当前位置:文档之家› (no.1)2013年高中数学教学论文 在解析几何中求参数范围的9种方法

(no.1)2013年高中数学教学论文 在解析几何中求参数范围的9种方法

(no.1)2013年高中数学教学论文 在解析几何中求参数范围的9种方法
(no.1)2013年高中数学教学论文 在解析几何中求参数范围的9种方法

(no.1)2013年高中数学教学论文在解析几何中求参数范围的9种方法

本文为自本人珍藏 版权所有 仅供参考

从高考解几题谈求参数取值范围的九个背景

解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。由于不少考生在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,本文通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对考生的备考有所帮助。

背景之一:题目所给的条件

利用题设条件能沟通所求参数与曲线上点的坐标或曲线的特征参数之间的联系,建立不等式或不等式组求解。这是求范围问题最显然的一个背景。

例1:椭圆),0(12

2

2

2

为半焦距c b c a b

y a

x >>>=+的焦点为F 1、F 2,点P(x , y )为其上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是___。

解:设P(x 1, y ),∠F 1PF 2是钝角?cos∠F 1PF 2

=

|

|||2||||||212

2

12221PF PF F F PF PF ?-+

222212221)(||||||0y c x F F PF PF ++?<+?<2)(c x -+2

2224y x c y +?<+22

22222222

2

)(x a

b a

c x a a b x c -?<-+?<)(2

222222b c c a x b c -

22

22b c c

a x

b

c c a -<<--

?。

说明:利用∠F 1PF 2为钝角,得到一个不等式是解题的关键。把本题特殊化就可以得到2000

年全国高考题理科第14题:

椭圆

14

92

2=+y x 的焦点为F 1、F 2,点P 为其上的

动点,当∠F 1PF 2为钝角时,点P 横坐标的取值范围是__________。

(答案为 x 553(-∈,)553)

例2:(2000年全国高考题理

科第22题)如图,已知梯形

ABCD 中,AB =2CD ,点E 分有向线段AC 所成的比为λ,双曲线过点C 、D 、E 三点,且以A 、B 为焦

点。当4

3

32≤≤λ时,求双曲线离心率e 的取值范围。 解:如图,以线段AB 的垂直平分线为 y 轴。因为双曲线经过点C 、D ,且与A 、B 为焦点,由双曲线的对称性知C 、D 关y 轴对称,依题意,记

A )0,(c -,C(2c

,h),E(x 0,y 0), 其中c =AB 21为双曲线的半焦距,h 是梯形的高。

由定比分点坐标公式得:x 0=

λ

λ++-12c

c =)

1(2)2(+-λλc

,y 0=

λ

λ+1h 。

设双曲线方程为2

2

a x -2

2b y =1,则离心率e =a c

由点C 、E 在双曲线上,将点C 、E 的坐标和

e =a c 代入双曲线方程得

1422

2=-b

h e ①

1)1()12(42

2

222=+-+-b h e λλλλ ②

由①式得

142

2

2-=e b h ③

将③式代入②式,整理得:2

3

121222+-

=+-=e e e λ

∴1074

3

231322

≤≤?≤+-

≤e e

说明:建立λ与e 的函数关系式,再利用已知λ的范围,即可求得e 的范围。

背景之二:曲线自身的范围

圆、椭圆、双曲线及抛物线都有自身的范围,如椭圆

a b

y a x (122

22=+>b>0)

中,x ,10],,[],,[<<-∈-∈e b b y a a ,利用这些范围是确定

参数范围的途径之一。

例3:(2002年全国高考题)设点P 到点M(-1,0)、N(1,0)距离之差为2m ,到x 轴、y 轴距离之比为2,求m 的取值范围。

解:设点P 的坐标为(x ,y),由题设得2|

||

|=x y ,即y =0,2≠±x x ①

由于x 0≠,所以点P(x ,y)、M(-1,0)、N(1,0)三点不共线,得

1||02||||2||||0<

因此,点P 在以M 、N 为焦点,实轴长为2m

的双曲线上,故

2

2

221m y m x --=1 ②

将①式代入②,解得2

222

51)

1(m m m x --=

由2

2

m x

≥且0

12

>-m

,得<

>-m m

5

5

0512

55,又m 0≠

∴ )0,5

5

(-

∈m (0,

)5

5

说明:P 到x 轴、y 轴距离之比为2,所以P

不能在x 轴上,由此得到m 0≠,这一隐含条件容易忽视。

例4:(2004年全国卷Ⅲ理科21题 文科22题)设椭圆

11

22

=++y m x 的

两个焦点是F 1(-c, 0)与F 2(c, 0) (c > 0),且椭圆上存在一点P ,使得直线PF 1与PF 2垂直。

(1)求实数m 的取值范围;

(2)设l 相应于焦点F 2的准线,直线PF 2与l 相交于Q ,若32|

|2

-=PF QF ,求直线PF 2的方程。 解:(1)依题设有m +1>1,即m > 0,c =m ,

设点P 的坐标为(x 0, y 0),由PF 1

⊥PF 2 ,得

m y x c

x y c x y =+?-=+?-202

000001 ① 将①与

11

2

020=++y m x 联立,解得x

m

y m m 1

,12020

=-=

由此得

???

?

??

??

?>≤≤+≤-≤011011

02m m m m m 1≥?m

故m 1[∈, +∞)

(2)答案为y =±(23-) (x-2) ( 解答略) 背景之三:二次方程有解的条件

直线和圆锥曲线的关系,是解析几何中最常见的关系,它们联立消元后所得的判别式非负是直线和圆锥曲线有公共点的充要条件;若有限制条件,则还应考虑根的分布情况等,这是确定参数取值范围的一个常见背景。

例5:(全国高考题)给定双曲线x 2

-2

2y = 1,过点B(1,1)能否作直线 l ,使l 与所给双曲线交于P 1及P 2,且点B 是线段P 1P 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由。

解:画出图像知,当直线斜率不存在时,满足题设条件的l 不存在。

当直线l 斜率存在时,设为k ,则l 方程为y = k (x -1)+1,联立

1

2

2

2

=-y x ,得

32)22()2(2222=-+--+-k k x k k x k 。

,222

22,12),,(),,(2221222111=?=--=+k k k

k x x y x P y x P 即则此时

02,0)32)(2(4)22(22222>?≠-<-+----=?且不满足k k k k k k 。

故满足已知条件的直线l 不存在。 例6:(2004年湖北省高考题理科20题 文科20题)直线1:+=kx y l 与双曲线12:2

2

=-y x C 的右支交于不同的两点A 、B 。

(1)求实数k 的取值范围;

(2)是否存在实数k ,使得以线段AB 为直径的圆经过曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由。

解:(1)将直线1+=kx y 代入双曲线方程,并整

理得022)2(2

2

=++-kx x k

依题意,直线l 与双曲线C 的右支交于不同两点,故

?????

????>->-->--=?≠-02

2

220)2(8)2(022

2222k k k k k k 22-<<-?k

(2)答案是存在566+-=k 满足题设。 说明:问题(1)涉及到直线与双曲线右支相

交的问题,转化为方程有不等

的两正根,由方程根的分布的充要条件建立不等式组即可。

背景之四:已知变量的范围

利用题中给出的某个已知变量的范围,或由已知条件求出某个变量的范围,然后找出这个变量与欲求的参变量之间的关系,进而求解。

1、双参数中知道其中一个参数的范围;

例7:(2004年浙江省高考题理科21题 文科22题)已知双曲线的中心在原点,右顶点为A(1, 0),点P 、Q 在双曲线的右支上,点M(m, 0)到直线AP 的距离为1。

(1)若直线AP 的斜率为k ,且]

3,

33[||∈k ,求实

数m 的取值范围;

(2)当12+=m 时,APQ ?的内心恰好是点M ,求此双曲线的方程

解:(1)由条件知直线AP 的方程为0),1(=---=k y kx x k y 即,因为点 M 到直线AP 的距离为1,所以

2

22

1

1||1|1|11

||k k k m k k mk +=+=

-?=+-。

∵]

3,

33[||∈k

∴33211313322|1|332-≤≤-≤≤+?≤-≤m m m 或 故]3,3321[]3321,1[+--∈ m

(2)答案是1)122(2

2

=--y x (解答略)

例8:(2004年全国高考卷Ⅱ理科21题)给定抛物线x y C 4:2

=,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。

(1)设l 的斜率为1,求OB OA 与的夹角的大小; (2)设]9,4[,∈=λλ若,求l 在y 轴上截距m 的变化范围。

解:(1)答案为4114

3arccos -π(解答略)。

(2)F(1, 0), 设A(x 1, y 1), B(x 2, y 2), 由题设AF FB λ=, 得

),1(),1(1

1

2

2

y x y x --=-λ,

即?

?

?-=-=-2

1

1(11

2

12y y

x x λλ 由得②得21

2

22

y y λ=

∵2

22

1

21

4,4x y x y == ∴1

2

2

x x λ= ③

联立①、③解得λ=2

x ,依题意有0>λ

∴)0,1(),2,(),2,(F B B 又或λλλλ-得直线l 方程为: )1(2)1(),1(2)1(--=--=-x y x y λλλλ或

当]9,4[∈λ时,方程l 在y 轴上的截距

1

212--=-=

λλ

λλm m 或。

由1

21

2

)

1)(1(2)1(21

2-+

+=

-++-=-λλλλλλλ

,可知在]9,4[上是递

减的。

∵]9,4[∈λ

∴4

3

343443-≤≤-≤≤m m 或。 故直线l 在y 轴上截距m 的变化范围是

3

4

,43[]43,34[ --。

说明:例7和例8都是已知一个变量的范围求另一变量的范围,可先利用题设条件建立变量

的关系式,将所求变量和另一已知变量分离,得到函数关系,再由已知变量的范围求出函数的值域,即为所求变量的范围。这类背景也可归结为背景一。

2、双参数中的范围均未知 例9:(2004年全国卷Ⅰ文2 理21)设双曲线)0(1:2

2

2

>=-a y a

x

C 与直线1:=+y x l 相交于不同的点A 、B 。

(1)求双曲线C 的离心率e 的取值范围;

(2)设直线l 与y 轴的交点为P ,且PB PA 125

=,

求a 的值。

解:(1)由C 与l 相交于两个不同的点,故知方程

??

???=+=-112

22y x y a

x 有两个不同的实数解,消去y 并整理

得:0

22)1(2222

=-+-a x a x a

1200

)2)(1(4)2(0

12

2222

≠<---=?≠-a a a a a a 且

∴双曲线的离心率11

12

2+=+=a

a a e

∵1

20≠<

∴22

6

≠>

e e 且

故)

,2()2,

26(∞+∈ e

(2)略

说明:先求出a 的范围,再建立e 与a 的函

数关系式,即可求出e 的范围。

例10:直线1+=kx y 与双曲线12

2

=-y x 的左支交于A 、B 两点,直线l 经过点)0,2(-和AB 的中点,求直线l 在y 轴上的截距b 的取值范围。

解:由方程组

???=-+=1

1

2

2y x kx y ,消去y 得:

22)1(22

=---kx x k

设0

,0),,(),,(21

2

2

1

1

<

y x B y x A ,AB 中点),(0

y x M ,则有:

210120120)1(842

212

2122<

?

?

?

?

???

>--=<-=+>-+=?k k x x k k x x k k

∵)11

,1(,111,122

22002210

k

k k M k kx y k k x x x

---=+=-=+=

设直线l 的方程为

2

00221

20,2),(k k x y m m b b x m y -+=

+-=

=+=而则,则有

8

17)41(222122+--=++-=k k k m ,它在)

2,1(上单调递减。

11

22<<

-m

∴),2()22,(2∞+---∞∈= m b

说明:这类问题可先求出一个变量的范围,另一个变量范围就相应可求出来了。

背景之五:点在圆锥曲线内域或外域的充要条件

如果我们规定圆锥曲线包含焦点的区域称为圆锥曲线的内域,同时坐标平面被圆锥曲线所划

分的另一部分称为圆锥曲线的外域,则点),(0

y x P ,在

椭圆

12

2

22=+b y a x 内(外)域的充要条件是

)1(12

2

220><+b y a x ;

点),(0

y x P 在双曲线

122

22=-b

y a x 内(外)域的充要条件是

)1(12

20

220<>-b y a x ;点),(00

y x P 在抛物线)

0(22

>=p px y

的内(外)

域的充要条件是)

2(202

002

px y px y

><。以这些充要条件

为背景的范围问题利用上述不等式可获解。

例11:(1986年全国高考题)已知椭圆

1

3

4:2

2=+y x C ,试确定m 的取

值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点P ,Q 关于该直线对称。

解:设PQ y x Q y x P ),,(),,(2

2

1

1

中点),(0

y x M ,则:

13

42

121=+y x ① 13

422

22=+y x ②

①-②得,)

(30))((4))((32121212121

x x y y y y x x x x

+?=+-++-

=0000212

1

2

1

32

)41(423)()(4x y y

x y y

x x y y =??--=?

?+--- ③

又m x y +=0

4 ④

由③、④解得m y m x 3,0

-=-= 又点),(0

y x M 在椭圆内部

13

420

20<+y x ,即

13

)3(4)(2

2<-+-m m ?1313213132<<-m 。

背景之六:三角形两边之和大于第三边 椭圆或双曲线上一点与它们的两个焦点的构成一个三角形,具有这一背景的问题往往可以利用三角形两边之和大于第三边产生的不等式来确定参数的范围。

例12:已知双曲线

),(122

22+∈=-R b a b

y a x 的左、右两

个焦点分别为F 1、

F 2,左准线为l ,在双曲线的左支上存在点P ,使|PF 1|是P 到l 的距离d 与|PF 2|的等比中项,求离心率e 的取值范围。

解:由|PF 1|2 = d |PF 2|?==

?e PF PF d

PF

|||

||

|121

???==2

||1

||||112ed

PF PF e PF 又|PF 2| = 2a +|PF 1| ③

由①、③得|PF 1|,12-=e a |PF 2|1

2-=

e ea

在△PF 1F 2中,|PF 1|+|PF 2|≥|F 1F 2|,即

)1(11

21212>≥-+?≥-+-e e e e c e ea e a 1

21+≤

说明:因为P 点还可能在双曲线顶点上,所以|PF 1|+|PF 2|≥|F 1F 2|。

背景之七:参数的几何意义

解析几何是一门数与形相结合的学科,其中许多的变量都有十分明显的几何意义,以此为背景的范围问题只要抓住了参数的几何意义都可以达到目的。

例13:椭圆C 的上准线是抛物线y

x

42

-=的准

线,且C 经过这条抛物

线的焦点,椭圆的离心率21=e ,求椭圆的长半轴a 的范围。

解:设椭圆的上焦点为F(x , y ),由定义知,

2

1

2)1(2

|

|22=

=++=e y x FA

1

)1(22=++?y x 。故椭圆上焦点F 的轨变是以A(0, -

1)为圆心,半径为1的圆。

由此易知焦点F 到准线y = 1的距离p 的范围是31≤≤p 。

a

ae ae a c c a p 2

322=-=-=

∴23

2

3231≤≤?≤≤a a 背景之八:平均值不等式

解析几何的本质是用代数方法研究图形的几何性质。利用代数基本不等式是求范围的又一方法。

例14:已知直线l 过定点A(3, 0),倾斜角为α,试求α的范围,使得曲线2

:x y C =的所有弦都不能被直线l 垂直平分。

解:当直线的斜率为0或不存在时,符合题意。

设直线l 的方程为)3(-=x k y ,被它垂直平分的

弦的两端点为

)

,(211t t B ,

)

,(2

22t t C ,则BC 中点

P

2

1212

22121),()2

,2(t t k t t t t t t BC +=≠++。

当线段BC 被l 垂直平分时,有

21212

221

21)32(21t t t t k t t k t t ??????

???-+=+-=+

)161

(212++=

k k 2141)2(2221-

t t 。

∴符合题意的直线斜率21

tan ,21-≥-≥α即k 。 ∴),2

1arctan []2,0[πππα-∈ 。 说明:本题的求解利用补集法,即先求弦能被l 垂直平分的直线l 的斜率,取其补集就是满足题设的斜率,再利用斜率和倾斜角的关系,就可以求出α的范围。

背景之九:目标函数的值域

要确定变量k 的范围,可先建立以k 为函数的目标函数)(t f k =,从而使这种具有函数背景的范围问题迎刃而解。

例15:),(y x P 是椭圆

)0(122

22>>=+b a b

y a x 上任一点,

F 1、F 2是两个焦点,求|PF 1|·|PF 2|的取值范围。

解:∵|PF 1|+|PF 2| = 2a

∴|PF 1|·|PF 2| = |PF 1|·(2a -|PF 1|) =-

(|PF 1|-a )2+a 2

又∵c a PF c a +≤≤-||1

∴当c a PF ±=||1

时, 有最小值b 2

; 当a PF =||1

时, |PF 1|·|PF 2|有最大值a 2。

故|PF 1|·|PF 2|的取值范围是],[2

2

a b 。 例16:(2004年福建省高考题理科22题)如图,P 是抛物线2

2

1:x y C =上一点,直线l 过点P 且与抛物线C 交于另一点Q 。

(1)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨变方程;

(2)若直线l 不过原点且x 轴交于点S ,与y

轴交于点T ,试求|

|||||||SQ ST SP ST +的取值范围。 解:(1)设),(),,(),,(0

02211y x M y x Q y x P ,依题意有0,0,02

11>>≠y y x 。

由x

y x

y ='=得,2

12

∴过点P 的切线的斜率为1

x

∵01

=x 不合题意 ∴01

≠x

∴直线l 的斜率1

1x k -=

∴直线l 的方程为)(1

2

111

21

x x x x y --

=-

联立直线l 和抛物线方程,消去y ,得

022

11

2=--+

x x x x

∵M 是PQ 的中点

???

?

??

?--=-=+=)(121121012101210

x x x x y x x x x

消去x 1,得)0(121

02

200

≠++

=x x x y

∴PQ 中点M 的轨迹方程为)0(121

2

2

≠++

=x x x

y 。

(2)设直线l 的方程为b kx y +=,依题意),0(,0,0b T b k 则≠≠,分别过P 、Q 作x P P ⊥'轴,y Q Q ⊥'轴,垂足分别为P '、Q ',则

|

||

|||||||||||||||||||||21y b y b Q Q OT P P OT SQ ST SP ST +

='+'=+

0)(2212222=++-????

?

?+==b y b k y b

kx y x y ①

∴2

2

1221),(2b y y b k y y

=+=+

方法1:∴21

||21||2)1

1(||||||||||2

212

1

==≥+=+b b y y b y

y b SQ ST SP ST

∵y 1、y 2可取一切不相等的正数

∴|

||

|||||SQ ST SP ST +的取值范围是),2(∞+ 方法2:∴2

22121)

(2||||||||||||b b k b y y y y b SQ ST SP ST +=+=+

当0>b 时,222)(2)(2||||||||2

222>+=+=+=+b k b b k b b k b SQ ST SP ST

当0

b b k b

b k b SQ ST SP ST -+=+-=+)

(2)(2||||||||22

2

又由方程①有两个相异实根,得

)2(44)(422222>+=-+=?b k k b b k ,于是0

22

>+b k

,即b

k

22

->

所以2)

2(2||||||||=-+->+b

b b SQ ST SP ST

∵当0>b 时,

k

k 2

2可取一切正数

∴|

|||||||SQ ST SP ST +的取值范围是),2(∞+ 说明:利用图形找到|

||

|||||SQ ST SP ST +与P 、Q 两点纵坐标之间的关系,是快速求解第(2)个问题的关键。

高中数学教育教学论文范文2篇

高中数学教育教学论文范文2篇 高中数学教育教学论文范文一:高中数学教育与学生人文素养的培养 一、引言 数学是高中教育的重要内容,不仅是对学生逻辑、空间等思维的训练,而且使学生在以后的学习和工作中更具有条理和规律,但是很多学校在开展数学教学的过程中往往忽略了人文素养的培养,认为这是文科的主要任务,在高中数学中怎能体现出人文精神呢? 二、存在的问题 (一)高考的压力是数学教育改革的桎梏 在国内,我们存在着高考制度,我们需要通过高考取得更好教育资源的资格,因此,在高中阶段,尤其是高三的时候,很多学生的学习压力都很大,主要原因就是要应付高考.高中的数学是高考的重要组成部分,因此,数学教育很多时候都是被高考牵着鼻子走,很多地方都是针对高考中数学试题的特点和问题,有针对性地进行教学,对于高考不考查的内容基本上没有涉及,因此对于人文素养方面存在严重的缺失.对于学生和家长而言,考上一个名牌大学就意味着自己向着社会的上层迈进了一大步,很多同龄人就被自己甩在身后了,因此高考对于学生的影响有着十分特殊的意义.

(二)一些教师在人文教育方面教学方法和手段不多 新出版的高中数学标准提出了更加全面的教学内容,其中人文教育也成为了现在高中数学的一部分,很多教师在教学过程中需要不断进行知识和能力的提升,才能有效适应这种变化,因为需要讲授的知识更多了,涉及面也更广了,然而现在的高中数学教师对于人文精神这种文科内容涉及的都不是很多,在教学过程中需要不断拓展这个方面知识结构,同时在这个方面的教学手段和方法也需要不断加大观摩和学习的时间,增强自己在这个方面的认识.只有教师在数学与人文教育结合方面的知识能力有所提高,在教学过程中的手段和方法不断提升,数学与人文素养的结合才能更加紧密. (三)高中数学教材中的人文知识还是偏少 将人教版高中数学教材通读一遍之后,发现教材中关于数学历史、人物等方面的知识还是偏少,2001年出版的高中数学教材第一册只有两个内容.而且很多教师和学生反映教材中的人文知识可能过于专业化,教师讲起来没有十分枯燥,学生听起来没有什么趣味性,在教学过程中需要不断贯穿十分专业的知识,一方面是教材中缺少相应的人文知识点,另一方面教师在讲授的过程中也不是很重视,造成了现在这种数学人文知识的缺乏. 三、建议 (一)教师人文知识的提升 教师的水平高低是现在教学效果是否良好的主要因素,有了一桶水,才能讲出一碗水的东西,要想加强高中数学教学中的人文教育,需要教师不断提高自己的人文素养,有效拓展自己的人

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

高中数学教学论文

高中数学教学论文:高中学生数学思维障碍的成因及突破 论文摘要:如何减轻学生学习数学的负担?如何提高我们高中数学教学的实效性?本文通过对高中学生数学思维障碍的成因及突破方法的分析,以起到抛砖引玉的作用。 关键词:数学思维、数学思维障碍 思维是人脑对客观现实的概括和间接的反映,反映的是事物的本质及内部的规律性。所谓高中学生数学思维,是指学生在对高中数学感性认识的基础上,运用比较、分析、综合、归纳、演绎等思维的基本方法,理解并掌握高中数学内容而且能对具体的数学问题进行推论与判断,从而获得对高中数学知识本质和规律的认识能力。高中数学的数学思维虽然并非总等于解题,但我们可以这样讲,高中学生的数学思维的形成是建立在对高中数学基本概念、定理、公式理解的基础上的;发展高中学生数学思维最有效的方法是通过解决问题来实现的。 然而,在学习高中数学过程中,我们经常听到学生反映上课听老师讲课,听得很"明白",但到自己解题时,总感到困难重重,无从入手;有时,在课堂上待我们把某一问题分析完时,常常看到学生拍脑袋:"唉,我怎么会想不到这样做呢?"事实上,有不少问题的解答,同学发生困难,并不是因为这些问题的解答太难以致学生无法解决,而是其思维形式或结果与具体问题的解决存在着差异,也就是说,这时候,学生的数学思维存在着障碍。这种思维障碍,有的是来自于我们教学中的疏漏,而更多的则来自于学生自身,来自于学生中存在的非科学的知识结构和思维模式。因此,研究高中学生的数学思维障碍对于增强高中学生数学教学的针对性和实效性有十分重要的意义。 一、高中学生数学思维障碍的形成原因

根据布鲁纳的认识发展理论,学习本身是一种认识过程,在这个课程中,个体的学习总是要通过已知的内部认知结构,对"从外到内"的输入信息进行整理加工,以一种易于掌握的形式加以储存,也就是说学生能从原有的知识结构中提取最有效的旧知识来吸纳新知识,即找到新旧知识的"媒介点",这样,新旧知识在学生的头脑中发生积极的相互作用和联系,导致原有知识结构的不断分化和重新组合,使学生获得新知识。但是这个过程并非总是一次性成功的。一方面,如果在教学过程中,教师不顾学生的实际情况(即基础)或不能觉察到学生的思维困难之处,而是任由教师按自己的思路或知识逻辑进行灌输式教学,则到学生自己去解决问题时往往会感到无所适从;另一方面,当新的知识与学生原有的知识结构不相符时或者新旧知识中间缺乏必要的"媒介点"时,这些新知识就会被排斥或经"校正"后吸收。 因此,如果教师的教学脱离学生的实际;如果学生在学习高中数学过程中,其新旧数学知识不能顺利"交接",那么这时就势必会造成学生对所学知识认知上的不足、理解上的偏颇,从而在解决具体问题时就会产生思维障碍,影响学生解题能力的提高。 二、高中数学思维障碍的具体表现 由于高中数学思维障碍产生的原因不尽相同,作为主体的学生的思维习惯、方法也都有所区别,所以,高中数学思维障碍的表现各异,具体的可以概括为: 1.数学思维的肤浅性:由于学生在学习数学的过程中,对一些数学概念或数学原理的发生、发展过程没有深刻的去理解,一般的学生仅仅停留在表象的概括水平上,不能脱离具体表象而形成抽象的概念,自然也无法摆脱局部事实的片面性而把握事物的本质。由此而产生的后果:

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高中数学教学论文 高中数学立体几何学习的几点建议

高中数学立体几何学习的几点建议 一逐渐提高逻辑论证能力 立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确 无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充 分条件,向已知靠拢,然后用综合法(“推出法”)形式写出 二立足课本,夯实基础 直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线 与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处: (1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。 (2)培养空间想象力。 (3)得出一些解题方面的启示。 在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。 三“转化”思想的应用 我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如: 1. 两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影 所成的角。 2. 异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

高三数学《平面解析几何》

高三数学《平面解析几何》 单元练习七 (考试时间120分 分值160分) 一、填空题(本大题共14小题,每小题5分,共70分.请把正确答案填在题中横线上) 1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是______. 2.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则AB =________. 3.已知双曲线x 24-y 2 12=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则 p 的值为________. 4.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2 b 的最小值为______. 5.若双曲线x 2a 2-y 2 =1的一个焦点为(2,0),则它的离心率为________. 6.已知曲线上的每一点到点A (0,2)的距离减去它到x 轴的距离的差都是2,则曲线的方程为________. 7.(2010·淮安质检)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是________. 8.已知点A 、B 是双曲线 x 2- y 2 2 =1上的两点,O 为坐OA 标原点,且满足OA · OB =0,则点O 到直线AB 的距离等于________.

9.(2009·全国Ⅱ改编)双曲线x 26-y 2 3=1的渐近线与圆(x -3)2+y 2=r 2(r >0) 相切,则r =________. 10.(2009·四川高考改编)已知双曲线x 22-y 2 b 2=1(b >0)的左、右焦点分别为 F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则12PF PF ?=________. 11.(2009·天津高考改编)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,BF =2,则△BCF 与△ACF 的面积之比S △BCF S △ACF =________. 12.(2010·南京模拟)已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则 (x 0-a )2+(y 0-b )2的最小值为________. 13.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2 -4y 2 =3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为 ___________________________________________________________. 14.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若 AF FB =,,AF FB BA BC =?=48,则抛物线的方程为______________.

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

高中数学论文

博文论文为您专业服务—— 高中数学论文 【摘要】数系在高中数学的教学中主要是讲解复数的引入。在这一部分教学中,引导学生充分思考,自由发挥,增加对超越数论知识的接触,了解数论发展的历史,从而激发学生对数论知识的求知欲和探索欲。 【关键词】数系;数论;学习兴趣 从数系学习引发学生对数论的兴趣 引言 数论在数学史上产生较晚,在十五世纪末十六世纪初才渐有雏形,但到十九世纪,已经发展成为一个有着强大理论体系的数学分支学科。而对于高中生的学习来说,素数的学习将知识面由有原先接触到的初等数论扩大到了高等数论的范畴中。如何引领学生充分理解课本知识,鼓励有志于此的学生对数论难题发起挑战,也是我们高中数学教学的一个艰巨任务。 一数论前沿理论与高中数学课程 数论,顾名思义,是研究数字特性的一个数学分支学科。数论产生的早期主要是由欧几里得关于素数无穷多个的证明,欧几里得发现的求最大公约数的辗转相除法以及中国南北朝时期发现的的孙子定理。之后,由于生产生活水平的限制,人们并不需要更多地理论去支持生产,于是数论理论一度停滞不前,直到由费马,梅森,欧拉,高斯等人的发展,他们研究数论的主要目标是素数,主线思想是寻找素数的通项公式。数学家发现初等数论无法解决这一问题,于是数论发展成了更多分支。 高中数学的数系学习中引入了复数的概念,这是在学生已有的数系知识中添加的全新内容。在学习复数之前,学生对数的认识仅限于实数范围。学生对于数 的认识还表现在日常所能接触的范围内,尽管诸如 、2、e等一系列无理数 的存在对于学生的理解有一定的难度,但它们都可以结合现实生活中的实例来分析理解。 哥德巴赫猜想作为数论伟大猜想,曾在我国引起很大关注。我国著名数学家陈景润在1966年发表了《表达偶数为一个素数及一个不超过两个素数的乘积之

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

高一数学教学论文

高一数学教学论文 导语:高中数学是学生新的转折点,在教学方面应注意平等教育,面对全体高中生。下面是小编为你准备的高一数学教学论文,希望对你有帮助! 高一数学教学论文高中数学是初中数学的继续和延伸。在高中数学学习的起始阶段,如何引导学生准确把握好学习起点,寻找到适合自己的学习方法,调整好学习心态,至关重要。为此,在高一新生入学后,我通过问卷调查、访谈等形式,初步了解了学生的初中数学学习情况(特别是与高中数学学习密切关联的一些基础知识的掌握程度)后,针对学生存在的预习习惯和能力缺失、解题的随意性大、反思意识薄弱等问题,重点采取了以下三项措施: 一、指导预习方法 与初中相比,高中数学知识点更多、知识的抽象程度更强,学习节奏也相应加快,若缺乏有效的预习,课堂学习时就可能处于一种盲目、被动的状态,影响对知识的吸收、理解和掌握;若课前做了充分的预习,对所学知识有了大致的了解,对重点概念、学习难点等心中有数,课堂上便能够更深入地思考、有针对性地质疑,更好地内化新知识。正确的预习方法才能保证预习的成效。课前预习时,应要求学生做到: (1)粗读,即先把新学内容粗读一遍,了解所要学习的大致内容。 (2)细读,即仔细推敲概念要点,找出例题中的关键条件、解

题突破口、所得结论等,然后自己把例题做一遍,并努力简化解题过程。对不能理解的概念、解题步骤等,做上记号(如果通过课堂学习还不能解惑,则要请教同学或老师)。 (3)试做练习,即分类型与梯度进行练习,一般来说,基本题1道、变式题1道即可。 (4)将预习结果列表归类。比如,学习苏教版高中数学必修5第一章第一节“正弦定理”,可列表如下: 当然,预习可以要求学生独立完成,也可以让学生小组合作完成,应视学习内容而定。 二、严格解题规范 解题是深化知识、发展智力、提高能力的重要手段。规范地解题能够帮助学生更好地理解与回顾解题思路,是提高学生思维的逻辑性、严密性的必然要求。而且,规范地解题,可以避免考试中的无谓失分。(数学教学论文)教师应通过亲身示范和明确要求,让学生养成规范解题的习惯。 解题规范主要包括: (1)审题的规范。审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程。审题的过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。比如,找出题目中明确告诉的已知条件,发现题中隐含的条件并加以揭示;或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出条件和目标之间的内在联系;寻找解题的突破口——解题的实质

高中数学教学论文3

高中数学教学论文:让学生成为“演员” 排列组合作为高中代数课本的一个独立分支,因为极具抽象性而成为“教”与“学”难点。有相当一部分题目教者很难用比较清晰简洁的语言讲给学生听,有的即使教者觉得讲清楚了,但是由于学生的认知水平, 思维能力在一定程度上受到限制,还不太适应。从而导致学生对题目一知半解,甚至觉得“云里雾里”。针对这一现象,笔者在日常教学过程中经过尝试总结出一些个人的想法跟各位同行交流一下。 笔者认为之所以学生“怕”学排列组合,主要还是因为排列组合的抽象性,那么解决问题的关键就是将抽象问题具体化,我们不妨将原题进行一下转换,让学生走进题目当中,成为“演员”,成为解决问题的决策者。这样做不仅激发了学生的学习兴趣,活跃了课堂气氛,还充分发挥学生的主体意识和主观能动性,能让学生从具体问题的分析过程中得到启发,逐步适应排列组合题的解题规律,从而做到以不变应万变。当然,在具体的教学过程中一定要注意题目转换的等价性,可操作性。 下面笔者将就教学过程中的两个难点通过两个特例作进一步的说明: 1 、占位子问题 例1 :将编号为1、2、3、4、5的5个小球放进编号为1、2、3、4、5的5个盒子中,要求只有两个小球与其所在的盒子编号相同,问有多少种不同的方法? ①仔细审题:在转换题目之前先让学生仔细审题,从特殊字眼小球和盒子都已“编号”着手,清楚这是一个“排列问题”,然后对题目进行等价转换。 ②转换题目:在审题的基础上,为了激发学生兴趣进入角色,我将题目转换为: 让学号为1、2、3、4、5 的学生坐到编号为1、2、3、4、5的五张凳子上(已准备好放在讲台前),要求只有两个学生与其所坐的凳子编号相同,问有多少种不同的坐法? ③解决问题:这时我在选另一名学生来安排这5位学生坐位子(学生争着上台,积极性已经

高三数学 平面解析几何

平面解析几何(附高考预测) 一、本章知识结构: 二、重点知识回顾 1.直线 (1).直线的倾斜角和斜率 直线的的斜率为k ,倾斜角为α,它们的关系为:k =tan α; 若A(x 1,y 1),B(x 2,y 2),则1 212x x y y K AB --= 。 (2) .直线的方程

a.点斜式:)(11x x k y y -=-; b.斜截式:b kx y +=; c.两点式:121121x x x x y y y y --=--; d.截距式:1=+b y a x ; e.一般式:0=++C By Ax ,其中A 、B 不同时为0. (3).两直线的位置关系 两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有 且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交。 若直线1l 、2l 的斜率分别为1k 、2k ,则 1l ∥2l ?1k =2k ,1l ⊥2l ?1k ·2k =-1。 (4)点、直线之间的距离 点A (x 0,y 0)到直线0=++C By Ax 的距离为:d= 2200||B A C By Ax +++。 两点之间的距离:|AB|=212212)()y y x x -+-( 2. 圆 (1)圆方程的三种形式 标准式:222)()(r b y a x =-+-,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中?? ? ??--22E D ,为圆心F E D 42 122-+为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一 个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程. 参数式:以原点为圆心、 r 为半径的圆的参数方程是???==θθsin ,cos r y r x (其中θ为参数).

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

相关主题
文本预览
相关文档 最新文档