当前位置:文档之家› 一种用于产品检测的微电流测试方法

一种用于产品检测的微电流测试方法

一种用于产品检测的微电流测试方法
一种用于产品检测的微电流测试方法

产品测试方案

百度XXX产品v1.0.0测试方案

目录 百度XXX产品V1.0.0测试方案 0 1 项目简介部分 (1) 1.1 文档编写目的 (1) 1.2 测试项目背景描述 (1) 1.3 测试工作内容和范围 (1) 2 测试文档[可裁减] (1) 2.1 测试所需参考文档 (1) 2.2 测试需提交文档 (2) 3 测试安排和计划 (3) 3.1 项目整体计划 (3) 3.2 测试资源安排 (6) 3.2.1 人力资源分工 (6) 3.2.2 测试环境安排和使用 (6) 3.2.3 所需的合作方配合 (7) 3.2.4 测试所需工具 (7) 4 风险预估和应对[可裁减] (8) 5 准入测试方案[可裁减] (9) 6 功能测试方案 (10) 6.1 C ASE开发和管理的规范 (10) 6.2 测试需求分析和策略制定 (10) 6.2.1 分功能测试需求分析 (10) 6.2.2 测试工具需求 (11) 7 性能测试方案[可裁减] (11) 7.1 性能测试工具需求 (11) 7.2 场景名XXX1 (11) 7.2.1 场景概述 (11) 7.2.2 执行策略设计 (12) 7.2.3 测试数据需求 (12) 7.2.4 性能测试结果分析方法和预期 (12) 7.3 压力测试场景设计 (12) 7.3.1 场景名XXX (13)

1项目简介部分 1.1 文档编写目的 <项目名称>的这一“测试方案”文档有助于实现以下目标: [确定现有项目的信息和应测试的软件构件。 列出推荐的测试需求(高级需求)。 推荐可采用的测试策略,并对这些策略加以说明。 确定所需的资源,并对测试的工作量进行估计。 预估项目的风险和成本,对制定应对措施。 列出测试项目的可交付元素] 1.2 测试项目背景描述 [对测试对象(应用程序、模块、子模块、系统等)及其开发设计目标进行简要说明。需要包括的信息有:主要的功能和性能、测试对象的构架以及项目的简史、测试对象的设计开发初衷和目标。] 1.3 测试工作内容和范围 [简要描述测试所需的阶段(例如,评审、测试设计、单元测试、冒烟测试、手工测试、回归测试、自动化测试、性能测试、交叉自由测试等)。 简要地列出测试对象中将接受测试或将不接受测试的那些性能和功能。 如果在编写此文档的过程中做出的某些假设可能会影响测试设计、开发或实施,则列出所有这些假设。 列出可能会影响测试设计、开发或实施的所有风险或意外事件。 列出可能会影响测试设计、开发或实施的所有约束。] 2测试文档[可裁减] 2.1 测试所需参考文档 下表列出了制定和实施该测试方案时所需要使用的相关文档,并标明了各文档的可用性:

漏电流测试方法

测量接地漏电流 漏电比对人墙MD(地),容易理解和考虑漏电流接地端子的电流。 上的MD(红色和黑色),您认为图左侧的代码表示你的手或脚 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。 插入之间的地面和地面终端适配器导致3P · 2P墙的MD,测量电流从插入被测ME设备的3P接地引脚泄漏。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 再次切换极性,测量功率,并具有重要价值的测量。 ?决定? 另一种形式,无论附加,0.5毫安大致正常 单一故障条件(一电源线开路)测量 ?连接? 删除连接2P 3P ·正常情况下,适配器,该适配器只有一个刀片极2P 3P连接· 2P剥离(漏电电流∵ 单一故障条件下,只有电力导线断开one 。) 壁挂2P插头插座条。 开关电源极性连接到墙上插座旋转2P半条。 交换式电源供应断开的导线连接到其他2P刀片更换地带极适配器3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 极性开关电源,开关电源的测量4供应断开的导线,最大测量值。 ?决定? 另一种形式连接,正常值小于1mA无关。 外部泄漏电流测量 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。3P · 2P适配器地线连接到地面的墙。 ME的设备金属部件测试(如果外部覆盖着绝缘设备,如铝箔贴为20cm × 10CM部分)之间插入墙壁和地面终端的医师,设备的测试ME外观测量泄漏电流。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

电子产品测试方法

1、测试方法基础 1.1、测试的目的目标确定 1.2、工程计算测试基础 1.3、设计审查基础 1.4、模拟实验 1.5、电子仿真 1.6、基于SFC分析的系统测试用例设计方法 2、设计输入条件调查表 2.1、环境条件应力组成 2.2、操作者应力 2.3、关联设备影响要素 3、失效机理和失效模式和解决方法 3.1、常见故障现象 3.2、故障现象对应的失效机理和失效模式 3.3、建立基于失效机理预防的一致性测试审查 3.3.1、设计输出文件审查 3.3.2、采购审查 3.3.3、入检库房现场审查 3.3.4、生产工艺审查 3.3.5、现场服务维修审查 3.4、常见问题解决方法 4、测试用例(事例) 4.1、环境条件测试项目及测试用例 温度与热、湿度、气压、电磁环境、环境条件变化率等测试项目及测试用例 4.2、安全性测试项目和测试方法 安规测试项目和测试用例 气、液、电混合布局安规测试用例 4.3、可靠性测试项目与测试用例设计 模拟用户现场测试、边缘极限条件组合测试、HALT综合测试、异常操作测试 过渡过程测试、突发干扰测试 4.4、部件与独立分系统测试项目及测试用例 机械、电气、嵌入式软件模块测试项目、测试仪器、测试用例 4.5、可生产性测试项目及测试用例 可生产性评估指标、可生产性测试项目、可生产性测试用例 4.6、随机文件审查 随机文件和标识审查 包装、运输、存贮项目及效果验证的测试用例 5、可维修性测试 5.1、可维修性的分级 5.2、可维修性级别对应的测试点 5.3、可维修性测试项目及测试用例 5.4、测试与评价方法 6、可使用性测试 6.1、易用性测试项目(人体工学、使用方便、易接受、舒适、高效,防错) 6.2、应用人员测试项目及测试用例(生理、心理、素质、紧急情况处理、输入输出条件组合) 7、嵌入式软件测试 7.1、静态测试方法 7.2、动态黑盒测试 7.3、动态白盒测试

电流检测电路

MAX471电流检查电路 摘要:MAX471/MAX472是MAXIM公司生产的精密高端电流检测放大器,利用该器件可以实现以地为参考的电流/电压的转换,本文介绍了用MAX471/472高端双向电流检测技术来实现对电源电流的监测和保护的方法,并给出了直流电源监测与保护的实现电路关键词:高端电流监测I/V转换MAX471 MAX472 1 电源电流检测 长期以来,电源电流的检测都是利用串联的方法来完成的。而对于磁电仪表,一般都必须外加分流电阻以实现对大电流的测量,在量程范围不统一时,分流电阻的选择也不标准,从而影响到测量精度。对于互逆电源,由于测量必须利用转换开并来实现,因而不能随机地跟踪测量和自动识别。 在教学和实验室使用的稳压电源中,为了能够进行电流/电压的适时测量,可用两种方法来实现。一种方法是彩双表法显示,此法虽好,但成本较高,同时体积也较大;另一种方法是采用V/I复用转换结构,这种方法成本低,体积小,因而为大多数电源所采用,但它在测量中需要对电压/电流进行转换显示,也不方便。那么,如何对电源进行自动监测呢?笔者

在使用中发现,稳压电源的电压在初始调节状态时,往往显示出空载,而在接入负载后,则需要适时显示负载电流,因此,利用负载电流作为监测信号来完成I/V的测量转换,可实现一种电量用两种方法表示,并可完成自动监测转换功能。 为了实现I/V的转换,笔者利用MAX271/MAX472集成电路优良的I/V转换特性、完善的高端双向电流灵敏放大器和内置检流电阻来实现对稳压电流电流的检测。 2 MAX471/MAX472的特点、功能 美国美信公司生产的精密高端电流检测放大器是一个系列化产品,有MAX471/MAX472、MAX4172/MAX4173等。它们均有一个电流输出端,可以用一个电阻来简单地实现以地为参考点的电流/电压的转换,并可工作在较宽的电压和较大的电流范围内。 MAX471/MAX472具有如下特点: ●具有完美的高端电流检测功能; ●内含精密的内部检测电阻(MAX471); ●在工作温度范围内,其精度为2%; ●具有双向检测指示,可监控充电和放电状态; ●内部检测电阻和检测能力为3A,并联使用时还可扩大检测电流范围; ●使用外部检测电阻可任意扩展检测电流范围(MAX472); ●最大电源电流为100μA; ●关闭方式时的电流仅为5μA; ●电压范围为3~36V; ●采用8脚DIP/SO/STO三种封装形式。 MAX471/MAX472的引脚排列如图1所示,图2所示为其内部功能框图。表1为 MAX471/MAX472的引脚功能说明。MAX471的电流增益比已预设为500μA/A,由于2kΩ的输出电阻(ROUT)可产生1V/A的转换,因此±3A时的满度值为3V.用不同的ROUT电阻可设置不同的满度电压。但对于MAX471,其输出电压不应大于VRS+-1.5V,对于MAX472,则不能大于VRG-1.5V。

漏电流安规测试学习心得

泄露电流安规测试 泄露电流测试目的 IEC60990《接触电流和保护导体电流的测量方法》中提到接触电流是“当人体或动物接触一个或多个装置或设备的可接触零部件时,流过他们身体的电流。”如图1所示,接触电流也称之为泄漏电流,注意不要与耐压测试中的漏电流混为一谈。 个人理解:耐压测试中漏电流是3.5kV输入电压下板卡的漏电流总和,主要是衡量板卡绝缘能力;接触电流是市电输入电压下由整机设备与人体到大地形成回路,流经人体的电流值,主要是衡量对人体的伤害能力。 图1 泄露电流示意图 泄露电流分类 1) 对地漏电流 对于I类设备的电子产品可触及的金属部件或是外壳应具备良好的接地线路,以作为基本绝缘意外的一种防电击保护措施。但是我们也经常遇到一些使用者随意将I类设备当成II 类设备使用,或是说其I类设备电源输入端直接将地端拔除,这样就存在一定的安全隐患。即便如此,作为生产商有义务去避免这种情况对使用者造成的危险,这就是为什么要测试接触漏电流的目的。 对地漏电流是指在正常条件下由电网部分穿过或跨过绝缘流入I类设备保护接地导线的电流,即经由电源线上的接地线流回大地。在接地线良好的情况下,该电流不会对人造成点击伤害。对地漏电流与接触漏电流无关,其量值和测量方法也不同,对地漏电流的测量通常是在设备接地系统有缺陷的情况下,从设备泄露到地的电流。因此I类设备应保证接地连续性良好,接地电阻小于规定值0.1Ω,为故障电流提供低阻返回路径,从而保证可触及件不带电,人碰触才是安全。对地漏电流主要应用在I类设备测试,目前电视主板没有要求。 2) 接触漏电流 接触漏电流是指在正常或单一故障条件下,当人体接触到不同配电系统的I类或II类设备时,可能流过人体的电流。接触漏电流产生的路径有两种:a、电网电源——绝缘隔离系统——人体——大地,该电流的大小由绝缘隔离系统决定。b、设备的某一部分流经人体

电流检测方法

电流检测方法 1 传统的电流检测方法 1. 1 利用功率管的RDS进行检测( RDS SENSIN G) 当功率管(MOSFET) 打开时,它工作在可变电阻区,可等效为一个小电阻。MOSFET 工作在可变电阻区时等效电阻为: 式中:μ为沟道载流子迁移率; COX 为单位面积的栅电容;V TH 为MOSFET 的开启电压。 如图1 所示,已知MOSFET 的等效电阻,可以通过检测MOSFET 漏源之间的电压来检测开关电流。 这种技术理论上很完美,它没有引入任何额外的功率损耗,不会影响芯片的效率,因而很实用。但是这种技术存在检测精度太低的致命缺点: (1) MOSFET 的RDS本身就是非线性的。 (2) 无论是芯片内部还是外部的MOSFET ,其RDS受μ, COX ,V TH影响很大。 (3) MOSFET 的RDS随温度呈指数规律变化(27~100 ℃变化量为35 %) 。 可看出,这种检测技术受工艺、温度的影响很大,其误差在- 50 %~ + 100 %。但是因为该电流检测电路简单,且没有任何额外的功耗,故可以用在对电流检测精度不高的情况下,如DC2DC 稳压器的过流保护。 图1 利用功率管的RDS进行电流检测

1. 2 使用检测场效应晶体管(SENSEFET) 这种电流检测技术在实际的工程应用中较为普遍。它的设计思想是: 如图2 在功率MOSFET两端并联一个电流检测FET ,检测FET 的有效宽度W 明显比功率MOSFET 要小很多。功率MOSFET 的有效宽度W 应是检测FET 的100 倍以上(假设两者的有效长度相等,下同) ,以此来保证检测FET 所带来的额外功率损耗尽可能的小。节点S 和M 的电流应该相等,以此来避免由于FET 沟道长度效应所引起的电流镜像不准确。 图2 使用场效应晶体管进行电流检测 在节点S 和M 电位相等的情况下,流过检测FET的电流IS 为功率MOSFET 电流IM 的1/ N ( N 为功率FET 和检测FET 的宽度之比) , IS 的值即可反映IM 的大小。 1. 3 检测场效应晶体管和检测电阻相结合 如图3 所示,这种检测技术是上一种的改进形式,只不过它的检测器件不是FET 而是小电阻。在这种检测电路中检测小电阻的阻值相对来说比检测FET 的RDS要精确很多,其检测精度也相对来说要高些,而且无需专门电路来保证功率FET 和检测FET 漏端的电压相等,降低了设计难度,但是其代价就是检测小电阻所带来的额外功率损耗比第一种检测技术的1/ N 2还要小( N 为功率FET 和检测FET 的宽度之比) 。此技术的缺点在于,由于M1 ,M3 的V DS不相等(考虑VDS对IDS的影响), IM 与IS 之比并不严格等于N ,但这个偏差相对来说是很小的,在工程中N 应尽可能的大, RSENSE应尽可能的小。在高效的、低压输出、大负载应用环境中,就可以采用这种检测技术。

漏电流测试操作规范

XASM/JS 1105 漏电流测试操作规范 编写:练伟平 审核:杨锡联 批准:王明莉 西安外科医学科技有限公司 2011.11

1.适用范围 漏电流是国家标准GB9706.1中规定的医用电气设备的安全要求之一。本文规定了对低温等离子体多功能手术系统漏电流测试的方法、要求、测试步骤及对所用仪器。 2.使用仪器 CS5505F医用设备漏电测试仪。 本仪器可满足国家标准GB9706.1中漏电流的测试要求。 3.测试仪技术指标 漏电流测试范围及精度:0 ~10mA(±2%+2个字) 带载能力:500VA 采用网络符合GB9706.1中的频率特性 4.测试依据: GB9706.1通用要求中的19条。 正常状态下的对地漏电流、外壳漏电流、患者漏电流。 单一故障状态下的对地漏电流、外壳漏电流、患者漏电流。 5.要求 表1漏电流允许值 6.测试方法及步骤 测试前必须确定本测试仪器是在检定的有效期内,并对其进行运行检查,确保测量的有效性。 6.1接线: a)测试仪器接保护地线. b)将被测设备的电源输入插头插入仪器的输出插座。 c)将仪器MDA线与被测设备的接地端子连接。 d)将仪器MDB线与被测设备的外壳连接。

e)打开电源,电流设置到1mA ,时间设置为10sec。 f)L、N转换设置到自动。 6.2对地漏电流测试:MDB按钮置于OFF,按下START键,输出电压调至242V, 此时显示的读数为对地漏电流值。直至设定的时间结 束。按下G键,重复测量为单一故障状态下的对地漏电 流。 6.3外壳漏电流测试:MDB按钮置于ON ,按下START键,输出电压调至242V, 此时显示的读数为外壳漏电流值。直至设定的时间结 束。按下G键,重复测量为单一故障状态下的外壳漏电 流。 6.4患者漏电流:将仪器MDB线与被测刀头的金属外壳连接,MDB按钮置于 ON ,按下START键,输出电压调至242V,此时显示的读 数为患者漏电流值。直至设定的时间结束。按下G键,重 复测量为单一故障状态下的患者漏电流。 6.4判定 机器漏电流允许值见表1. 当测量值超过设置值时, 仪器会自动报警。按下【复位】键可解除报警。 7. 注意事项:本仪器的电源输入插座应带有保护接地线。 本仪器的电源输入插座应保持相线和中线(L、N)的正确接法。 使用后填写仪器使用记录。

产品测试方案

{产品名称} 产品测试方案 Version: 编号:WD_PA_PTS_ 关于此文档

目录 第1章简介................................................................................ 1.1目的和范围.............................................................................. 1.2术语和缩略语............................................................................ 1.3参考资料................................................................................ 第2章测试范围............................................................................ 2.1测试背景................................................................................ 2.2重点测试的功能模块...................................................................... 2.3性能测试指标............................................................................ 第3章测试策略............................................................................ 3.1数据和数据库完整性测试.................................................................. 3.2接口测试................................................................................ 3.3集成测试................................................................................ 3.4功能测试................................................................................ 3.5用户界面测试............................................................................ 3.6性能测试................................................................................ 3.7负载测试................................................................................ 3.8强度测试................................................................................ 3.9容量测试................................................................................ 3.10安全性和访问控制测试.................................................................... 3.11故障转移和恢复测试...................................................................... 3.12配置测试................................................................................ 3.13安装测试................................................................................ 第4章测试工具............................................................................ 第5章测试环境............................................................................ 5.1日常测试环境............................................................................ 5.1.1测试机器配置.......................................................................... 5.1.2软件配置.............................................................................. 5.1.3网络拓扑图............................................................................ 5.2部署测试环境............................................................................ 第6章测试输出............................................................................ 6.1过程性输出.............................................................................. 6.2结果性输出.............................................................................. 第7章测试风险分析 ........................................................................ 审批意见..................................................................................... 审批意见.....................................................................................

超全的常用测试电流检查方法

指针式直流电流表 数值式万用表能测交直流 电流一电压转换,A/D转换,显示

钳流表非接触式,交直流精度较上面仪器要低些霍尔原理 电流探头配合示波器使用,用于观察电流波形交直流霍尔原理

-gkongi.Eom 常用的用于测量电流的仪表,显示出来的电流大小大多是有效值。 有效值也指均方根值,其物理意义:一个交流电流和一个直流电流作用在同一电阻上,若在相同的时间内它们所产生的热量相等,则交流电流的有效值I等于该直流电流值。假设 交流信号的周期为T: T 2 2MT 2 由P 0i (t)Rdt=l RT I 勺〒0i (t)dt 显然,直流电流的有效值和平均值是相等的。 平均值: 1 T I i(t)dt 显然正负对称的交流信号平均值为0 T o 另种定义: 1 T I |i(t) |dt 全波整流之后的平均值 波形系数K F定义:信号的有效值与平均值(全波整流后的值)之比,K F -。 I 显然,不同类型信号的波形系数不同。 波峰系数Kp定义:信号的峰值与有效值之比,Kp “ F表为一些常见信号的一些参数

知道了波形系数和波峰系数之后,对特定信号可以很容易的进行不同值之间的转换。实际上,直接获取信号的有些仪表就利用了这一转换原理进行有效值的测量。 一.直接测量法 在被测电电路中串入适当量程的电流表,让被测电流流过电流表,从表上直接读取被测 电流值。 中学实验室里常用的直流电流表是指针式磁电系电流表,它由灵敏电流计(俗称表头)改装而成。灵敏电流计主要由永磁铁、可动线圈、螺旋弹簧(游丝)和指针刻度盘等组成。如下图: 图2-1电流计原理图 当线圈通以电流时,线圈的两边受到安培力,设导线所处位置磁感应强度大小为B线 框长为L、宽为d、匝数为n,当线圈中通有电流时,则安培力的大小为:F=nBIL。安培 力对转轴产生的力矩:M仁Fd= nBILd。不论线圈转到什么位置,它的平面都跟磁感线平行, 安培力的力矩不变。在这一力矩的作用下,线圈就会顺时针转动。当线圈转过0角时(指针偏角也为0),两弹簧相应地会产生阻碍线圈转动的扭转力矩M2 (M2=k 0,胡克定律)。

电气设备泄漏电流测试方法及注意事项

电气设备泄漏电流测试方法及注意事项? ? ??测量泄漏电流的原理和测量绝缘电阻的原理本质上是完全相同的,而且能检出缺陷的 (1)试验电压高,并且可随意调节,容易使绝缘本身的弱点暴露出来。因为绝缘中的某些缺陷或弱点,只有在较高的电场强度下才能暴露出来。 (2)泄漏电流可由微安表随时监视,灵敏度高,测量重复性也较好。 (3)根据泄漏电流测量值可以换算出绝缘电阻值,而用兆欧表测出的绝缘电阻值则不可换算出泄漏电流值。 (4)可以用i=f(u)或i=f(t)的关系曲线并测量吸收比来判断绝缘缺陷。泄漏电流与加压时间的关系曲线如图1-1所示。在直流电压作用下,当绝缘受潮或有缺陷时,电流随加压时间下降得比较慢,最终达到的稳态值也较大,即绝缘电阻较小。 1. 测量原理 对于良好的绝缘,其泄漏电流与外加电压的关系曲线应为一直线。但实际上的泄漏电流与外加电压的关系曲线仅在一定的电压范围内才是近似直线,如图1-2中的OA段。若超过此范围后,离子活动加剧,此时电流的增加要比电压增加快得多,如AB段,到B点后,如果电压继续再增加,则电流将急剧增长,产生更多的损耗,以致绝缘被破坏,发生击穿。在预防性试验中,测量泄漏电流时所加的电压大都在A点以下。 将直流电压加到绝缘上时,其泄漏电流是不衰减的,在加压到一定时间后,微安表的读数就

等于泄漏电流值。绝缘良好时,泄漏电流和电压的关系几乎呈一直线,且上升较小;绝缘受潮时,泄漏电流则上升较大;当绝缘有贯通性缺陷时,泄漏电流将猛增,和电压的关系就不是直线了。通过泄漏电流和电压之间变化的关系曲线就可以对绝缘状态进行分析判断。2. 影响测量结果的主要因素 (1)高压连接导线 由于接往被测设备的高压导线是暴露在空气中的,当其表面场强高于约20kV/cm时,沿导线表面的空气发生电离,对地有一定的泄漏电流,这一部分电流会流过微安表,因而影响测量结果的准确度。 一般都把微安表固定在试验变压器的上端,这时就必须用屏蔽线作为引线,用金属外壳把微安表屏蔽起来。电晕虽然还照样发生,但只在屏蔽线的外层上产生电晕电流,而这一电流就不会流过微安表,防止了高压导线电晕放电对测量结果的影响。 根据电晕的原理,采取用粗而短的导线,并且增加导线对地距离,避免导线有毛刺等措施,可减小电晕对测量结果的影响。 (2)表面泄漏电流 (a)未屏蔽(b)屏蔽 反映绝缘内部情况的是体积泄露电流。但是在实际测量中,表面泄露电流往往大于体积泄漏电流,这给分析、判断被试设备的绝缘状态带来了困难,因而必须消除表面泄漏电流对真实测量结果的影响。 消除的办法是使被试设备表面干燥、清洁、且高压端导线与接地端要保持足够的距离;另一

接触电流测量中使用的模拟人体网络的校准

学术论文 Academic Papers 接触电流测量中使用的模拟人体网络的校准倪 华 金雷鸣/上海市质量监督检验技术研究院 该文通过介绍接触电流,引出相关标准中对应的测试接触电流所需的三种模拟 人体阻抗网络,对其计量属性进行分析,提出了几种校准方法,并对测得的数据进 行分析,选择最佳的校准方法以及所必需配置的仪器。 关键词 接触电流;模拟人体阻抗网络 ;校准 ;高频电流 0 引言 接触电流是漏电流的一种,漏电流是指设备在外界施加电压的作用下,相互绝缘的金属部件之间或带电部件与接地部件之间,通过其周围的介质或绝缘表面所形成的电流。泄漏电流可分为两种:1型电流,在正常条件或单一故障条件下,当人体接触连接到不同电源系统的接地或不接地的Ⅰ类或Ⅱ类设备时流过人体的电流;2型电流,在正常条件下流过Ⅰ类设备的保护导体的电流。将流过人体的电流(1型电流)称为接触电流。因此对接触电流的定义是:当人体或动物接触一个或多个装置的或设备的可触及零部件时,流过他们身体的电流。 接触电流对人体的效应主要有四种:感知、反应、摆脱和电灼伤。感知阈值是能引起人体任何感觉的最小电流值;反应阈值是通过人体能引起肌肉不自觉收缩的最小电流值;摆脱阈值是手握电极的人能自行摆脱电极的最大电流值;电灼伤是电流流过或穿过人体表皮而引起的皮肤或器官的灼伤的电流值。 四种人体效应中,感知、反应和摆脱与接触电流的峰值有关,并且随频率变化而不同;电灼伤与接触电流的有效值有关,而与频率无关。所以对于电击而言是测量电流的峰值,对电灼伤则是测量电流的有效值。1 相关标准中的模拟人体阻抗网络 接触电流简单地说是流过人体的电流,为能测量电子、电气产品所产生的接触电流,就需要使用模拟人体阻抗网络来模拟测量流过人体的电流。人体总阻抗由阻性分量和容性分量组成,经研究分析采用1750Ω±250Ω的电阻值模拟人体电阻,用0.105μF~0.160μF的电容量模拟人体电容,总的原则是模拟时间常数为225μs±15μs 为前提,这样使测得的电流既模拟了人体阻抗又具有可比性。 根据GB/T12113-2003/IEC 60990:1999 《接触电流和保护导体电流的测试方法》,规定了在各种情况下的三种模拟人体阻抗网络。 图1为模拟人体阻抗网络,在电灼伤测量中使用,图2为测量感知电流、反应电流时使用的 图1 电灼伤测量使用的模拟人体阻抗网络 R S:1 500 Ω;R B:500 Ω;C S:0.22 μ F 国内统一刊号CN31-1424/TB2010/4 总第218期

产品标准及试验方法

CPE质量检验 目录 一、原料检验 1. 生产工艺对原料质量要求 2. 原料采购标准 3 .原料标准和试验方法 4. 原料分析所需要仪器和试剂材料 5. 原料的分析 6. 原料的采样 7. 原料标准与青岛海晶分析项目对照 二、中间控制检验 1. CPE中间控制分析检验一览表 2. CPE中间控制分析所需要仪器和试剂材料 3. 液氯中间控制分析检验一览表 4. 中间控制项目的分析 三、产品检验 1. 产品标准和试验方法 2 .产品分析所需要仪器和试剂材料 3. 氯化聚乙烯的分析 4. 产品结果的判定 5. 产品标准与青岛海晶分析项目对照 6. CPE采样 7. CPE用包装袋采购及检验规定 四、分析专用仪器信息、使用操作法及安全注意事项 1. 分析专用仪器 2. 使用操作法及安全注意事项 3. 与分析专用仪器安装相关的公用工程 4. 分析专用仪器目前使用状况

六、需要青岛海晶提供的资料 1. 原料标准及试验方法 2. 产品标准及试验方法 3. 分析专用仪器档案资料(仪器说明书,采购资料,使用状况等) 4. 分析试剂和玻璃仪器采购厂家信息 CPE质量检验 一、原料检验 (一) 生产工艺对原料质量要求 1. 高密度聚乙烯(HDPE) LG公司HDPE 熔融指数MI5(CE6040)=0.45±0.05g/10min 190℃ MI5(CE2030)=1.5~2.0 g/10min 190℃ MI5(CE2080)=1.4±0.2 g/10min 190℃ 颗粒分布≥500μm ≤2% ≤63μm <5%(CE6040)<15%(CE2030) 125—315μm >60%(CE6040)>50%(CE2030/CE2080) 125—250μm >55%(CE6040)>45%(CE2030/CE2080)熔点(DSC)法133℃—139℃(CE6040) 131℃—137℃(CE2030 GE2080) 辽阳石油化纤公司化工三厂HDPE 熔融指数MI5(L0555P)=0.50±0.10g/10min 190℃ MI5(L2053P)=1.6—2.4 g/10min 190℃ 颗粒分布≥500μm <5% 过筛 <125μm ≤5% 熔点(DSC)法136℃—139℃(L0555P ) 131℃—136℃((L2053P) 三星TOTAL株式会社 N220P)=0.60±0.10g/10min 190℃ 熔融指数MI5( ( MI5((N230P)=2.0±0.20 g/10min 190℃

各种电流检测方式的比较

浅谈电流检测方式 一、检测电阻+运放 优势: 成本低、精度较高、体积小 劣势: 温漂较大,精密电阻的选择较难,无隔离效果。 分析: 这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。 检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。 二、电流互感器CT/电压互感器PT 在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。而CT和PT就是特殊的变压器。基本构造上,CT的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。 CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。它的工作原理和变压器相似。也称作TA 或LH(旧符号)工作特点和要求: 1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。 2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。 3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。

4、变换的准确性。 PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。电磁式电压互感器的工作原理和变压器相同。也称作TV或YH(旧符号)。 工作特点和要求: 1、一次绕组与高压电路并联。 2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。 3、二次绕组有一点直接接地。 4、变换的准确性 模块型霍尔电流传感器 模块型霍尔电流传感器分开环模式与闭环模式。 开环模式又称为直接测量式霍尔电流传感器,输入为电流,输出为电压。这种方式的优点是结构简单,测量结果的精度和线性度都较高。可测直流、交流和各种波形的电流。但它的测量范围、带宽等受到一定的限制。在这种应用中,霍尔器件是磁场检测器,它检测的是磁芯气隙中的磁感应强度。电流增大后,磁芯可能达到饱和;随着频率升高,磁芯中的涡流损耗、磁滞损耗等也会随之升高。这些都会对测量精度产生影响。当然,也可采取一些改进措施来降低这些影响,例如选择饱和磁感应强度高的磁芯材料;制成多层磁芯;采用多个霍尔元件来进行检测等等。 开环模式的结构原理见下图 根据检测量程的需求,一般分为以下两种绕线模式,左图为小量程的结构图,右图为大量程的结构图。 闭环模式又称为零磁通模式或磁平衡模式,其输入与输出端均为电流信号。原理见下图

7630 接触电流测试仪

7630 接触电流测试仪 操作规程 一、试验前注意事项 (1)、本仪器的输出范围(0-277V、0-40A)。 (2)、检查供电电源是否符合(本仪器使用115VAC/230VAC、50/60Hz 、2A单相电源,在开启仪器的电源开关前,请确认背板上的电压选择开关,是否放置在正确的位 置上)。 (3)、本仪器是否良好与大地接通(本仪器使用三芯电源线,当电源线插到带有地线的插座时,即完成机体接地)。 (4)、操作人员不可穿着金属装饰物的服装或佩戴金属饰物、操作前必须带好绝缘手套穿着绝缘鞋。 二、参数设置说明 (1)、根据需要,在背板上选择合适的仪器供电电压后,插好仪器供电电源,打开正面操作面板左下角的电源开关,进入开机画面后,按任意键进入下一画面(系统可能设置为Perform Tests或Main Menu 画面),以下步骤按初始设置为“Main Menu”界面进行说明。 (2)、“Main Menu”界面中的“Setup system”选项为系统参数设定界面,进入该界面,根据测试要求和习惯对系统参数进行测试。 (3)、在“Main Menu”界面中选择“Setup Tests”选项进入测试项目设定界面,在该界面内选择“Touch Current”进入接触电流测试设定模式。 (4)、在“Touch Current”该设定模式内,对各测试参数进行设定,使用操作面板上的“∧”“∨”键选择参数项目。每按一次进入下一个参数项目,设定好后按“Enter”进行确认。该模式下设定项目依次为: “Leakage-HI/Leakage-LO”泄漏电流上限/下限值,作为每一个测试内允许的待测物泄漏电流的限值,超过该范围,测试失败。 “Voltage-HI/Voltage-LO”电压上限/下限值, 作为每一个测试内允许的待测物工作最大、最小电压值,超过该设定范围,测试失败。 “Delay Time/Dwell Time”延迟时间、测试时间设置。 “Offset”泄漏电流补偿设定,可手动输入或按“Test”自动监测“offset”值。Offset 量测说明详见说明书“p38”。 “Neutral/Reverse/Ground”待测物工作电源状态设定。此三个功能键有八种组合状态,用来设定待测物的工作电源状态,根据测试需要对三个功能键进行设定,待测物的工作电源设定表详见说明书“P39”。 “Meas.Device”人体阻抗模型选择,根据安全规范选择相应的网络,其英文字代号与安规规范对照表见说明书“P42”。 “Probe”测试棒选择设置。该模式下“Ground To Line/ Ground To Neutral”为L/N任意一极对地间泄露电流。“Probe-HI To Line”为L极对表面间泄漏电流,“Probe-HI To Probe-LO ”为表面间泄漏电流。“AUTO”为“Ground To Line&Ground To Neutral”泄漏电流。 “More”选项实现“Touch Current”设置页面翻页功能。 “Leakage”泄漏电流模式设定,对泄露电流显示值进行“RMS/PEAK”值的选择。 “Continuous”电源持续输出模式设定。 “PLC Control”远程控制设定。”

电气设备泄漏电流测试方法及注意事项

电气设备泄漏电流测试方法及注意事项 测量泄漏电流的原理和测量绝缘电阻的原理本质上是完全相同的,而且能检出缺陷的 (1)试验电压高,并且可随意调节,容易使绝缘本身的弱点暴露出来。因为绝缘中的某些缺陷或弱点,只有在较高的电场强度下才能暴露出来。 (2)泄漏电流可由微安表随时监视,灵敏度高,测量重复性也较好。 (3)根据泄漏电流测量值可以换算出绝缘电阻值,而用兆欧表测出的绝缘电阻值则不可换算出泄漏电流值。 (4)可以用i=f(u)或i=f(t)的关系曲线并测量吸收比来判断绝缘缺陷。泄漏电流与加压时间的关系曲线如图1-1所示。在直流电压作用下,当绝缘受潮或有缺陷时,电流随加压时间下降得比较慢,最终达到的稳态值也较大,即绝缘电阻较小。 1. 测量原理 对于良好的绝缘,其泄漏电流与外加电压的关系曲线应为一直线。但实际上的泄漏电流与外加电压的关系曲线仅在一定的电压范围内才是近似直线,如图1-2中的OA段。若超过此范围后,离子活动加剧,此时电流的增加要比电压增加快得多,如AB段,到B点后,如果电压继续再增加,则电流将急剧增长,产生更多的损耗,以致绝缘被破坏,发生击穿。在预防性试验中,测量泄漏电流时所加的电压大都在A点以下。 将直流电压加到绝缘上时,其泄漏电流是不衰减的,在加压到一定时间后,微安表的读数就等于泄漏电流值。绝缘良好时,泄漏电流和电压的关系几乎呈一直线,且上升较小;绝缘受潮时,泄漏电流则上升较大;当绝缘有贯通性缺陷时,泄漏电流将猛增,和电压的关系就不

是直线了。通过泄漏电流和电压之间变化的关系曲线就可以对绝缘状态进行分析判断。2. 影响测量结果的主要因素 (1)高压连接导线 由于接往被测设备的高压导线是暴露在空气中的,当其表面场强高于约20kV/cm时,沿导线表面的空气发生电离,对地有一定的泄漏电流,这一部分电流会流过微安表,因而影响测量结果的准确度。 一般都把微安表固定在试验变压器的上端,这时就必须用屏蔽线作为引线,用金属外壳把微安表屏蔽起来。电晕虽然还照样发生,但只在屏蔽线的外层上产生电晕电流,而这一电流就不会流过微安表,防止了高压导线电晕放电对测量结果的影响。 根据电晕的原理,采取用粗而短的导线,并且增加导线对地距离,避免导线有毛刺等措施,可减小电晕对测量结果的影响。 (2)表面泄漏电流 (a)未屏蔽(b)屏蔽 反映绝缘内部情况的是体积泄露电流。但是在实际测量中,表面泄露电流往往大于体积泄漏电流,这给分析、判断被试设备的绝缘状态带来了困难,因而必须消除表面泄漏电流对真实测量结果的影响。 消除的办法是使被试设备表面干燥、清洁、且高压端导线与接地端要保持足够的距离;另一种是采用屏蔽环将表面泄漏电流直接短接,使之不流过微安表。 (3)温度 温度对泄漏电流测量结果有显著影响。温度升高,泄漏电流增大。 测量最好在被试设备温度为30~80℃时进行。因为在这样的温度范围内,泄漏电流的变化

产品保质期测试方法及操作规程修订稿

产品保质期测试方法及 操作规程 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

产品保质期测试验证操作指引 1目的 规范我司新产品保质期的确定,保证食品于货架期内的有效食用质素及卫生安全. 2范围 国家法规规定除外的我司所有新产品的保质期制定 3职责 3.1生产部–严格按照产品工艺制作并提供新产品保质期测试所需样本. 3.2品管部 3.2.1负责新产品测式样本的抽取及标识,同时按保质期测试之相应贮存条件放 到保质期试验箱进行试验并作好记录. 3.2.2 负责新产品测试样品的微生物及理化相关项目检测并作好记录. 3.2.3 负责新产品测试样品的定期感官判定并作好记录. 3.2.4 根据新产品项目检测及感官判定结果制定其相应保质期限. 4工作程序 4.1微生物及理化相关检测 4.1.1检测项目: 细菌总数,大肠菌群,金葡,沙门,志贺氏,油脂产品的酸价,过氧化 值,PH,点导率等 4.1.2测试方法: 食品保质期加速测试方法(ASLT) 4.1.3. ASLT测试原理: 4.1.3.1利用食品保质期试验箱模拟使用环境来量化外来因素如温度、湿度、 气压和光照等对变质反应的影响力。通过控制食品处于一个或多个外在因素高于正常水平的环境中,变质的速度将加快或加速,在短于正常时间内就可判定产品是否变质。因为影响变质的外在因素是可以量化的,而加速的程度也可以计算得到,因此可以推算到产品在正常储存条件下实际的储存期。 4.1.3.2在给定的条件下,产品质量的衰退与时间成反比例。温差为10°C的两 个任意温度下的储存期的比率Q10=温度为T时的储存期 / 温度为(T+10°C)时的储存期,对储存期有极大的影响,通常来说,罐头食品的Q10为~4,脱水产品为~10;冷冻产品为3~40。 4.1.4. ASLT测试步骤: 准备好所需要的样品数量,设置好试验箱环境条件。把样品放入试验箱,每5-7天进行观察,检验,比较。 4.1.4.1 选择关键的变质反应,哪些会引致产品品质衰退,而这些品质衰退是 消费者所不能够接受的,并决定哪些测试必须在产品试验过程中进行(感官上或仪器上的,微生物及理化具体检测项目的选择);

相关主题
文本预览
相关文档 最新文档