇时甲从B向A走,乙从A

向B走,为了直观也可以画一个示意图,如下:

例21:甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则乙动身

2.5小时后两个人相遇,若乙先出发2小时,则甲动身3小时后两人相遇,求甲、

乙两人速度。

分析:换一种说法,甲走4.5小时,乙走2.5小时走完36千米:甲走3小时,

乙走5小时也可以走完全程

解答:设甲速度为U千米/时,乙速度为V千米/时,

即甲速度6千米/时,乙速度3.6千米/时。

例22:两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒钟,求乙车全长多少米?

分析:甲车乘客看到乙车经过用了13秒而他看到的乙车速度则是甲、乙两车实际速度之和。

解答:乘客看到乙车的相对速度即甲、乙车实际速度之和为:48+60=108(千米/时)合30米/秒,乙车长为:30×13=390(米),即乙车全长为390米

评注:错车也是一类常见问题,重点在于如何求得相对速度,另外,注意单位的换算,1米/秒合3.6千米/时。

例23:一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见慢车驶过的时间是多少秒?

分析:慢车上的人看快车和快车上的看慢车,他们看到的相对速度是相同的,这就是本题的关键。

解答:两车相对速度为:385÷11=35(米/秒),慢车上的人看快车驶过的时间为:280÷35=8(秒),即坐在慢车上的人看见快车驶过的时间是8秒

评注:在错车的问题中,对双方来说相对速度是相同的,不同的是错车的距离和时间,对车上的人,距离一般是对方车长。

例24:某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,问该列车与另一列车长320米,时速64.8千米的列车错车而过需要几秒?

分析:列车通过隧道行进的距离是隧道长加车长,两车完全错车行进的距离之和是两车之和。

解答:列车通过第一个隧道比通过第二个隧道多走了40米,多用2秒,同此列车速度为:

(250-210)÷(25-23)=20(米/秒),车长为20×25-250=250(米),另一辆车时速64.8千米,合18米/秒,两车错车需时为:(250+320)÷(20+18)=15(秒),即两车错车需要15秒

评注:在火车错车、过桥、过隧道、进站等问题中常常会用到车长作为行进距离的一部分,因此遇到此类问题一定要特别小心。

例25:一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟,有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,到甲站时,恰好又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?

分析:本题重点在通过电车的数量计算时间。

解答:记骑车人出发时进入乙站的车为第一辆,包括中途遇到车子、骑车人到甲站时出站的车为第十二辆,从第一辆进站到第二辆出站的时间就是骑车人用的时间,由题目条件第一辆车进站的同时,第四辆车正在从甲站出站,第四辆车出站到第十二辆车出站共经过40分钟,因此骑车人从乙站到甲站用了40分钟。

评注:本题没有一般行程问题的计算,注意计数时不要出错。

例26:甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟追上乙,若乙比甲先跑2秒钟,则甲跑4秒钟能追上乙,问:两人每秒各跑多少米?

分析与解答:甲让乙先跑10米,则甲跑5秒可追上乙,也就是甲每秒比乙多跑:10÷5=2(米),乙比甲选跑2秒钟,则甲跑4秒追上乙,也就是说乙比甲先跑了2×4=8(米),因此乙速度为:8÷2=4(米/秒),甲速度为:4÷2=6(米/秒),即甲每秒跑6米,乙每秒跑4米

评注:追及问题是关于行程差,速度差及时间关系的问题,它与相遇问题有很多相似的地方,也有不同的地方。

例27:甲、乙两地相距600千米,一列客车和一列货车同时由甲地开往乙地,客车比货车早到2.5小时,客车到达乙地时货车行驶了全程的4/5,问货车行驶全程需要多少时间?

分析:考虑在客车到达后,货车行驶的情况。

解答:客车到达后,货车又行驶了2.5小时,走了全程的1/5,因此货车走全程

需要2.5÷1/5=12.5(小时),即货车行驶全程要12.5小时

评注:有时题目中也会有用不到的条件,因此从结果出发反推,仔细观察题目中有对应关系的条件,能提高效率。

例28:两辆拖拉机为农场送化肥,第一辆以每小时9千米的速度由仓库开往农场,30分钟后,第二辆以每小时12千米的速度由仓库开往农场,问:1)第二辆追上第一辆的地点距仓库多远?2)如果第二辆比第一辆早到农场20分钟,仓库到农场的路程有多远?

分析:这个追及问题重点在于找到路程之差。

解答:1)第二辆拖拉机出发时第一辆相差:9×0.5=4.5(千米),第二辆追上第一辆需要时间为:4.5÷(12-9)=1.5(小时),此时第二辆行程为:12×1.5=18(千米),即追上第一辆地点距仓库18千米;2)第二辆到达农场时,与第一辆相距:9×1/3=3(千米),第二辆从追上第一辆到达农场用时:3÷(12-9)=1(小时),农场与仓库距离为:18÷12×1=30(千米),即农场与仓库距离30千米。

评注:追及问题有许多先后出发,先后到达的情形,这种情况下求时间和路程时一定要仔细考虑是谁的行进情况,不要弄反了。

例29:甲、乙两匹马在相距50米的地方同时同向出发,出发时甲马在前,乙马在后,如果甲马每秒跑10米,乙马每秒跑12米,问:何时两地相距70米?

分析:先分析两马行进的大概情况,甲马较慢在前面,乙马较快在后面,开始后乙马追近甲马并超过它,再拉远距离因此相距70米是在乙马超过甲马后出现的。解答:追及时间为:(50+70)÷(12-10)=60(秒),即60秒后两马相距70米。

例30:甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时甲在乙的后面,出发后6分钟甲第一次追上乙,22分钟时甲第二次追上乙,假设两人速度都保持不变,问:出发时甲在乙身后多少米?

分析:环形跑道上的追及问题,两次超过之间甲比乙多走一圈,这是重点。

解答:甲比乙快,他们的速度差为:440÷(22-6)=25(米/分钟),出发时,两人相距为:25×6=150(米),即出发时甲在乙后150米

评注:环形跑道上的追及问题,可以多次追上并超越,利用这一点是这类题目的关键。

例31:铁路线旁边有一条沿铁路方向的公路,公路上一辆汽车正以每小时40千米的速度行驶,这时一列长375米的火车以每小时67千米的速度从后面开过来,问:火车从车头到车尾经过汽车旁边需要多少时间?

分析:铁路上的追及问题与相遇问题中的错车问题相似。

解答:从汽车上看火车速度为67-40=27(千米/时)合7.5米/秒,火车通过需时间为:375÷7.5=50(秒),即火车通过需50秒

评注:在追及式的错车问题中,车长往往就是路程差。

例32:小红在9点到10点之间开始解一道题,当时时针和分针正好成一条线,当小解完题时,时针和分针刚好重合,小红解这道题用了多少时间?

分析:同向转动的时针和分针可以看作一个追及问题,以一圈为60格,时针12分钟走一格,每分钟走1/12格,分针每分钟一格。

解答:几点时时针与分针差45格,分针在后,成一条线时,时针比分针快30

个格,这时从九点过了的时间为:(45-30)÷(1-1/12)=180/11=16又4/11(分钟),两针重合时,从九点开始经过的时间为:45÷(1-1/12)=540/11=49又1/11(分钟),相差的时间为:49又1/11-16又4/11=32又8/11(分钟),即小红解题用了32又8/11分钟

评注:时钟上的追及问题需要注意路程以格代替,不要与时间混在一起。

例33:游船顺流而下每小时前进7千米,逆流而上每小时前进5千米,两条游船同时从同一地点出发,一条顺流而下然后返回,一条逆流而上然后返回,结果1小时后它们同时回到出发点,如果忽略游船调头的时间不计,在1小时内两条游船有多长时间前进的方向相同?是顺流还是逆流?

分析:两条船用时一样,说明它们顺流,逆流的时间分别相同,区别在一条先顺流再逆流,另一条则相反。

解答:顺流、逆流速度之比为7:5,则时间比为5:7,轮船顺流时间为5/12

小时,逆流时间为7/12小时,顺流的船先调头,然后有1/6小时两船同时逆流而行,然后先逆流的船调头

评注:在相同条件下,无论先顺流或逆流船在相同距离内往返行驶,时间相同,同样的,时间相同,则往返距离也相同。

例34:一只猎狗追前方20米处的兔子,已知狗一跳前进3米,兔子一跑前进

2.1米,狗跑3次的时间兔子跳4次,问:兔子跑出多远将被狗追上?

分析:狗和兔子每跳的时间距离都不同,我们需要统一一项才能进行比较。

解答:由题目条件知狗前进9米时,兔子前进8.4米,20÷(9-8.4)=33又1/3,以狗前进9米,兔子前进8.4米计为一次,则33又1/3次后狗追上兔子,这时兔子跑了:8.4×33又1/3=280(米),即兔子跑了280米后被狗追上。

评注:速度的比较并不一定是每秒、每分、每小时前进距离的比较,相同一段时间内前进距离即可作为速度比较。

例35:学校组织军训,甲、乙、丙三人步行从学校到军训驻地,甲、乙两人早晨6点一起从学校出发,甲每小时走5千米,乙每小时走4千米,丙上午8点才从学校出发,下午6点,甲、丙同时到达军训驻地,问:丙何时追上乙?

分析:求丙追上乙的时间,必须知道乙、丙的速度,丙的速度由他与甲的行进状况可求。

解答:甲走了12个小时,全程为:5×12=60(千米),丙走了10个小时,他的速度为:60÷10=6(千米/时),丙出发时与乙的距离为:4×2=8(千米/时),丙追上乙需用时间为:8÷(6-4)=4(小时),因此中午12时丙追上乙。

评注:追及问题中的速度差与距离差都非常重要。

例36:骑车人以每分钟300米的速度沿公共汽车路线前进,当人离始发站3000米时,一辆公共汽车从始发站出发,它的速度为每分钟700米,并且每行3分钟到达一站停车1分钟,问公共汽车多长时间追上骑车人?

分析:汽车在某两站之间追上骑车人,那么在前一站骑车人先到达,后一站汽车先到达。

由表中可见汽车在恰好到达第三站时追上骑车人,这时汽车走了11分钟。

评注:注意在计算汽车行程时不要按照出站时间算,而要计算入站时间。

例37:甲、乙、丙三人的步行速度分别为每分钟60米、50米和40米,甲从B地,乙和丙从A地同时出发相向而行,途中甲遇到乙后15分钟又遇到丙,求A、B两地距离。

分析:根据已知条件,分析从甲、乙相遇到甲、丙相遇的这段情况。

解答:从甲、乙相遇开始,甲丙相向而行,是相遇问题,距离为:(60+40)×15=1500(米),甲、乙相遇时甲、丙相距1500米,也就是乙丙相距1500米,乙、丙同向是一个追及问题,到甲、乙相遇为止,乙、丙走了:1500÷(50-40)=150(分钟),这同时也是甲、乙相遇运动的时间,因此A、B距离为:(60+50)×150=16500(米),合16.5千米,即A、B相距16.5千米。

评注:在复杂的行程问题中,既要从条件出发,也要从结论出发考虑,把复杂问题折成若干简单问题再求解。

例38:自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发地点9千米处追上了自行车队,然后通讯员立即返回出发点,到后又返回去追上了自行车队,再追上时,恰好离出发点18千米,求自行车队和摩托车的速度?

分析:比较复杂的行程问题,关键在于找到新的突破口,本题中给出了两次追击的路程,这就是突破口。

解答:从第一次追上到第二次追上的过程中,自行车队进了18-9=9(千米),而摩托车行进了:18+9=27(千米),由此可知摩托车速度是自行车队的3倍,那么第一次追及开始时,自行车领先距离为:6÷12=0.5(千米/分),摩托车速度为:0.5×3=1.5(千米/分)。

评注:在行程问题中,条件与条件之间有密切关系,充分利用所有已知条件及由这些条件推导出的条件非常重要,而要掌握所有条件首先就需要把整个行程的过程弄清楚。

例39:图39是一个边长100米的正方形,甲从A点出发,每分钟走70米,乙同时从B点出发,每分钟走85米,两人都按逆时针方向沿着正方形边行进,问:乙在何处首次追上甲?乙第二次追上甲时,距B点多远。

100米

分析与解答:乙比甲快,第一次追及距离为300米,所用时间为:300÷(85-70)=20(分钟),此时甲走了70×20=1400(米),因此首次追上时,甲、乙在C点。第二次追距离从C

点开始算是一圈400米,用时为:400÷(85-70)=26又2/3(分钟),乙走的距离为:26又2/3×85=2266又2/3(米),因此乙第二次追上甲时在A、B之间距B33又1/3米处。

图40

评注:在有图的题目中认真识图,注意行进方向、追及距离等问题。

例40:图40是一个边长为100米的正三角形,甲自A点,乙自B点同时出发,按顺时针方向沿三角形的边行进,甲每分钟走90米,乙每分钟走150米,但过每个顶点时,因转弯都要耽误10秒钟,问:乙在出发后多长时间,在何处追上甲?

甲:每秒1.5米,乙:每秒2.5米

一般情况先这样考虑:乙要多拐一个弯,在这个过程中甲会走10×1.5米,其余拐弯处他们休息的时间是一样多,乙需要多追赶(100+10×1.5),所用时间(100+10×1.5)÷(2.5-1.5)=115秒,还没有包括转弯时间,加上转弯时间115+10×2=135秒

分析与解答:甲速度合1.5米/秒,每边走66又2/3秒,停留10秒,乙速度合2.5米/秒,每边走40秒,停留10秒,列表如下:

乙可能在顶点追上甲,也可能在边上追上甲,从表中看,在C点时乙没有追上甲,到达B点时,乙已经超过甲,则乙在B、C之间追上了甲,甲在76又2/3秒从C出发,乙在100秒从C出发,乙出发时甲走了了:(100-76又2/3)×1.5=35(米),乙追上甲用时为:35÷(2.5-1.5)=35(秒),这时乙走了35×2.5=87.5(米),因此乙在出发135秒,即2分15秒后在B、C间距C 87.5米处追上甲。

评注:追及过程中有停留的问题使行进快的人在追及后可能被超越,因此这类问题中不但要求追及的情况,还要确认是第一次追及才可以。

图41

例41:图41是一个跑道的示意图,沿ACBEA走一圈是400米,沿ACBDA走一圈是275米,其中A到B的直线距离是75米,甲、乙二人同时从A点出发练习长跑,甲沿ACBDA的小圈跑,每100米用24秒,乙沿ACBEA的大圈跑每100米用21秒,问:1)乙跑第几圈时第一次与甲相遇?2)出发多长时间甲、乙再次在A点相遇?

分析:因为甲、乙沿不同的路线,所以并不谁多跑了一圈就一定有一次超过,超过只可能发生在他们共同经过的路线上。

解答:1)甲跑半圈ACB用时48秒,乙跑半圈ACB用时42秒,也就是如果某次乙经过A点的时间比甲晚不超过6秒,他就能在这一圈追上甲,下面看甲乙经过A点的时间序列表(单位:秒)

由此可知乙跑第五圈时会第一次与甲相遇。

2)甲跑一圈用66秒,乙跑一圈用84秒,它们的最小公倍数为924,因此924秒即15分24秒后,甲、乙第一次同时回到A点。

例42:甲、乙、丙三辆车先后从A地开往B地,乙比丙晚出发5分钟,出发后45分钟追上丙;甲比乙晚出发15分钟,出发后1小时追上丙,那么,甲出发后多长时间追上乙?

甲速度:乙速度=6:5,甲时间:乙时间=5:6 甲行5分钟能追赶乙提前的1分钟

分析:题目中只有时间条件,这就说明用三人速度的比例关系即可解题。

解答:设丙速度为U米/分钟,同乙出发时丙走了5U米,乙用了45分钟追上丙,乙速度比丙速快5U/45=1/9U米/秒,即乙的速度为10/9U米/秒,同样甲比丙晚出发20分钟,用了1小时追上丙,则甲比丙速度快:20U/6=1/3U米/秒,甲速度为4/3U米/秒,甲追乙需用时间为:(10/9U× 15)÷(4/3U - 10/9U)=75(分钟)。

评注:解题中设的丙速度只是为了表示方便,实质上解题过程中只用到了三人速度之比,在只有时间条件的题目中是不可能求出路程或速度的,用比例解题是必然的方法。

例43:甲、乙、丙三个车站在同一公路上,乙站距甲、丙两站距离相等,小明和小强分别

从甲、丙两站相向而行,小明过乙站150米后与小强相遇,然后两人继续前进,小明走到丙站后立即返回,经过乙站后450米又追上小强,问:甲、丙两站距离多远?

分析:仔细分析两人两次相遇的行程,可以发现小明第一次相遇走了一倍甲、乙两站间的的距离又多150米,第二次相遇走了三倍甲、乙两站间的距离又450米,第二次路程是第一次的3倍,这就是突破口。

解答:两次相遇小明走的总路程比为1:3,小强也一定相同,注意到从第一次相遇到第二次相遇小强走了600米,由此可知小强在第一次相遇时走了:600÷(3-1)=300(米),甲、丙两站之间距离为:(300+150)×2=900(米),即甲、丙两站距离900米。

评注:观察数据之间的关系,在条件比较少的题目中,这有时候也会有重要作用。

例44:甲、乙、丙三人到学校到体育场的路上练习竞赛走,甲每分钟比乙多走10米,比丙多走31米,上午9点三人同时从学校出发,上午10点甲到达体育场后立即返回学校,在距体育场310米处遇到乙,问:1)从学校到体育场的距离是多少?2)乙的速度是多少?3)甲与丙何时相遇?

分析:题目中距离的条件只有一个,因此以这个条件为中心分析,求学校到体育场距离比较有效。

解答:甲与乙相遇时走了的时间为:310×2÷10=62(分钟),已知甲走到体育场用了1小时,因此2分钟走了310米,甲速度为:310÷2=155(米/分),乙速度为:155-10=145(米/分),体育场到学校距离为:(155+145)×62÷1=9300(米)合9.3千米,甲、乙相遇用时为:2×9300÷(155+124)=66又2/3(分钟),即学校到体育场9.3千米,乙速度145米/分,甲、丙相遇在10时6分40秒。

评注:有时候,根据条件的类型和结论所求也可以推测出大概方法,例如本题,求距离,而题目中只有一个关于距离的条件,这个条件就很重要,这样的分析有助于提高效率。

例45:甲、乙二人进行游泳追逐赛,规定两人分别从游泳池50米泳道的两端同时开始游,直到一方追上一方为止,追上者为胜,已知:甲、乙的速度分别为每秒1.0米和0.8米,问:1)比赛开始后多长时间甲追上乙?2)甲追上乙时两人共迎面相遇了几次?3)比赛过程中,两人同方向游了多长时间?

分析与解答:1)甲追上乙用时为:50÷(1-0.8)=250(秒);2)第一次迎面相遇甲、乙共游了50米,之后每100米相遇一次,甲、乙共游了250×(1+0.8)=450(米),最后一次甲追上乙不算,甲、乙迎面相遇了4次;3)甲游50米用50秒,乙游50米用62.5秒,甲

第一次转身后与乙同向游了12.5秒第二次转身后与乙同游了25秒,依次类推,甲、乙同向游了125秒。

62.5

50-62.5 12.5

100-125 25

150-187.5 37.5

200-250 50

评注:注意迎面相遇与追上相遇的区别。

例46:乌龟与小白兔赛跑,比赛场地从起点到插小旗处为104米,乌龟与小白兔赛跑比赛场地从起点到插小旗处马上返回,跑到起点再返回……已知小白兔每秒跑10.2米,乌龟每秒跑0.2米,如果从起点出发算它们第一次相遇,问:1)出发后多长时间它们第二次相遇?2)第三次相遇距起点多远?3)第二次相遇到第四次相遇乌龟爬了多远?4)乌龟爬到50

米时,它们共相遇了多少次?

分析与解答:1)第二次相遇是在小白兔返回时,迎面相遇,用时为:2×104÷(10.2+0.2)=20(秒),即20秒后迎面相遇;2)第三次相遇是小白兔比乌龟多跑一圈后追上乌龟的时候,用时为:2×104÷(10.2-0.2)=20.8(秒),此时乌龟爬了:20.8×0.2=4.16(米),即第三次相遇距起点4.16米;3)第四次相遇是小白兔第二次与乌龟迎面相遇,与上一次迎面相遇相差时间为:2×104÷(10.2+0.2)=20(秒),乌龟爬了:20×0.2=4(米),即第二次与第四次相遇乌龟爬了4米;4)乌龟爬50米用时为50÷0.2=250(秒),小白兔跑了250×

10.2=2550(米),在乌龟没到小旗处之前,小白兔每104米中都会与乌龟相遇一次,因此2550÷104=24……,2550-104*24=54.54>50,第25次乌龟与小白兔也已经相遇,因此它们共相遇了25次。

评注:这是一道综合题,包括相遇问题、追及问题等,正确判断问题的类型,用适当方法解决也是重要的技巧。

例47:甲、乙二人同时从起点出发沿同一方向行走,甲每小时行5千米,而乙第一小时行1千米,第二小时行2千米,以后每行1小时都比前1小时多行1千米,问:经过多长时间乙追上甲?

分析与解答:乙追上甲时,两人走了相同的时间和路程,因此平均速度也相等,也就说乙追

上甲时,平均速度5千米每小时,由于乙每小时速度是一个等差数列,因此平均速度为5

千米/时,说明乙最后一小时速度为9千米/时,也就是说9小时后乙追上甲。

评注:非匀速运动中,利用速度的变化规律解题比较有效。

例48:甲、乙两人赛车,第一分钟甲的速度为每秒6.6米,乙速度为每秒2.9米,以后,甲每分钟速度是自己前一分钟的2倍,乙每分钟速度是自己前一分钟的3倍,问:出发后多长时间乙追上甲?

分析:每分钟甲、乙速度都在变,但一分钟内,甲、乙速度是不变的,因此,先确定在哪一分钟追上甲,再求具体时间。

解答:列表比较甲、乙走的路程:

从表中可知在3分钟与4分钟之间乙超过甲,3分钟时甲乙差510米,第四分钟甲速度为52.8米/秒,乙速度为78.3米/秒,乙追上甲用时为:510÷(78.3-52.8)=20(秒),因此乙追上甲总共用了3分20秒。

评注:把不匀速问题分段,使每段成为我们熟悉的匀速问题,这种思想在各类题目中都非常有用。

甲第1分钟6.6米,第2分钟13.2米,第3分钟26.4米,第4分钟52.8米,

乙第1分钟2.9米,第2分钟8.7米,第3分钟26.1米,第4分钟78.3米,

前3分钟甲比乙快(6.6-2.9)+(13.2-8.7)+(26.4-26.1)=8.5米,

8.5/(78.3-52.8)=1/3分

出发后经过3又1/3分乙追上甲.

例49:某解放军队伍长450米,以每秒1.5米的速度前进,一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?

分析:本题是与排头的追及问题和与排尾的相遇问题的结合。

解答:追排头用时为:450÷(3-1.5)=300(秒),回排尾用时为:450÷(3+1.5)=100(秒),其用时400秒。

评注:队伍行进问题一般都可以归为追及或相遇问题。

例50:某边防站甲、乙两哨所相距15千米,一天,两个哨所的巡逻队同时从各自哨所出发相向而行,他们的速度分别为每小时4.5千米和5.5千米,乙队出发时,他们带的一只军犬同时向哨所方向跑去,遇到甲队时立即转身往回跑,遇到乙队又立即转身向甲哨所方向跑去……,这只军犬就这样不停地以每小时20千米的速度在甲、乙两队之间奔跑,直到两队会合为止,问:这只军犬来回跑了多少路?

分析:如果计算军犬每次向一个方向跑的距离再求和是不可行的。注意到军犬一直在跑且速度始终为20千米/时不变,所以只要求得它跑的总时间即可。

解答:甲、乙两队从出发到相遇用时为:15÷(4.5+5.5)=1.5(小时),这也是军犬不断奔跑的时间,因此军犬总共跑的距离为:20×1.5=30(千米)。

评注:以相同速度行进的路程可以合起来计算,不要拘泥于问题的细节,要从全局观察一下问题。

例51:甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟追上乙;如果两人相向而行,6分钟可相遇,已知乙每分钟行50米,求A、B两地的距离。

分析:相遇问题和追及问题分别与速度和及速度差有关,通过和差也能求得速度关系。

解答:甲、乙两个人速度之和为每分钟行全程的1/6,甲比乙快他们速度之差为每分钟差全程的1/26,通过和差公式,因此甲每分钟走全程的1/2×(1/6+1/26)=4/39,乙走完全程的1/2×(1/6-1/26)=5/78,由此可求A到B全和为:50÷5/78=780(米),即A、B相距780米。

例52:某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行,问:电车速度是多少?电车之间的时间间隔是多少?

分析:不变的时间间隔,相同的速度,不变的距离间隔就是本题关键。

解答:设两车间隔S米,则对迎面开来的车马行人,S是相遇距离和,对从后追上的电车和行人,S是追及问题的距离差S/7.2=5/36 S是行人与车速度和,S/12是行人与车速度之差,由此可求得行人与车速度和与差的比为5:3,因此车与行人速度比为4:1,车的速度为4.5×4=18(千米/时)行人为速度合75米/分,汽车合300米/分,电车间隔时间为(75+300)×7.2÷300=9(分钟),即电车速度18千米/时,电车间隔时间为9分钟。

评注:在有一定时间间隔的班车问题中,不变的间隔时间、距离是解题关键。

例53:学校组织春游,同学们下午一点出发,走了一段平路,爬了一座山,然后按原路返回,下午七点回到学校,已知他们步行速度,平路为4千米/小时,上山为3千米/小时,下山为6千米/小时,问他们一共走了多少路?

分析:往返路程可以分为四段,两段平路,一段上山,一段下山,求路程,我们就需要各段的行进时间。

解答:设同学们下山用时为t,由于上、下山路程相等,下山速度是上山的2倍,因此上山时间为2t,两段平路一共用时(6-3t)小时,总路程为:t×6+2t×3+(6-3t)×4=24(千米),即他们一共走了24千米。

评注:本题从条件的数量上并不足够确定平路及山路的长度,因为上、下山平均速度与平路速度相同,因此才能求得总路程。

例54:甲、乙两人以同样的速度沿铁路相向而行,恰好一列火车开来,整个火车经过甲身边用了18秒,2分钟后又用15秒从乙身边经过,问:1)火车速度是甲速度的几倍?2)火车经过乙身边后,甲、乙还需多少时间才能相遇?3)甲步行该火车长度需多长时间?

分析:题目中只有时间条件,因此不能求出具体路程或速度,这样的题目总是用比例求解的。

解答:设火车长为L米,甲、乙步行速度U米/秒,火车速度V米/秒,则由火车经过甲、乙身边的情况,知:(U+V)×15=L=(V-U)×18,U+V=L/15,V-U=L/18,V=(L/15+L/18)÷2=11/180L,U=(L/15-L/18)÷2=1/180L,L=180U,V:U=11:1,因此火车速度是甲速度的11倍,火车经过甲身边时,甲、乙相距为:L+(U+V)×120=1620U,到甲、乙相遇用时为:1620U÷(U+U)=810(秒),因此火车经过乙后到甲、乙相遇还要:810-120-15=675(秒),甲走火车长度的距离用时为:L÷U=L÷1/180L=180(秒),即火车速度是甲的11倍,火车经过乙后675秒甲、乙相遇,甲步行火车全长用180秒。

评注:解答中设的长度与速度只是参数而不是未知数,也就是设这些变量并不是要求它们的值,而是为了便于表示,求它们之间的关系,在求比较复杂的比例关系时,设一些参数便于表示和运算。

例55:某人沿公路前进,迎面来了一辆汽车,他问司机:“后面有骑自行车的人吗?”司机回答:“十分钟前我超过了一个骑自行车的人,”这人继续走了十分

行程问题三年级

行程问题三年级 例1、行程问题三年级 例2、甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米.两人几小时后相遇? 例3、A、B两城相距560千米,甲车每小时行50千米,乙车每小时行60千米,两人先后从两城出发,相向而行,相遇时甲行驶了200千米.乙车比甲车早出发几小时? 作业 1、小红家和小乐家分别在学校的东西两边,小红从学校到家每分钟走13米,需要10分钟,小乐从学校到家骑车每分钟走70米,需要15分钟.则小红家和小乐家相距多少米? 2、甲、乙两车分别从相距435千米的A、B两城同时出发,相向而行,已知甲车每小时行驶70千米,乙车每小时行驶75千米,两人几小时后相遇? 3、甲、乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两艘轮船途中相遇.两地间的水路长多少千米?

4、甲、乙两车分别从相距480千米的A、B两城同时出发,相向而行.已知甲车从A城到B城需6小时,乙车从B城到A城需12小时,两车出发后多少小时相遇? 5、小静、小文两人分别从甲、乙两地同时出发相向而行,小静每小时行5千米,小文每小时行4千米,经过3小时后两人还相距20千米,甲乙两地相距多少千米? 6、甲、乙两地相距270千米,两辆汽车同时从两地相向而行.一辆车的时速为44千米,另一辆车的时速比第一辆车快2千米,几小时后两车相遇? 7、甲、乙两人分别从相距110千米的两地相向而行,5小时后相遇.甲每小时行12千米,则乙每小时行多少千米? 8、两列火车同时从相距650千米的两地相向而行,甲列火车每小时行50千米,乙列火车每小时行52千米,4小时后还差多少千米才能相遇? 9、两港口相距267千米,客船以每小时45千米的速度、货船以每小时33千米的速度先后从两港开出,相向而行.相遇时客船行了135千米,货船比客船提前几小时开出?

行程问题典型例题及答案详解

行程问题典型例题及答案详解 行程问题是小学奥数中的重点和难点,也是西安小升初考试中的热点题型,纵观近几年试题,基本行程问题、相遇追及、多次相遇、火车、流水、钟表、平均速度、发车间隔、环形跑道、猎狗追兔等题型比比皆是,以下是一些上述类型经典例题(附答案详解)的汇总整理,有疑问可以直接联系我。 例1:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间? 分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷v=s/v=4,则 回来时的时间为:,即回来时用了3.5小时。评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。 例2:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少? 分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。 解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷2-0.5=2.5(小时),后半段行驶速度应为:120÷2.5=48(千米/时),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:48-40=8(千米/时)。 答:汽车在后半段路程时速度加快8千米/时。 例3:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时? 分析:求时间的问题,先找相应的路程和速度。 解答:轮船顺水速度为231÷11=21(千米/时),轮船逆水速度为21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时) 答:行驶这段路程逆水比顺水需要多用10小时。

七年级第十讲行程问题经典例题

第十讲:行程问题分类例析 主讲:何老师 行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上 分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离 和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追 及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆 流. 一、相遇问题 例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分 钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行 使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程. 解答:设甲车共行使了xh ,则乙车行使了h x )( 60 25-.(如图1) 依题意,有72x+48)(60 25-x =360+100, 解得x=4. 因此,甲车共行使了4h. 说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体 会. 例2:一架战斗机的贮油量最多够它在空中飞行4.6h,飞机出航时顺风飞行,在静风中的速度 是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回? 分析:列方程求解行程问题中的顺风逆风问题. 顺风中的速度=静风中速度+风速 逆风中的速度=静风中速度-风速 解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有6425 57525575.=-++x x 解得:x=1320. 答:这架飞机最远飞出1320km 就应返回. 解法二: 设飞机顺风飞行时间为th. 依题意,有(575+25)t=(575-25)(4.6-t), 解得:t=2.2. (575+25)t=600×2.2=1320. 答:这架飞机最远飞出1320km 就应返回. 图1

行程问题(三)(列车过桥问题)

行程问题(四)(列车过桥问题) 例1:一列列车长150米,每秒行19米,全车通过420米的大桥需要多少小时? 一列火车长300米,每秒行20米,全车通过一个长300米的山洞需要多少时间? 例2:一列火车长600米,经过铁道旁的一个标志牌,用了30秒,用同样的速度通过一座大桥,从车头上桥到车尾离桥共用100秒。这座大桥长多少米? 一列火车长300米,经过铁道旁的一根电线杆12秒。以同样的速度通过前方的一个山洞,从车头进洞到车尾出洞共用了60秒,求这个山洞长多少米? 例3:一列火车通过530米的桥,用了20秒。用同样的速度通过380米的山洞,用了15秒,求这列火车的速度。 一列车通过一个长500米的山洞,用了30秒。用同样的速度通过一座长1800米的大桥,用了82秒,求这列火车的速度。 例4:一列客车长190米,一列火车长240米,两车分别以每秒20米和23米的速度相向而行,在双轨铁路上,交会时从车头相遇到车尾相离共需多少时间? 甲列车长500米,乙列车长400米,已知甲,乙两列车的速度分别为每秒20米和每秒25米,求在上下行的轨道上,从车头相遇到车尾离开需要多少秒钟? 例5:甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车,若两车齐尾并进,则甲车行26秒超过乙车。两车各长多少米? 两列火车,快车每秒行18米,慢车每秒行10米,现有两列车同时同方向齐头行进,行驶20秒后,快车超过慢车,若两车齐尾相齐行进,则17秒后快车超过慢车。求两列火车的车身长。 例6:客车和货车同时从甲乙两地相对开出,客车每小时行54千米,货车每小时行48千米。两车相遇后,又以原来的速度继续前进,客车到达乙地后即返回,货车到达甲地后也立即返回,两车在距离中点108千米处再次相遇,甲乙两地间的路程多少千米? 一列快车以每小时160千米的速度从a城开出。同时一列慢车以每小时100千米的速度从b城开出相对而行,两车相遇后又以原速继续前行。快车到达b城后立即返回,慢车到达a城也立即返回,两车在距中点225千米处再次相遇。ab两城相距多少千米?

行程问题解题技巧

行程问题解题技巧 行程问题 在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。此类问题一般分为四类:一、相遇问题;二、追及问题;三、相离问题;四、过桥问题等。 行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。 相遇问题 两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。这类问题即为相遇问题。 相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么: A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有: 两地距离=速度和×相遇时间 相遇时间=两地距离÷速度和 速度和=两地距离÷相遇时间 二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有: 第二次相遇时走的路程是第一次相遇时走的路程的两倍。 相遇问题的核心是“速度和”问题。利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。 相离问题 两个运动着的动体,从同一地点相背而行。若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。它与相遇问题类似,只是运动的方向有所改变。 解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。 基本公式有: 两地距离=速度和×相离时间 相离时间=两地距离÷速度和 速度和=两地距离÷相离时间 相遇(相离)问题的基本数量关系:速度和×相遇(相离)时间=相遇(相离)路程在相遇(相离)问题和追及问题中,必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。 追及问题 两个运动着的物体从不同的地点出发,同向运动。慢的在前,快的在后,经过若干时间,快的追上慢的。有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题。解答这类问题要找出两个运动物体之间的距离和速度之差,从而求出追及时间。解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公

七年级行程问题经典例题

第十讲:行程问题分类例析 主讲:何老师 行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流, 回时则为逆流. 一、相遇问题 例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程. 解答:设 甲车共 行使了 xh ,则乙车行使了h x )(60 25-.(如图1) 依题意,有72x+48)(60 25-x =360+100,

解得x=4. 因此,甲车共行使了4h. 说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体会. 例2:一架战斗机的贮油量最多够它在空中飞行 4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回? 分析:列方程求解行程问题中的顺风逆风问题. 顺风中的速度=静风中速度+风速 逆风中的速度=静风中速度-风速 解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有6425 57525575.=-++x x 解得:x=1320. 答:这架飞机最远飞出1320km 就应返回. 解法二: 设飞机顺风飞行时间为th. 依题意,有(575+25)t=(575-25)(4.6-t), 解得:t=2.2.

三年级行程问题补充含答案

1.A、B两城相距450千米,甲、乙两辆汽车同时从A城开往B城,甲车每小时行52千米,乙车每小时行38千米,甲车到达B城后立即返回,两车从出发到相遇共需多少小时? 分析:根据题意画图如下 从图中可知,两车从出发到相遇所走的路程正好是两个A、B城之间的距离,所以两车从出发到相遇所用的时间相当于两车行了两个450千米所需的时间。 解答:450×2÷(52+38) =900÷90 =10(时) 答:两车从出发到相遇共需10小时。 2.哥哥以每分钟50米的速度从学校步行回家,12分钟后弟弟从学校出来骑车追哥哥,结果在距学校800米处追上哥哥。求弟弟骑车的速度。 分析:根据题意画图如下 当弟弟追上哥哥时,距学校800米。这800米是哥哥两次所行路程的和,一次是12分钟内行的路程,另一次是弟弟从出发到追上哥哥所用时间内(追及时间)哥哥行的路程。 解答:弟弟追上哥哥的时间(追及时间) (800-12×50)÷50 =(800-600)÷50 =200÷50 =4(分) 弟弟的速度 800÷4=200(米) 答:弟弟骑车每分钟行200米。 3.东、西两镇相距100千米,甲、乙两车分别从两镇同时出发相向而行,4小时后相遇。已知甲比乙每小时快3千米,甲、乙两车的速度是多少? 分析:100千米是两车所行的总路程,4小时为相遇时间。根据相遇问题的数量关系式,就可求出两车的速度和。又已知两车的速度差,根据和差问题,两车速度就解决了。 解答:两车速度和 100÷4=25(千米) 甲的速度 (25+3)÷2=14(千米) 乙的速度 25-14=11(千米) 答:甲的速度为每小时14千米,乙的速度为每小时11千米。 4.一辆货车以每小时65千米的速度前进,一辆客车在它的后面1500米处,以每小时80千米的速度同向行驶,客车在超过货车前2分钟,两车相距多少米?

行程问题重要知识点及题型详解

数量关系:行程问题重要知识点及题型详解 行程问题是国家公务员考试中数学运算的常考题型之一,涉及最多的是相遇问题与追及问题。中公教育专家提醒各位考生,在复习数学运算的过程中,应重点掌握行程问题中的几种题型和解题方法。 一、行程问题知识要点 (一)行程问题中的三量 行程问题研究的是物体运动中速度、时间、路程三者之间的关系。这三个量之间的基本关系式如下: 路程=速度×时间; 时间=路程÷速度; 速度=路程÷时间。 上述三个公式可称为行程问题的核心公式,大部分的行程问题都可通过找出速度、时间、路程三量中的两个已知量后利用核心公式求解。 (二)行程问题中的比例关系 时间相等,路程比=速度比; 速度相等,路程比=时间比; 路程一定,速度与时间成反比。 二、行程问题的主要题型 (一)平均速度问题 平均速度问题公式:

(二)相遇问题 1.相遇问题的特征 (1)两人(物体)从不同地点出发作相向运动; (2)在一定时间内,两人(物体)相遇。 与基本的行程问题相比,中公教育专家认为,相遇问题涉及两个或多个运动物体,过程较为复杂。一般借助线段图来理清出发时间、出发地点等基本量,进而利用行程问题核心公式解题。 2.相遇问题公式 公式中的相遇路程指同时出发的两人所走的路程之和。如果不是同时运动,要转化为标准的同时出发、相向运动的问题来套用相遇问题公式。 (三)追及问题 1.追及问题的特征 (1)两个运动物体同地不同时(或同时不同地)出发做同向运动。后面的比前面的速度快。 (2)在一定时间内,后面的追上前面的。 与相遇问题类似,中公教育专家建议考生可通过线段图来理清追及问题的运动关系。

论述化学反应器的分类和化学反应的基本类型

论述化学反应器的分类和化学反应的基本类型 <一>化学反应的基本类型 摘要 一提到化学反应类型,不少学生都认为是“化学反应基本类型”,答案只能在化合反应、分解反应、置换反应、复分解反应四种情况里选一种,除此之外的答案都是错的,这给学生带来很大困惑。本文探讨了“化学反应基本类型”的本质和局限性,并探讨了复分解反应的两个疑难问题。本文还详细介绍啦化学反应器的分类,让大家更详细的了解到在化学应用中化学反应器的分类 关键词;化学反应器化学反应基本类型原理 一、问题的提出 化学反应的基本类型有四种,即化合反应,分解反应,置换反应,复分解反应。在对化学反应进行分类时,学生常遇到以下困惑: 1.氧化还原反应、中和反应等反应为什么不属于反应基本类型? 2.有很多反应为什么没有相应的反应基本类型? 3.非金属氧化物与碱的反应为什么不属于复分解反应? 4.碳酸盐与酸的反应被认为是复分解反应,这是为什么? 对于这些问题,机械地利用概念来解释,缺乏说服力,而且第四个问题用概念无法解释,因为复分解反应的概念是两种化合物相互交换成分,生成另外两种化合物的反应,第四种反应有三种化合物生成。 欲解决这些问题,需要弄清楚“反应基本类型”内涵和外延。 二问题的解决 (一)探究所描述的化学反应信息 从具体实例来探究“反应基本类型”所描述的化学反应信息。 1. 3Fe+2OFeO,化合反应——几种成分(Fe和O)结合在一起。 2. 2Fe(OH)=FeO+3HO,分解反应——结合在一起的几种成分(Fe、O、H)分开。 3. Fe+CuSO=FeSO+Cu,置换反应——一种成分(Fe)替换另一种成分(Cu)。 4. 2Fe(OH)+6HCl=2FeCl+6HO,复分解反应——正价态成分(Fe和H)或负价态成分(OH 根和Cl)相互交换。 四种基本类型都是通过成分组合方式的变化来描述化学反应过程的,这就是“反应基本类型”的内涵。而氧化还原反应是通过电子的转移来描述化学反应过程的,中和反应是通过酸碱性的相互消除来描述化学反应过程的,它们的内涵与“反应基本类型”不相符合,所以都不把它们列入“反应基本类型”的范畴。 (二)反应基本类型外延 “反应基本类型”的外延只有四种,面对纷繁复杂的化学反应,这样的外延太窄了,部分反应特别是很多的有机化学反应被排除在“反应基本类型”之外。如同很多观众到了一个小剧场,位子不够,一部分人无法对号入座。所以像这样的情况,并不意味着它们根本上没有相应的反应类型,只是目前还不能对它们变化的特点进行恰当描述罢了。 查现代汉语词典,“基本”的含义有:①根本:人民是国家的~。②根本的:~矛盾。③主要的:~条件∣~群众。④大体上:大坝工程已经~完成。用“基本”来修饰反应类型,是哪种含义呢?是“根本”(最重要的意思)的反应,其它反应都不重要?是“主要的”反应,其它反应都是次要的反应?无论选择那种含义,都不合适。

五年级奥数举一反三第30周行程问题(三)

五年级奥数举一反三第30周行程问题〔三〕 专题简析; 很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。 列方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟悉的数量关系。因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知数,根据自己最熟悉的等量关系列出方程,方便解题。 例1 A、B两地相距259千米,甲车从A地开往B地,每小时行38千米;半小时后,乙车从B地开往A地,每小时行42千米。乙车开出几小时后和甲车相遇? 分析我们可以设乙车开出后X小时和甲车相遇。相遇时,甲车共行了38×〔X+0,5〕千米,乙车共行了42X千米,用两车行的路程和是259千米来列出方程,最后求出解。 解;设乙车开出X小时和甲车相遇。 38×〔X+0,5〕+42X=259 解得 X=3 即;乙车开出3小时后和甲车相遇。 练习一 1,甲、乙两地相距658千米,客车从甲地开出,每小时行58千米。1小时后,货车从乙地开出,每小时行62千米。货车开出几小时后与客车相遇? 2,小军和小明分别从相距1860米的两处相向出发,小军出发5分钟后小明才出发。已知小军每分钟行120米,小明骑车每分钟行300米。求小军出发几分钟后与小明相遇? 3,甲、乙两地相距446千米,快、慢两车同时从甲、乙两地相对开出,快车每小时行68千米,慢车每小时行35千米。中途慢车因修车停留半小时,求共经过几小时两车在途中相遇。 例2 一辆汽车从甲地开往乙地,平均每小时行20千米。到乙地后又以每小时30千米的速度返回甲地,往返一次共用7,5小时。求甲、乙两地间的路程。 分析如果设汽车从甲地开往乙地时用了X小时,则返回时用了〔7,5-X〕小时,由于往、返的路程是一样的,我们可以通过这个等量关系列出方程,求出X值,就可以计算出甲、乙两地间的路程。 解;设去时用X小时,则返回时用〔7,5-X〕小时。 20X=30〔7,5-X〕 解得 X=4,5 20×4,5=90〔千米〕 即;甲、乙两地间的路程是90千米。 练习二

第一部分 行程问题重要知识点及题型详解

第一部分行程问题重要知识点及题型详解 行程问题是国家公务员考试中数学运算的常考题型之一,涉及最多的是相遇问题与追及问题。中公教育专家提醒各位考生,在复习数学运算的过程中,应重点掌握行程问题中的几种题型和解题方法。 一、行程问题知识要点 (一)行程问题中的三量 行程问题研究的是物体运动中速度、时间、路程三者之间的关系。这三个量之间的基本关系式如下: 路程=速度×时间; 时间=路程÷速度; 速度=路程÷时间。 上述三个公式可称为行程问题的核心公式,大部分的行程问题都可通过找出速度、时间、路程三量中的两个已知量后利用核心公式求解。 (二)行程问题中的比例关系 时间相等,路程比=速度比; 速度相等,路程比=时间比; 路程一定,速度与时间成反比。 二、行程问题的主要题型 (一)平均速度问题 平均速度问题公式: (二)相遇问题 1.相遇问题的特征 (1)两人(物体)从不同地点出发作相向运动; (2)在一定时间内,两人(物体)相遇。 与基本的行程问题相比,中公教育专家认为,相遇问题涉及两个或多个运动物体,过程较为复杂。一般借助线段图来理清出发时间、出发地点等基本量,进而利用行程问题核心公式解题。 2.相遇问题公式 公式中的相遇路程指同时出发的两人所走的路程之和。如果不是同时运动,要转化为标准的同时

出发、相向运动的问题来套用相遇问题公式。 (三)追及问题 1.追及问题的特征 (1)两个运动物体同地不同时(或同时不同地)出发做同向运动。后面的比前面的速度快。 (2)在一定时间内,后面的追上前面的。 与相遇问题类似,中公教育专家建议考生可通过线段图来理清追及问题的运动关系。 2.追及问题公式 在追及问题中,我们把开始追及时两者的距离称为追及路程,大速度减小速度称为速度差。由此得出追及问题的公式: (四)多次相遇问题 相遇问题的复杂形式是多次相遇问题,多次相遇问题按照运动路线不同分为直线多次相遇和环形多次相遇两类。 多次相遇问题重要结论: 1.从两地同时出发的直线多次相遇问题中,第n次相遇时,路程和等于第一次相遇时路程和的(2n-1)倍;每个人走的路程等于他第一次相遇时所走路程的(2n-1)倍。 2.从同一点出发,反向行驶的环形路线问题中,初次相遇所走的路程和为一圈。如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍。 (五)流水问题 流水问题是指船在水中行驶的问题,它比普通的行程问题多了一个元素——水速。 流水问题有如下两个基本公式: 顺水速度=船速+水速; 逆水速度=船速-水速。 其中,顺(逆)水速度:指船顺(逆)水航行时单位时间里所行的路程;船速:指船本身的速度,即船在静水中的速度;水速:指水在单位时间里流过的路程。 只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。另外,中公教育专家给考生一个变向思维,流水问题也便转化为普通行程问题。 由前面两个基本公式,可推得:

数学行程问题公式大全及经典习题答案

路程=速度×时间; 路程÷时间=速度; 路程÷速度=时间 关键问题 确定行程过程中的位置路程 相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和 相遇问题(直线) 甲的路程+乙的路程=总路程 相遇问题(环形) 甲的路程 +乙的路程=环形周长 追及问题 追及时间=路程差÷速度差 速度差=路程差÷追及时间 路程差=追及时间×速度差 追及问题(直线) 距离差=追者路程-被追者路程=速度差X追及时间 追及问题(环形) 快的路程-慢的路程=曲线的周长 流水问题 顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速 静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 解题关键 船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。 流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式: 顺水速度=船速+水速,(1)

逆水速度=船速-水速.(2) 这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。 根据加减法互为逆运算的关系,由公式(l)可以得到: 水速=顺水速度-船速, 船速=顺水速度-水速。 由公式(2)可以得到: 水速=船速-逆水速度, 船速=逆水速度+水速。 这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。 另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到: 船速=(顺水速度+逆水速度)÷2, 水速=(顺水速度-逆水速度)÷2。 例:设后面一人速度为x,前面得为y,开始距离为s,经时间t后相差a米。那么 (x-y)t=s-a 解得t=s-a/x-y. 追及路程除以速度差(快速-慢速)=追及时间 v1t+s=v2t (v1+v2)t=s t=s/(v1+v2) (一)相遇问题 两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它的特点是两个运动物体共同走完整个路程。 小学数学教材中的行程问题,一般是指相遇问题。 相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。 它们的基本关系式如下: 总路程=(甲速+乙速)×相遇时间 相遇时间=总路程÷(甲速+乙速) 另一个速度=甲乙速度和-已知的一个速度 (二)追及问题 追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。由于速度不同,就发生快的追及慢的问题。 根据速度差、距离差和追及时间三者之间的关系,罕用下面的公式: 距离差=速度差×追及时间 追及时间=距离差÷速度差 速度差=距离差÷追及时间

数量关系.行程问题重要知识点及题型详解

行程问题是国家公务员考试中数学运算的常考题型之一,涉及最多的是相遇问题与追及问题。中公教育专家提醒各位考生,在复习数学运算的过程中,应重点掌握行程问题中的几种题型和解题方法。 一、行程问题知识要点 (一)行程问题中的三量 行程问题研究的是物体运动中速度、时间、路程三者之间的关系。这三个量之间的基本关系式如下: 路程=速度×时间; 时间=路程÷速度; 速度=路程÷时间。 上述三个公式可称为行程问题的核心公式,大部分的行程问题都可通过找出速度、时间、路程三量中的两个已知量后利用核心公式求解。 (二)行程问题中的比例关系 时间相等,路程比=速度比; 速度相等,路程比=时间比; 路程一定,速度与时间成反比。 二、行程问题的主要题型 (一)平均速度问题 平均速度问题公式:

(二)相遇问题 1.相遇问题的特征 (1)两人(物体)从不同地点出发作相向运动; (2)在一定时间内,两人(物体)相遇。 与基本的行程问题相比,中公教育专家认为,相遇问题涉及两个或多个运动物体,过程较为复杂。一般借助线段图来理清出发时间、出发地点等基本量,进而利用行程问题核心公式解题。 2.相遇问题公式 公式中的相遇路程指同时出发的两人所走的路程之和。如果不是同时运动,要转化为标准的同时出发、相向运动的问题来套用相遇问题公式。 (三)追及问题 1.追及问题的特征 (1)两个运动物体同地不同时(或同时不同地)出发做同向运动。后面的比前面的速度快。

(2)在一定时间内,后面的追上前面的。 与相遇问题类似,中公教育专家建议考生可通过线段图来理清追及问题的运动关系。 2.追及问题公式 在追及问题中,我们把开始追及时两者的距离称为追及路程,大速度减小速度称为速度差。由此得出追及问题的公式: (四)多次相遇问题 相遇问题的复杂形式是多次相遇问题,多次相遇问题按照运动路线不同分为直线多次相遇和环形多次相遇两类。 多次相遇问题重要结论: 1.从两地同时出发的直线多次相遇问题中,第n次相遇时,路程和等于第一次相遇时路程和的(2n-1)倍;每个人走的路程等于他第一次相遇时所走路程的(2n-1)倍。 2.从同一点出发,反向行驶的环形路线问题中,初次相遇所走的路程和为一圈。如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍。 (五)流水问题 流水问题是指船在水中行驶的问题,它比普通的行程问题多了一个元素——水速。 流水问题有如下两个基本公式: 顺水速度=船速+水速; 逆水速度=船速-水速。

行程问题案例分析

解决行程问题的策略 教学目标: 1、让学生在解决相遇求路程的行程问题以及类似的实际问题过程中,学会用画图和列表的方法整理相关信息,感受画图和列表是解决问题的一种常用策略,会解决这一类实际问题。 2、让学生积累解决问题的经验,增强解决问题的策略意识,发展形象思维和抽象思维,获得解决问题的成功经验,提高学好数学的自信心。 教学重点:“相遇问题”的特征和解题方法。 教学难点:学会用画图和列表整理信息的方法 教学过程: 一、创设情境,揭示课题: 1、老师将请一个“演员”和我一起走一走: 请一位学生,老师和学生分别站在讲台前的最左和最右。说:他站的地方是他家,我站的地方是我家,中间是学校。早上我们同时从家出发来学校。(开始走,直到相遇) 放学后,我们又同时从学校出发,回家。 2、看完我们的表演,你知道这里有什么数学知识吗? (这是一个行程问题,其基本的数量关系式:速度×时间=路程)(板书关系式) 揭示课题:今天这节课我们来研究“解决行程问题的策略” 二、整理信息,解决问题 1、指板书问:如果要求我家到学校的路程怎么算?要求×××家到学校的路程呢?算出这两个路程后,还能解决什么问题吗?(老师家到×××家的路程)老师给你相关的具体信息,请你用线段图表示出来,行吗? 2、指导画线段图: 先确定两点分别表示老师和×××家,再连接两点画一条线段,中间点一点表示学校,学校离×××家稍近一些。

把老师到学校的线段以及×××家到学校的线段分别平均分成4段,每一段表示1分行走的路程,4段表示行走的4分钟时间。 用括线和问号表示所求的问题。 3、看线段图,你能说说信息和问题吗?你能把相关信息列成一张表吗? 学生尝试列表,出示该表,检查表中的有关信息。 4、学习解答方法: 通过画线段图或是列表,使我们更清楚地知道了题目的信息和问题。现在请你解决这个问题,把它写下来。 交流:方法一:70×4+60×4=520(米) 方法二:(70+60)×4=520(米) 分别说说这两个算式先求得的是什么?再求的是什么? 比较这两种方法,它们有什么联系? 指出:我们以前研究一个对象的行程问题时,就考虑它的速度×时间=路程。而现在我们遇到的行程问题有2个行动对象,除了可以分别算出两个路程再相加,还可以把速度先加起来,求出速度和(板书成:速度和×时间=路程)读一读。 三、应用拓展 1、放学后,我们两个同时从学校出发,分别向东去新华书店,向西去文具店, 问:这道题和例题有什么不同? 你能根据题意自己独立画线段图整理。 展示学生的线段图,并让学生说说自己是怎样想的。 补充合适的问题后,学生独立解答。交流的时候分别说清楚自己是怎么想的。 2、比较两题,找联系。 说说两题有什么不同?(方向上的不同,一个是相向的,一个是相背的)做手势。 什么相同?(都是求两断之间的距离,可以先分别算出各自的距离再相加,也可以先算出合起来的速度再算总的路程。……) 课后反思:

行程问题7类经典题型汇总

行程问题经典题型 例题1 甲乙两地相距800千米,一辆客车以每小时40千米的速度从甲地开出3小时后,一辆摩托车以每小时60千米的速度从乙地开出,开出后几小时与客车相遇? 习题: 1、甲、乙两地相距1160千米,小明以每分钟30米的速度从甲地从发6分钟后,小华以每分钟40米的速度从乙地出发,几分钟后与小明相遇? 2、甲、乙两地相距1080千米,一辆货车以每小时60千米的速度从甲地从发4小时后,一辆摩托车以每小时80千米的速度从乙地出发,开出后几小时与货车相遇?

3、客车以每小时70千米的速度从甲地开出3小时后,一辆货车以每小时60千米的速度从乙地开出5小时后与客车相遇,甲、乙两地相距多少千米? 4、小红一人去14千米远的叔叔家,她每小时行6千米。从家出发1小时后,叔叔闻讯立即以每小时10千米的速度前来接她,几小时后可以接到小红? 例题2 六(1)班同学徒步去狼山看日出。去时每小时行8千米,按原路返回时每小时行6千米。他们往返的平均速度是多少? 1、一艘船从A地开往B地。去时每小时行20千米,按原路返回时每小时行25千米。这艘船往返的平均速度是多少? 2、一辆客车从甲地开往乙地。去时每小时行40千米,按原路返回时

每小时行35千米。这辆客车往返的平均速度是多少? 3、一艘轮船,静水速度是每小时18千米,现在从下游开往上游,水流速度是每小时2千米,请问他往返一次的平均速度是多少? 4、一列火车从甲站开往乙站。去时每小时行120千米,按原路返回每小时行150千米。这列火车往返的平均速度是多少? 例题3 甲、乙两车同时从A、B两地相对开出,几小时后在距中点40千米出相遇。已知甲车行完全程要8小时,乙车行完要10小时,求A、B两地相距多少?

行程问题“九大题型”与“五大方法”

行程问题“九大题型”与“五大方法”。 很多学生对行程问题的题型不太清楚,对行程问题的常用解法也不了解,那么我给大家归纳一下。 1、九大题型: ⑴简单相遇追及问题;⑵多人相遇追及问题;⑶多次相遇追及问题;⑷变速变道问题;⑸火车过桥问题;⑹流水行船问题;⑺发车问题; ⑻接送问题;⑼时钟问题。 2 、五大方法: ⑴公式法:包括行程基本公式、相遇公式、追及公式、流水行程公式、火车过桥公式,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式,而且有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件。 ⑵图示法:在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具。示意图包括线段图、折线图,还包括列表。图图示法即画出行程的大概过程,重点在折返、相遇、追及的地点。另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法。 ps:画图的习惯一定要培养起来,图形是最有利于我们分析运动过程的,可以说图画对了,意味着题也差不过做对了30%! ⑶比例法:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值。更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等) 往往是不确定的,在没有具体数值的情况下,只能用比例解题。 ps:运用比例知识解决复杂的行程问题经常考,而且要考都不简单。

⑷分段法:在非匀速即分段变速的行程问题中,公式不能直接适用。这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来。 ⑸方程法:在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解。 ps:方程法尤其适用于在重要的考试中,可以节省很多时间。 四、怎样才能学好行程问题? 因为行程的复杂,所以很多学生已开始就会有畏难心理。所以学习行程一定要循序渐进,不要贪多,力争学一个知识点就要能吃透它。学习奥数有四种境界: 第一种:课堂理解。就是说能够听懂老师讲解的题目。 第二种:能够解题。就是说学生听懂了还能做出作业。 第三种:能够讲题。就是不仅自己会做,还要能够讲给家长听。 第四种:能够编题。就是自己领悟这个知识了,自己能够根据例题出题目,并且解出来。 其实大部分学生学习奥数都只停留在第一种境界(有的甚至还达不到),能够达到第三种境界的学生考取重点中学实验班基本上没有什么问题了。而要想在行程上一点问题没有,则要求学生达到第四种境界。即系统学习,还要能深刻理解,刻苦钻研。而这四种境界则是学习行程的四个阶段,或者说是好的方法。

第19讲 行程问题三-完整版

第19讲行程问题三 内容概述 运动过程较为复杂的行程问题,一般通过分段、比较等办法进行考虑。在往返问题中考虑多次相遇和多次追及的过程,需要注意从整体考虑两个对象的路程和或路程差,并从中找到规律。 典型例题 兴趣篇 1.莉莉和莎莎一起从家去学校,莉莉步行,莎莎骑车.莎莎到学校后发现自己没带文具盒,便立刻骑车回家去取,到家取出文具盒后又马上骑向学校,结果她和莉莉一起到校,如果莉莉每分钟走53米,那么莎莎骑车每分钟行进多少米? 答案:每分钟159米 解析:注意到莉莉与莎莎两人同时从家出发,同时到达学校,而且两人在途中都没有停留,因此两人用去的时间相同.当运动时间相同时,速度的倍数关系等于路程的倍数关系. 如图,莉莉步行从家到学校,走的路程是家与学校的距离.在相同的时间内,莎莎骑车到学校,又马上从学校返回家,再回到学校,经过的路程是家与学校距离的3倍,因此莎莎骑车的速度是莉莉步行速度的3倍,由于莉莉每分钟走53米,所以莎莎骑车的速度是每分钟53×3=159米. 2.小燕上学时骑车?回家时步行,路上共用50分钟.如果往返都步行,则全程需要70分钟,求小燕往返都骑车所需的时间. 答案:30分钟 解析: 如图,因为小燕往返都步行需要70分钟,所以她步行从学校回到家需

要70÷2=35分钟. 由于小燕上学时骑车,回家时步行需要50分钟,所以她骑车从家到学校需要50-35=15分钟,那么她往返都骑车需要15×2=30分钟. 3.萱萱和卡莉娅从距离32千米的两地同时出发相向而行,萱萱每小时走4千米,卡莉娅乘坐“飞天扫帚”,每小时飞12千米,她俩迎面相遇后,卡莉姬发现自己忘记带东西了,立刻返回出发点,再掉头向萱萱前进.请问:她们第二次相遇的地点距离卡莉娅的出发点多少千米? 答案:12千米 解析:第一次相遇时卡莉娅走了32÷(4+12)×12=24(千米). 从第一次相遇到第二次相遇,两人又合走了24×2=48(千米). 这期间萱萱又往前走了48÷(4+12)×4=12(千米). 因此第二次相遇点离卡莉娅的出发点24-12=12(千米). 4.培英学校和电视机厂之间有一条公路,原计划下午2点整培英学校派车去电视机厂接劳模来校作报告,往返需用1小时.实际上这位劳模在下午1点便提前离厂步行向学校走来,途中遇到接他的汽车,劳模便立刻上车去往学校,并在下午2点40分到达.问:汽车行驶速度是劳模步行速度的几倍? 答案:8倍 解析: 如图,汽车下午2时从工厂出发,途中遇到迎面走来的劳模后立即返回,于2时40分回到工厂,汽车的速度不变,因此汽车遇到劳模的时间是2时20分,

行程问题常见题型分析

行程问题常见题型分析 在列方程解应用题问题中,行程问题是一个必不可少的内容,也是比较难的一个内容。 一、弄清行程问题中基本的量和它们之间的关系。 行程问题中有三个基本量:速度、时间、路程。 这三个量之间的关系是:路程=时间×速度。 变形可得到:速度=路程/时间 时间=路程/速度 这三个量的作用是知道其中两个就可以表示第三个。 二、行程问题常见类型 1、普通相遇问题。 2、追及(急)问题。3顺(逆)水航行问题。4、跑道上的相遇(追急)问题 三、行程问题中的等量关系 所谓等量关系就是不同的项表示的同一个量(路程、时间或速度)应该相等,并可用等式列出。 1、若路程已知,则应找时间的等量关系和速度的等量关系。 2、若速度已知,则应找时间的等量关系和路程的等量关系。 3、若时间已知,则找路程的等量关系和速度的等量关系。

在航行问题中还有两个固定的等量关系,就是: 顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度 四、分类举例 例1 :小明每天早上要在7:50之前赶到距离家1000米的学校去上学。小明以80米/分的速度出发,5分钟后小明的爸爸发现他忘了带语文书。于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。爸爸追小明用了多长时间? 分析:此题中小明的速度,爸爸的速度均已告诉。因此速度之间不存在等量关系。我们只能在父子二人的时间和父子二人的路程上找等量关系。由于小明比爸爸早出发5分钟,且相遇时在同一个时刻,因此相遇时爸爸比小明少用5分钟,可得时间的等量关系:①爸爸的时间+5分钟=小明的时间;当爸爸追上小明时,父子二人都是从家走到相遇的地点,故爸爸行的路程与小明行的路程相等。可得路程相等关系。②爸爸路程=小明路程如果爸爸追上小明用了x分钟,则由第一个相等关系得:小明用了(x +5)分钟。 又由第二个等量关系,可得此题方程: 180x(爸爸的路程)=80(x+5)(小明的路程)

用方程解行程问题经典

列方程解应用题彭思睿 一、列方程解应用题的基本步骤 1.设未知数用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法。 2.寻找相等关系可借助图表分析,列出等式两边的代数式,注意它们的量要一致,使它们都表示一个相等或相同的量。 3.列方程列方程应满足三个条件:各类是同类量,单位一致,两边是等量。 4.解方程方程的变形应根据等式性质和运算法则。 5.写出答案检查方程的解是否符合应用题的实际意义,进行取舍,并注意单位。 二、解行程问题的应用题 路程=速度×时间 三、相遇问题 相向而行,基本公式:速度和×相遇时间=路程和 四、追击问题 同向而行,基本公式:速度差×追击时间=追击路程

例1. A、B两地相距960千米,甲、乙两辆汽车分别从两地同时出发,相向开出,6小时后两车相遇;已知甲车的速度是乙车的1.5倍。求甲、乙两车的速度各是多少? 分析:如上图,设一倍数(乙车)的速度是x千米/小时,那么甲车的速度就是1.5x千米/小时。甲车行的路程+乙车行的路程=总路程(960千米),我们可以利用这个等量关系列出方程:6x+6×1.5x=960, 解:设乙车的速度是x千米/小时,那么甲车的速度就是1.5x千米/小时。 6x+6×1.5x=960 15x=960 x=64 1.5x=1.5×64=96 答:甲的速度是96千米/小时,乙车的速度是64千米/小时。 例2. A、B两地相距230千米,甲队从A地出发两小时后,乙队从B地出发与甲相向而行,乙队出发20小时后与甲队相遇,已知乙的速度比甲的速度每小时快1千米,求甲、乙的速度各是多少? 230千米 甲车2小时行的 20小时相遇 甲队队乙 分析:如上图,甲队总共行了2+20=22小时,乙队行了20小时。设甲队的速度是x千米/小时,那么乙队的速度就是(x+1)千米/小时。从图上可以看出:甲队行的路程+乙队行的路程=总路程(230千米),利用这个等量关系列方程:

相关主题
文本预览
相关文档 最新文档