当前位置:文档之家› 2021新高考数学二轮总复习专题突破练18立体几何中的翻折问题及探索性问题含解析

2021新高考数学二轮总复习专题突破练18立体几何中的翻折问题及探索性问题含解析

2021新高考数学二轮总复习专题突破练18立体几何中的翻折问题及探索性问题含解析
2021新高考数学二轮总复习专题突破练18立体几何中的翻折问题及探索性问题含解析

专题突破练18 立体几何中的翻折问题及探索性问题

1.(2020河北石家庄5月检测,18)如图1,在Rt△ABC中,∠C=90°,BC=AC=4,D,E分别是AC,AB边上的中点,将△ADE沿DE折起到△A1DE的位置,使A1C=A1D,如图

2.

(1)求证:平面A1CD⊥平面A1BC;

(2)求直线A1C与平面A1BE所成角的正弦值.

2.

(2020贵州贵阳适应性训练,19)如图,在四棱锥P-ABCD中,四边形ABCD为正方形,且平面PAD⊥平面ABCD,F为棱PD的中点.

(1)在棱BC上是否存在一点E,使得CF∥平面PAE?并说明理由;

(2)若PA=PD=AB,求直线AF与平面PBC所成角的正弦值.

3.(2020浙江台州模拟,19)如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=3,AA1=2.以AB,BC 为邻边作平行四边形ABCD,连接DA1和DC1.

(1)求证:A1D∥平面BCC1B1;

(2)在线段BC上是否存在点F,使平面DA1C1与平面A1C1F垂直?若存在,求出BF的长;若不存在,请说明理由.

4.(2020云南昆明一中模拟,19)图1是由边长为4的正六边形AEFBCD,矩形DCGH组成的一个平面图形,将其沿AB,DC折起得几何体ABCD-EFGH,使得CG⊥AD,且平面EFGH∥平面ABCD,如图2.

(1)证明:在图2中,平面ACG⊥平面BCG;

(2)设M为图2中线段CG上一点,且CM=1,若直线AG∥平面BMD,求图2中的直线BM与平面AHB 所成角的正弦值.

5.(2020北京通州一模,18)如图1,已知四边形ABCD 为菱形,且∠A=60°,取AD 中点为E.现将四边形EBCD 沿BE 折起至EBHG ,使得∠AEG=90°,如图2.

(1)求证:AE ⊥平面EBHG ; (2)求二面角A-GH-B 的余弦值;

(3)若点F 满足AF ????? =λAB ????? ,当EF ∥平面AGH 时,求λ的值. 6.

如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是梯形,且BC ∥AD ,AC=CD=√22

AD ,AD=2PD=4BC=4. (1)求证:AC ⊥平面PCD ;

(2)求平面PCD 与平面PAB 所成的锐角的余弦值;

(3)在棱PD 上是否存在点M ,使得CM ∥平面PAB ?若存在,求PM PD

的值;若不存在,说明理由.

7.

(2020山东省实验中学模拟,19)在矩形ABCD 中,AB=3,AD=2,点E 是线段CD 上靠近点D 的一个三等分点,点F 是线段AD 上的一个动点,且DF ????? =λDA ????? (0≤λ≤1).如图,将△BEC 沿BE 折起至△BEG ,使得平面BEG ⊥平面ABED.

(1)当λ=1

时,求证:EF⊥BG;

2

(2)是否存在λ,使得FG与平面DEG所成的角的正弦值为1

?若存在,求出λ的值;若不存在,请说明理由.

3

8.

(2020河北衡水中学调研,18)已知,图中直棱柱ABCD-A1B1C1D1的底面是菱形,其中AA1=AC=2BD=4.又点E,F,P,Q分别在棱AA1,BB1,CC1,DD1上运动,且满足BF=DQ,CP-BF=DQ-AE=1.

(1)求证:E,F,P,Q四点共面,并证明EF∥平面PQB;

?如果存在,求出CP的长;如果不存在,请说明理由.

(2)是否存在点P使得二面角B-PQ-E的余弦值为√5

5

专题突破练18立体几何中的

翻折问题及探索性问题

1.(1)证明在图1的△ABC中,D,E分别为AC,AB边中点,∴DE∥BC.

又AC⊥BC,∴DE⊥AC.

在图2中,DE⊥A1D,DE⊥DC,A1D∩DC=D,则DE⊥平面A1CD,

又DE ∥BC ,∴BC ⊥平面A 1CD.

又BC ?平面A 1BC ,∴平面A 1CD ⊥平面A 1BC.

(2)解由(1)知DE ⊥平面A 1CD ,且DE ?平面BCDE ,∴平面A 1CD ⊥平面BCDE.

又平面A 1CD ∩平面BCDE=DC ,

在等边三角形A 1CD 中过点A 1作A 1O ⊥CD ,垂足为O ,则O 为CD 中点,且A 1O ⊥平面BCDE ,分别以DC ,梯形BCDE 中位线,OA 1所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,

则A 1(0,0,√3),B (1,4,0),C (1,0,0),E (-1,2,0).

A 1C ??????? =(1,0,-√3),EA 1??????? =(1,-2,√3),E

B ????? =(2,2,0).设平面A 1BE 的法向量为n =(x 1,y 1,z 1), 则{EA 1??????? ·n =x 1-2y 1+√3z 1=0,EB ????? ·n =2x 1+2y 1=0,

令x 1=1,则y 1=-1,z 1=-√3,∴平面A 1BE 的一个法向量为n =(1,-1,-√3).设直线A 1C 与平面A 1BE 所成角为θ,则sin θ=|cos |=

|A 1C ???????? ·n |

|A 1C ???????? |·|n |

=

√3)√3)|

√1+3×√1+1+3

=

2√5

5

. ∴直线A 1C 与平面A 1BE 所成角的正弦值为

2√55

.

2.解(1)当E 为BC 的中点时,CF ∥平面PAE.理由如下,

如图,分别取BC ,PA 的中点E ,G ,连接PE ,AE ,GE ,FG.

又F 是PD 的中点,∴FG ∥AD ,FG=1

2AD.

又四边形ABCD 为正方形,则AD ∥BC ,AD=BC ,∴FG ∥BC ,FG=1

2

BC.又E 是BC 的中点,∴FG ∥

CE ,FG=CE ,则四边形ECFG 是平行四边形,∴CF ∥EG.

又EG ?平面PAE ,CF ?平面PAE ,

∴CF ∥平面PAE.

(2)如图,取AD 中点O ,连接PO ,OE ,

又PA=PD ,∴PO ⊥AD.∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,PO ?平面PAD ,∴PO ⊥平面ABCD.∴以O 为原点,OA ,OE ,OP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.设AD=2,则A (1,0,0),B (1,2,0),C (-1,2,0),P (0,0,√3),F -1

2,0,√3

2,∴AF ????? =-3

2,0,√3

2

,BC ????? =(-2,0,0),PB ????? =(1,2,-√3), 设平面PBC 的法向量为n =(x ,y ,z ),则{-2x =0,

x +2y -√3z =0,

令y=3,得x=0,z=2√3,

则平面PBC 的一个法向量n =(0,3,2√3),∴|cos |=|n ·AF ?????

||n ||AF ?????

|=|21×3

|=

√7

7

,∴直线AF 与平面

PBC 所成角的正弦值为√7

7.

3.(1)证明如图所示,连接B 1C ,∵四边形ABCD 为平行四边形,∴AB CD ,

又A 1B 1 AB ,∴A 1B 1 CD ,∴四边形A 1B 1CD 为平行四边形,∴A 1D ∥B 1C. 又B 1C ?平面BCC 1B 1,A 1D ?平面BCC 1B 1,∴A 1D ∥平面BCC 1B 1.

(2)解存在.假设存在点F ,使平面DA 1C 1与平面A 1C 1F 垂直,则平面DA 1C 1与平面A 1C 1F 所成的二面角为直二面角.

设平面DA 1C 1与平面A 1C 1F 所成的二面角的平面角为θ,则θ=90°.

如图所示,以A 为坐标原点,分别以AD ????? ,AC ????? ,AA 1??????? 为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系.

∵∠ACB=90°,AC=BC=3,AA 1=2, ∴A (0,0,0),D (3,0,0),A 1(0,0,2),C 1(0,3,2). ∵点F 在BC 上,∴设点F (m ,3,0).

∴A 1D ???????? =(3,0,-2),A 1C 1????????? =(0,3,0),A 1F ??????? =(m ,3,-2).设平面A 1C 1D 的法向量为n 1=(x 1,y 1,z 1), 则{n 1·A 1D ???????? =0,n 1·A 1C 1????????? =0,

即{3x 1-2z 1=0,y 1=0,

取x 1=2,则y 1=0,z 1=3,∴平面A 1C 1D 的一个法向量n 1=(2,0,3). 设平面A 1C 1F 的法向量为n 2=(x 2,y 2,z 2),则{n 2·A 1F ??????? =0,n 2·A 1C 1

????????? =0, 即{mx 2+3y 2-2z 2=0,

y 2=0,

取x 2=2,则y 2=0,z 2=m ,∴平面A 1C 1F 的一个法向量n 2=(2,0,m ). 则cos =cos θ=cos90°=0,

∴n 1·n 2|n 1

||n 2

|=0,即4+3m=0,∴m=-43,即CF=43,∴BF=3-43=5

3.

∴在线段BC 上存在点F ,使平面DA 1C 1与平面A 1C 1F 垂直,此时BF=5

3.

4.(1)证明∵四边形DCGH 为矩形,∴CG ⊥CD.又CG ⊥AD ,CD ∩AD=D ,

∴CG ⊥平面ADC ,故CG ⊥AC. ∵六边形AEFBCD 为正六边形, ∴∠ADC=∠DCB=120°,

故∠DCA=30°,∴∠ACB=90°, 即AC ⊥CB.

又CG ∩CB=C ,∴AC ⊥平面BCG.

∵AC ?平面ACG , ∴平面ACG ⊥平面BCG.

(2)解设AC 与BD 的交点为N ,连接MN.∵AG ∥平面BMD ,且平面BMD ∩平面ACG=MN ,∴AG ∥MN ,∴CM

MG =CN

NA =CD

AB =4

8=1

2.∴MG=2,∴CG=

3.

由(1)知,AC ⊥CB ,CG ⊥平面ABC ,故以CA ,CB ,CG 分别作为x 轴,y 轴,z 轴建立空间直角坐标系,如图,

A (4√3,0,0),

B (0,4,0),M (0,0,1),H (2√3,-2,3),

∴AB ????? =(-4√3,4,0),AH ?????? =(-2√3,-2,3),BM ?????? =(0,-4,1),设平面AHB 的法向量为n =(x ,y ,z ),则{

n ·AH ?????? =0,n ·AB ????? =0,即{

-2√3x -2y +3z =0,

-4√3x +4y =0,

取x=√3,则y=3,z=4,∴平面AHB 的一个法向量n =(√3,3,4).

设直线BM 与平面AHB 所成角为θ,

∴sin θ=|cos |=

|BM

??????? ·n ||BM

??????? |·|n |

=

16+1·3+9+16

=

4√119

119

,即直线BM 与平面AHB 所成角的正弦值

4√119

119

. 5.(1)证明在图1中,△ABD 为等边三角形,E 为AD 中点,∴BE ⊥AD ,∴BE ⊥AE.

∵∠AEG=90°,∴GE ⊥AE. ∵GE ⊥AE ,BE ⊥AE ,GE ∩BE=E , ∴AE ⊥平面EBHG.

(2)解设菱形ABCD 的边长为2,由(1)可知AE ⊥GE ,AE ⊥BE ,GE ⊥BE ,

∴以E 为原点,EA ,EB ,EG 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.

可得A (1,0,0),B (0,√3,0),G (0,0,1),H (0,√3,2),∴AG ????? =(-1,0,1),AH ?????? =(-1,√3,2).设平面AGH 的法向量为n =(x ,y ,z ),∴{n ·AG

????? =0,n ·AH ?????? =0,

即{-x +z =0,

-x +√3y +2z =0,

令x=√3,则平面AGH 的一个法向量n =(√3,-1,√3).易知平面EBHG 的一个法向量为EA

????? =(1,0,0).设二面角A-GH-B 的大小为θ,则θ为锐角,∴cos θ=|cos |=|n ·EA ????? ||n ||EA ????? |=√217

. (3)解由AF ????? =y AB ????? =(-λ,√3y ,0),得EF ????? =AF ????? ?AE

????? =(-λ,√3y ,0)-(-1,0,0)=(1-λ,√3y ,0).∵EF ∥平面AGH ,则n ·EF

????? =0,即1-2λ=0,∴λ=12

. 6.(1)证明∵AC=CD=√2

2

AD ,

∴AC 2+CD 2=12AD 2+1

2AD 2=AD 2,∴AC ⊥CD.∵PD ⊥平面ABCD ,AC ?平面ABCD ,∴PD ⊥AC.又

PD ∩CD=D ,∴AC ⊥平面PCD.

(2)解分别以直线DA ,DP 为x 轴,z 轴,建立如图所示的空间直角坐标系,

则D (0,0,0),A (4,0,0),B (3,2,0),C (2,2,0),P (0,0,2),∴AB

????? =(-1,2,0),AP ????? =(-4,0,2), 设n =(x ,y ,z )为平面PAB 的一个法向量,由{n ·AB

????? =0,n ·AP ????? =0,得{-x +2y =0,-4x +2z =0,

取y=1,则n =(2,1,4).

由(1)AC ⊥平面PCD ,可知AC ????? =(-2,2,0)为平面PCD 的一个法向量,设平面PCD 与平面PAB 所成的锐角为θ,

则cos θ=|cos

????? >|=√22+12+42×√(-2)+22+02

=√42

42

.故平面PCD 与平面PAB 所成的锐角的余弦

值为√42

42.

(3)解(方法一)存在.

假设在棱PD 上存在点M ,使得CM ∥平面PAB ,则CM ?????? ⊥n ,即CM ?????? ·n =0.设M (0,0,h ),则CM ?????? =(-2,-2,h ),由CM

?????? ·n =0,得2×(-2)+1×(-2)+4h=0,解得h=32

.此时,PM PD

=2-3

2

2

=1

4

.故在棱PD 上存在点M ,使得CM ∥平

面PAB ,此时PM PD =1

4.

(方法二)存在.

在棱PD 上取点M ,使PM

PD =1

4,过M 作MN ∥AD 交PA 于点N ,则MN=1

4AD. 又BC 1

4AD ,∴BC MN ,

∴四边形MNBC 为平行四边形, ∴CM ∥BN.

∵CM ?平面PAB ,BN ?平面PAB ,∴CM ∥平面PAB.故在棱PD 上存在点M ,使得CM ∥平面PAB ,

此时

PM PD

=1

4

.

7.(1)证明当λ=12时,F 是AD 的中点.

∴DF=1

2AD=1,DE=1

3CD=1. ∵∠ADC=90°,∴∠DEF=45°. ∵CE=2

3CD=2,BC=2,∠BCD=90°, ∴∠BEC=45°.∴BE ⊥EF.

又平面GBE ⊥平面ABED ,平面GBE ∩平面ABED=BE ,EF ?平面ABED ,

∴EF ⊥平面BEG.

∵BG ?平面BEG ,∴EF ⊥BG.

(2)解存在.以C 为原点,CD

????? ,CB ????? 的方向为x 轴,y 轴的正方向建立如图所示空间直角坐标系,

则E (2,0,0),D (3,0,0),F (3,2λ,0).

取BE 的中点O ,∵GE=BG=2,

∴GO ⊥BE ,∴易证得OG ⊥平面BCE. ∵BE=2√2,∴OG=√2,∴G (1,1,√2).

∴FG ????? =(-2,1-2λ,√2),EG

????? =(-1,1,√2),DG ????? =(-2,1,√2). 设平面DEG 的法向量为n =(x ,y ,z ),则{n ·DG ????? =-2x +y +√2z =0,n ·EG ????? =-x +y +√2z =0,

令z=√2,则平面DEG 的一个法向量n =(0,-2,√2). 设FG 与平面DEG 所成的角为θ,

则sin θ=|cos |=√6×√6+(1-2λ)

=13

, 解得λ=12

或λ=-7

10

(舍去).

∴存在实数λ,使得DG 与平面DEG 所成的角的正弦值为13,此时λ=1

2.

8.(1)证明(方法一)在线段CP ,DQ 上分别取点M ,N ,使得QN=PM=1,

易知四边形MNQP 是平行四边形,

∴MN ∥PQ ,连接FM ,MN ,NE ,

则AE=ND ,且AE ∥ND ,∴四边形ADNE 为矩形,故AD ∥NE ,

同理,FM ∥BC ∥AD 且NE=MF=AD ,故四边形FMNE 是平行四边形,∴EF ∥MN ,

∴EF ∥PQ.故E ,F ,P ,Q 四点共面.又EF ∥PQ ,EF ?平面BPQ ,PQ ?平面BPQ , ∴EF ∥平面PQB.

(方法二)∵直棱柱ABCD-A 1B 1C 1D 1的底面是菱形,∴AC ⊥BD ,AA 1⊥底面ABCD.

设AC ,BD 交点为O ,以O 为原点,分别以OA ,OB 及过O 且与AA 1平行的直线为x 轴,y 轴,z 轴建立空间直角坐标系,则有A (2,0,0),B (0,1,0),C (-2,0,0),D (0,-1,0).设BF=a ,a ∈[1,3],则E (2,0,a-1),F (0,1,a ),P (-2,0,a+1),Q (0,-1,a ),EF

????? =(-2,1,1),QP ????? =(-2,1,1), ∴EF ∥PQ ,故E ,F ,P ,Q 四点共面.

又EF ∥PQ ,EF ?平面BPQ ,PQ ?平面BPQ ,∴EF ∥平面PQB. (2)解不存在.理由如下,

∵直棱柱ABCD-A 1B 1C 1D 1的底面是菱形,∴AC ⊥BD ,AA 1⊥底面ABCD.

设AC ,BD 交点为O ,以O 为原点,分别以OA ,OB 及过O 且与AA 1平行的直线为x 轴,y 轴,z 轴建立空间直角坐标系,则有A (2,0,0),B (0,1,0),C (-2,0,0),D (0,-1,0).设BF=a ,a ∈[1,3],则E (2,0,a-1),F (0,1,a ),P (-2,0,a+1),Q (0,-1,a ),EF ????? =(-2,1,1),EQ ????? =(-2,-1,1),设平面EFPQ 的法向量为n 1=(x 1,y 1,z 1),则{

EF

????? ·n 1=0,EQ ????? ·n 1=0,

即{-2x 1+y 1+z 1=0,-2x 1-y 1+z 1=0,令x 1=1,可得平面EFPQ 的一个法向量n 1=(1,0,2). BP

????? =(-2,-1,a+1),BQ ????? =(0,-2,a ),设平面BPQ 的法向量为n 2=(x 2,y 2,z 2),则{BP ?????

·n 2=0,BQ ????? ·n 2=0, 即{-2x 2-y 2+(a +1)z 2=0,

-2y 2+az 2=0, 令y 2=2a ,可得x 2=a+2,z 2=4,

∴平面BPQ 的一个法向量n 2=(a+2,2a ,4).若|cos |=|

12

√5·√(a+2)+4a 2+16

=

√55

, 则(a+10)2=5a 2+4a+20,即有a 2-4a-20=0,a ∈[1,3],解得a=2±2√6?[1,3],故不存在点P 使之成立.

以立体几何中探索性问题为背景的解答题(解析版)知识讲解

【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法.求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下 进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题. 2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题 的强有力的方法. 【精选名校模拟】 1. 在四棱锥E ABCD中,底面ABCD是正方形,AC与BD交于点O,EC 底面ABCD ,F 为BE 的中点.(Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:BD AE ;

2019年高考数学一轮复习专题探究课4立体几何中的高考热点问题理北师大版

四立体几何中的高考热点问题 (对应学生用书第127页) [命题解读] 立体几何是高考的重要内容,从近五年全国卷高考试题来看,立体几何每年必考一道解答题,难度中等,主要采用“论证与计算”相结合的模式,即首先利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算,考查的热点是平行与垂直的证明、二面角的计算,平面图形的翻折,探索存在性问题,突出三大能力:空间想象能力、运算能力、逻辑推理能力与两大数学思想:转化化归思想、数形结合思想的考查. 空间点、线、面间的位置关系 空间线线、线面、面面平行、垂直关系常与平面图形的有关性质及体积的计算等知识交汇考查,考查学生的空间想象能力和推理论证能力以及转化与化归思想,一般以解答题的形式出现,难度中等. 用向量法证明平行、垂直、求空间角,通过建立空间直角坐标系,利用空间向量的坐标运算来实现,实质是把几何问题代数化,注意问题: (1)恰当建系,建系要直观;坐标简单易求,在图上标出坐标轴,特别注意有时要证 明三条轴两两垂直(扣分点). (2)关键点,向量的坐标要求对,把用到的点的坐标一个一个写在步骤里. (3)计算要认真细心,特别是|n|,n1、n2的运算. (4)弄清各空间角与向量夹角的关系. 如图1所示,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC =1,E,F分别是A1C1,BC的中点. 图1 (1)求证:平面ABE⊥平面B1BCC1; (2)求证:C1F∥平面ABE; (3)求三棱锥E-ABC的体积. [解] (1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB. 又因为AB⊥BC,BB1∩BC=B,所以AB⊥平面B1BCC1.又AB平面ABE,

立体几何中存在性问题教案.docx

教学背景分析 立体几何中常出现点的存在性和位置待定的问题,以“是否存在”、“是否有”、“在何位置”教学 等形式设问,以示结论有待于确定.文科主要涉及到平行与垂直的位置关系的考查,其中渗透反证 内容 法与分析法的解题思路,也是高考中的常见题型。2012 年北京市高考文科就考查了有关线面垂直的分析 存在性问题,2016 年北京市高考文科就考查了有关线面平行的存在性问题。 1、进一步熟悉空间直线与直线、直线与平面和平面与平面平行的位置关系;理解并掌握线面平行和 教学 面面平行的判定定理及性质定理,会运用定理解决与平行有关的存在性问题; 目标 2、通过对例题的分析,以及对问题的探究,会把空间问题转化为平面问题,尝试用不同的方法找到 需要确定的点、线、面,初步形成解决存在性问题的思路及方法; 3、感受“线线问题、线面问题、面面问题”之间的转化,逐步体会逻辑推理的严谨性。 学生情况 学生在前面立体几何的复习过程中,基本掌握了线线、线面、面面平行的判定与性质,碰到证明问题有一定的思路,但碰到存在性问题多以猜想特殊点的方法去尝试解决,并没从深层次上思考为什么去找这个位置。另外前面的复习过程中由于对反证法并没有过多的强调,所以在碰到结论是不存在的情况时,还不会叙述,不会写解题格式。 教学方法教学重点教学难点教学引导启发式 线线平行、线面平行、面面平行的相互转化 探索立体几何中(与平行有关的)存在性问题的解题思路,思考存在性问题的本质多媒体、几何画板课件 辅助手段

课题:立体几何中与平行有关的存在性问题 板书例题分析 设计问题 3:方法总结:问题 6: 教学步骤 教学过程 教师活动学生活动设计目的 一、热身训练 二、例题精讲判断下列命题是否正确,若不正确,请修改或 添加条件使结论成立. ①若 a / /b,b,则 a / /; ②若 a / / ,b,则 a / /b ; ③若 m / / , n / / , m, n,则 / /; ④若/ / , a,则 a / /; ⑤若/ / , m, n,则 m / / n . 例题:如图,在四棱锥P ABCD 中,底面 ABCD 是梯形,AB∥ CD ,AB 1 CD . 2 问题 1:请指出图中的线面平行的位置关系并选 择一组证明; 问题 2:AD∥平面PBC吗为什么 问题 3:过点A能做平面PBC 的平行线吗如果 能,请在图中作出一条或两条直线并证明. 回忆、思考、小组讨论 说明或操作演示为什么不正 确,如何改正 总结证明线线、线面、面面平 行的证明方法以及相互关系 P D C A B 梳理平行的相关知 识,为本节课的复 习内容作铺垫,加 强知识之间的联系 检验学生对定理的 理解程度 为例题及问题的证 明明确证明的思路 培养学生学习的自 主性 训练学生如何说明 结论不成立

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

以立体几何中探索性问题为背景的解答题(解析版)知识讲解

【名师综述】利用空间向量解决探索性问题 立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如. 1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法. 求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题. 2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法. 【精选名校模拟】 1. 在四棱锥ABCD E -中,底面ABCD 是正方形,AC 与BD 交于点O ,⊥EC 底面ABCD ,F 为BE 的中点. (Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:AE BD ⊥;

高考数学专题复习立体几何(理科)练习题

A B C D P 《立体几何》专题 练习题 1.如图正方体1111D C B A ABCD -中,E 、F 分别为D 1C 1和B 1C 1的中点, P 、Q 分别为A 1C 1与EF 、AC 与BD 的交点, (1)求证:D 、B 、F 、E 四点共面; (2)若A 1C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线 2.已知直线a 、b 异面,平面α过a 且平行于b ,平面β过b 且平行于a ,求证:α∥β. 3. 如图所示的多面体是由底面为ABCD 的长方体被截面AEFG 4=AB 1=BC 3=BE ,4=CF ,若如图所示建立空间直角坐标系. ①求EF 和点G 的坐标; ②求异面直线EF 与AD 所成的角; ③求点C 到截面AEFG 的距离. 4. 如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD 平面PAB . (I) 求证:AB ⊥平面PCB ; (II) 求异面直线AP 与BC 所成角的大小; (III )求二面角C-PA-B 的余弦值. 5. 如图,直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,AE=EB ,F 为CE 上的点,且BF ⊥平面ACE. (1)求证AE ⊥平面BCE ; (2)求二面角B —AC —E 的余弦值. 6. 已知正三棱柱111ABC A B C -的底面边长为2,点M 在侧棱1BB 上. P Q F E D 1C 1B 1A 1D C B A F E C B y Z x G D A

(Ⅰ)若P 为AC 的中点,M 为BB 1的中点,求证BP//平面AMC 1; (Ⅱ)若AM 与平面11AA CC 所成角为30ο,试求BM 的长. 7. 如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,PA =AB =1,BC =2. (1)求证:平面PDC ⊥平面PAD ; (2)若E 是PD 的中点,求异面直线AE 与PC 所成角的余弦值; 8. 已知:在正三棱柱ABC —A 1B 1C 1中,AB = a ,AA 1 = 2a . D 是侧棱BB 1的中点.求证: (Ⅰ)求证:平面ADC 1⊥平面ACC 1A 1; (Ⅱ)求平面ADC 1与平面ABC 所成二面角的余弦值. 9. 已知直四棱柱1111ABCD A B C D -的底面是菱形,且60DAB ∠=,1AD AA =F 为 棱1BB 的中点,M 为线段1AC 的中点. (Ⅰ)求证:直线MF //平面ABCD ; (Ⅱ)求证:直线MF ⊥平面11ACC A ; (Ⅲ)求平面1AFC 与平面ABCD 所成二面角的大小 10. 棱长是1的正方体,P 、Q 分别是棱AB 、CC 1上的内分点,满足 21==QC CQ PB AP . P A B C D E

高考数学立体几何中探索性问题

立体几何中探索性问题 立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法. 【例1】(2018?全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=?,1AA BC ⊥, 124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ; (2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值. 【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥. 又1A A AC =,11AC AC ∴⊥.又11 BC AC ⊥,111BC AC C =,1 AC ∴⊥平面1ABC , 又1A C ?平面11A ACC ,∴平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1AB AC A =, ∴平面//EFD 平面1ABC ,则有//DE 平面1ABC . 设点E 到平面1ABC 的距离为d , AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥, ∴1 1 22 BAC S =?= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB , 11//AC AC ,11AC ∴⊥平面11ABB , ∴111 1118 2243323 C ABE ABE V S AC -?=??=????=, 由118 3 E ABC C ABE V V --== ,解得1 88 3 33ABC d S =? == 以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,

2021新高考数学二轮总复习专题突破练18 立体几何中的翻折问题及探索性问题含解析

专题突破练18立体几何中的翻折问题及探索性问 题 1.(2020河北石家庄5月检测,18)如图1,在Rt△ABC中,∠C=90°,BC=AC=4,D,E分别是AC,AB边上的中点,将△ADE沿DE折起到△A1DE的位置,使A1C=A1D,如图 2. (1)求证:平面A1CD⊥平面A1BC; (2)求直线A1C与平面A1BE所成角的正弦值. 2. (2020贵州贵阳适应性训练,19)如图,在四棱锥P-ABCD中,四边形ABCD为正方形,且平面PAD⊥平面ABCD,F为棱PD的中点. (1)在棱BC上是否存在一点E,使得CF∥平面PAE?并说明理由; (2)若PA=PD=AB,求直线AF与平面PBC所成角的正弦值.

3.(2020浙江台州模拟,19)如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=3,AA1=2.以AB,BC 为邻边作平行四边形ABCD,连接DA1和DC1. (1)求证:A1D∥平面BCC1B1; (2)在线段BC上是否存在点F,使平面DA1C1与平面A1C1F垂直?若存在,求出BF的长;若不存在,请说明理由. 4.(2020云南昆明一中模拟,19)图1是由边长为4的正六边形AEFBCD,矩形DCGH组成的一个平面图形,将其沿AB,DC折起得几何体ABCD-EFGH,使得CG⊥AD,且平面EFGH∥平面ABCD,如图2.

(1)证明:在图2中,平面ACG⊥平面BCG; (2)设M为图2中线段CG上一点,且CM=1,若直线AG∥平面BMD,求图2中的直线BM与平面AHB 所成角的正弦值. 5.(2020北京通州一模,18)如图1,已知四边形ABCD为菱形,且∠A=60°,取AD中点为E.现将四边形EBCD沿BE折起至EBHG,使得∠AEG=90°,如图2. (1)求证:AE⊥平面EBHG; (2)求二面角A-GH-B的余弦值; (3)若点F满足=λ,当EF∥平面AGH时,求λ的值.

立体几何存在性问题解析

A B C D , AB DC , AB AD ⊥, 1AD =, AB , E 是PA 的中点, F 在线段AB 上, 且满足0CF BD ?=. 平面PBC PC B --的余弦值;)在线段PA 上是否存在点与平面PFC 所成角的余弦. 2.如图,已知长方形ABCD 中,, M 为DC 的中点。将ADM ? 沿AM 折起,使得平面ADM ⊥平面ABCM 。 (1)求证: ; (2是线段上的一动点,问点E 在何位置时,二面角的余弦值为55 。 3.如图,在四棱锥P —ABCD 中,底面ABCD 为菱形且∠DAB =60°,O 为AD 中点. (Ⅰ)若P A =PD ,求证:平面POB ⊥平面P AD ; (Ⅱ)若平面P AD ⊥平面ABCD ,且P A =PD =AD =2,试问在线段PC 上是否存在点M , 使二面角M —BO —C 的大小为60°,如存在,求 的值,如不存在,说明理由. 4.如图,在四棱锥 中,底面ABCD 是直角梯形,侧棱 底面ABCD ,AB 垂直于AD 和BC ,M 为棱SB 上的点, , . (1)若M 为棱SB 的中点,求证: 平面SCD ; (2)当 时,求平面AMC 与平面SAB 所成的锐二面角的余弦值; (3)在第(2)问条件下,设点N 是线段CD 上的动点,MN 与平面SAB 所成的角为θ,求当 取最大值时点N 的位置.

5.如图,在直三棱柱中,平面平面,且. (1)求证:; (2)若直线与平面所成的角为,求锐二面角的大小. 6.如图,在平行四边形中,,,,四边形为矩形,平面平面,,点在线段上运动,且. (1)当时,求异面直线与所成角的大小; (2)设平面与平面所成二面角的大小为(),求的取值范围. 7.如图,在四棱锥中,平面,四边形是菱形,,,是上任意一点。 (1)求证:; (2)当面积的最小值是9时,在线段上是否存在点,使与平面所成角的正切值为2?若存在?求出的值,若不存在,请说明理由

全国高考理科数学:立体几何

2013年国理科数学试题分类汇编7立体几何 一、选择题 1 .(2013年新课标1(理))如图有一个水平放置的透明无盖的正方体容器容器8cm 将一个 球放在容器口再向容器内注水当球面恰好接触水面时测得水深为6cm 如果不计容器的 厚度则球的体积为 ) A 2 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的 直线,αβ是两个不同的平面下列命题正确的是( )[] A .若αβ⊥m α?n β?则m n ⊥ B .若//αβm α?n β?则//m n C .若m n ⊥m α?n β?则αβ⊥ D .若m α⊥//m n //n β则αβ⊥ 3 .(2013年上海市春季数学试卷(含答案))若两个球的表面积之比为1:4则这两个球的体积 之比为( ) A .1:2 B .1:4 C .1:8 D .1:16 4 .(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱 1111ABCD A B C D -12AA AB =则CD 与平面1BDC 所成角的正弦值等于( ) A 5 .(2013年新课标1(理))某几何体的三视图如图所示则该几何体的体积为

( ) A .168π+ B .88π+ C .1616π+ D .816π+ 6 .(2013年湖北卷(理))一个几何体的三视图如图所示该几何体从上到下由四个简单几何 体组成其体积分别记为1V 2V 3V 4V 上面两个简单几何体均为旋转体下面两个简单几何体均为多面体则有( ) A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<< 7 .(2013年湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正 方体的正视图的面积不可能...等于( ) A .1 B 8 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如 图所示则该四棱台的体积是

第九讲-立体几何中探索性问题的向量解法

立体几何中探索性问题的向量解法 高考中立体几何试题不断出现了一些具有探索性、开放性的试题。对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决。立体几何引入空间向量后,可以借助向量工具,使几何问题代数化,降低思维的难度.尤其是在解决一些立体几何中的探索性问题时,更可以发挥这一优势. 本节课主要研究:立体几何中的存在判断型和位置探究型问题等探索性问题。 一、存在判断型 1、已知空间三点A (-2,0,2),B (-2,1,2),C (-3,0,3).设a =AB ,b =AC ,是否存在存在实数k ,使向量k a +b 与k a -2b 互相垂直,若存在,求k 的值;若不存在,说明理由。 解∵k a +b =k (0,1,0)+(-1,0,1)=(-1,k ,1),k a -2b =(2,k ,-2), 且(k a +b )⊥(k a -2b ), ∴(-1,k ,1)·(2,k ,-2)=k 2 -4=0. 则k=-2或k=2. 点拨:第(2)问在解答时也可以按运算律做. (k a +b )(k a -2b )=k 2a 2-k a ·b -2b 2= k 2 -4=0,解得k=-2或k=2. 2、 如图,已知矩形ABCD ,PA ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点,∠PDA 为θ,能否确定θ,使直线MN 是直线AB 与PC 的公垂线?若能确定,求出θ的值;若不能确定,说明理由. 解:以点A 为原点建立空间直角坐标系A -xyz.设|AD|=2a ,|AB|=2b , ∠PDA=θ.则A(0,0,0)、B(0,2b ,0)、C(2a ,2b ,0)、D(2a ,0,0)、P(0, 0,2atan θ)、M(0,b ,0)、N(a ,b ,atan θ). ∴=(0,2b ,0),=(2a ,2b ,-2atan θ),=(a ,0,atan θ). ∵AB ·MN =(0,2b ,0)·(a ,0,atan θ)=0, ∴⊥.即AB ⊥MN. 若MN ⊥PC , 则·=(a ,0,atan θ)·(2a ,2b ,-2atan θ) =2a 2-2a 2tan 2θ=0. ∴tan 2θ=1,而θ是锐角. ∴tan θ=1,θ=45°. 即当θ=45°时,直线MN 是直线AB 与PC 的公垂线. 【方法归纳】对于存在判断型问题,解题的策略一般为先假设存在,然后转化为“封闭型”问题求解判断,若不出现矛盾,则肯定存在;若出现矛盾,则否定存在。这是一种最常用也是最基本的方法.

立体几何专题突破之《探究性问题》

《探究性问题》 考点动向 立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.探究是一种科学的精神,因此,也是命题的热点.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的. 方法范例 例1 如图8-1,在棱长为1的正方体1111ABCD A BC D -中, P 是侧棱1CC 上的一点,CP m =. (1)试确定m ,使直线AP 与平面11BDD B 所 成角的正切值为 (2)在线段11AC 上是否存在一个定点Q ,使得对任意的m ,1D Q 在平面1APD 上的射影垂直于 AP ,并证明你的结论. 解析 本题的两问都充满了探究性,问题的情景具有运动变化的特点,此时,只需要确定某一个位置进行推理,其它作类似推理即可.即所谓的化动为静. 解法1 (1)连AC ,设A C B D O A P =,与面11BDD B 交于点G ,连OG .因为PC ∥面 11BDD B ,面11 BDD B 面APC OG =,故 O G P C ∥.所以122 m OG PC ==.又 1A O D B A O B B ,⊥ ⊥,所以AO ⊥面11BDD B .故AGO ∠即为AP 与面11BDD B 所成 A 1 D 图8-1 P 1A D 1 图8-2

的角.在Rt AOG △ 中,2tan 2 AGO m ∠==,即13m =.故当1 3m =时,直线AP 与 平面11BDD B 所成角的正切值为 (2)依题意,要在11AC 上找一点Q ,使得1D Q AP ⊥.可推测11AC 的中点1O 即为所 求的Q 点.因为1111111DO AC DO AA ,⊥⊥,所以11DO ⊥面11ACC A .又AP ?面11ACC A ,故11D O AP ⊥.从而11D O 在平面1AD P 上的射影与AP 垂直. 解法2(1)建立如图8-3所示的空间直角坐标系,则(100)(110)(01)A B P m ,,,,,,,,, 11(010)(000)(111)(001)C D B D ,,,,,,,,,,,. 所以1(110)(001)(11)(110)BD BB AP m AC =--==-=-,,,,,,,,,,,. 又由100AC BD AC BB ==,知,AC 为平面11BB D D 的一个法向量.设AP 与平面11BB D D 所成的角为θ,则 s i n c o s θθπ?? = - ?2?? 2 22AP AC AP AC m = = +. 2 2 2m = +,解得 13m = .故当1 3 m =时,直线AP 与平面11BDD B 所成角的正切值为 (2)若在11AC 上存在这样的点Q ,设此点的横坐标为 x ,则 1(11)(10)Q x x D Q x x -= -,,,,,.依题意,对任意的m 要使1D Q 在平面1APD 上的射影垂直于AP ,等价于111 0(1)02 D Q AP AP D Q x x x ?=?-+-=?=⊥.即Q 为11AC 的中点时,满足题设要求.

立体几何中的存在性问题

立体几何中的存在性问题 1、如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC . (1)求证:D 1C ⊥AC 1; (2)问在棱CD 上是否存在点E ,使D 1E ∥平面A 1BD .若存在,确定点E 位置;若不存在,说明理由. 2.如图所示,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯 形,BD ∥AE ,BD ⊥BA ,BD =1 2AE =2,O ,M 分别为CE ,AB 的中点. (1)求证:OD ∥平面ABC ; (2)求直线CD 和平面ODM 所成角的正弦值; (3)能否在EM 上找一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由. 3、在如图所示的几何体中,底面ABCD 为菱形,∠BAD =60°,AA 1∥DD 1∥CC 1∥BE ,且AA 1=AB ,D 1E ⊥平面D 1AC ,AA 1⊥底面ABCD . (1)求二面角D 1-AC -E 的大小; (2)在D 1E 上是否存在点P ,使得A 1P ∥平面EAC ,若存在,求D 1P PE 的值,若不存在,说明理由. 立体几何中的存在性问题 1、如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC . (1)求证:D 1C ⊥AC 1; (2)问在棱CD 上是否存在点E ,使D 1E ∥平面A 1BD .若存在,确定点E 位置;若不存在,说明理由. 2.如图所示,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =1 2AE =2,O ,M 分别为CE ,AB 的中点. (1)求证:OD ∥平面ABC ; (2)求直线CD 和平面ODM 所成角的正弦值; (3)能否在EM 上找一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由. 3、在如图所示的几何体中,底面ABCD 为菱形,∠BAD =60°,AA 1∥DD 1∥CC 1∥BE ,且AA 1=AB ,D 1E ⊥平面D 1AC ,AA 1⊥底面ABCD . (1)求二面角D 1-AC -E 的大小; (2)在D 1E 上是否存在点P ,使得A 1P ∥平面EAC ,若存在,求D 1P PE 的值,若不存在,说明理由.

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0,{ n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0, m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 -

1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

高考数学专题04 立体几何的探索性问题(第三篇)(原卷版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第三篇 立体几何 专题04 立体几何的探索性问题 【典例1】【2020届江苏巅峰冲刺卷】 如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点. (1)求异面直线AP ,BM 所成角的余弦值; (2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为4 5 ,求λ的值. 【典例2】【2020届江西省赣州市高三上学期期末考试】 如图,在平行四边形ABCD 中,2,4,60AB AD BAD ?==∠=,平面EBD ⊥平面ABD ,且 ,EB CB ED CD ==.

(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论; (2)求二面角A EC D --的余弦值. 【典例3】【北京市昌平区2020届高三期末】 如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,1 2 BC CD AD == . (Ⅰ)求证:CD ⊥PD ; (Ⅰ)求证:BD ⊥平面P AB ; (Ⅰ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由. 【典例4】【2019届陕西省西安中学高三下学期第十二次重点考试】 在三棱锥P—ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BC E 、G 分别为PC 、P A 的中点.

(1)求证:平面BCG ⊥平面P AC ; (2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求 AN NC 的值; (3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值 【典例5】【浙江省丽水市2020届模拟】 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,90ABC ∠=?,1AB BC ==,2PA AD ==. (1)求证:CD ⊥平面PAC ; (2)在棱PC 上是否存在点H ,使得AH ⊥平面PCD ?若存在,确定点H 的位置;若不存在,说明理由. 【典例6】【江苏省苏州市实验中学2020届高三月考】 直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=?, E 、 F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证: (1)//EF 平面11AAC C ; (2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【典例7】【山东省临沂市2019年普通高考模拟】 如图,底面ABCD 是边长为3的正方形,平面ADEF ⊥平面ABCD ,AF ∥DE ,AD ⊥DE ,AF =DE =

立体几何专题突破之《探究性问题》

立体几何专题突破之《探究性问题》 考点动向 立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.探究是一种科学的精神,因此,也是命题的热点.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的. 方法范例 例1 如图8-1,在棱长为1的正方体1111ABCD A B C D -中,P 是侧棱1CC 上的一点,CP m =. (1)试确定m ,使直线AP 与平面11BDD B 所 成角的正切值为 (2)在线段11A C 上是否存在一个定点Q ,使得对任意的m ,1D Q 在平面1APD 上的射影垂直于 AP ,并证明你的结论. 解析 本题的两问都充满了探究性,问题的情景具有运动变化的特点,此时,只需要确定某一个位置进行推理,其它作类似推理即可.即所谓的化动为静. 解法1 (1)连AC ,设A C B D O A P =,与面11BDD B 交于点G ,连OG .因为PC ∥面 11BDD B ,面11 BDD B 面APC OG =,故 O G P C ∥.所以122m OG PC == .又1AO DB AO BB ,⊥⊥,所以AO ⊥面11BDD B .故AGO ∠即为AP 与面11BDD B 所成 A 1 图8-1 P 1A D 1 图8-2

的角.在Rt AOG △ 中,2tan 2 AGO m ∠==,即13m =.故当1 3m =时,直线AP 与 平面11BDD B 所成角的正切值为 (2)依题意,要在11A C 上找一点Q ,使得1D Q AP ⊥.可推测11A C 的中点1O 即为所 求的Q 点.因为1111111D O AC D O AA ,⊥⊥,所以11D O ⊥面11ACC A .又AP ?面11ACC A ,故11D O AP ⊥.从而11D O 在平面1AD P 上的射影与AP 垂直. 解法2(1)建立如图8-3所示的空间直角坐标系,则(100)(110)(01)A B P m ,,,,,,,,, 11(010)(000)(111)(001)C D B D ,,,,,,,,,,,. 所以1(110)(001)(11)(110)BD BB AP m AC =--==-=-,,,,,,,,,,,. 又由100AC BD AC BB ==,知,AC 为平面11BB D D 的一个法向量.设AP 与平面11BB D D 所成的角为 θ,则 s i n c o s θθπ?? = - ?2?? 2 2 2AP AC AP AC m = = +. 2 2 2m = +,解得 13m = .故当1 3 m =时,直线AP 与平面11BDD B 所成角的正切值为 (2)若在11A C 上存在这样的点Q ,设此点的横坐标为x ,则 1(11)(10) Q x x D Q x x -=-,,,,,.依题意,对任意的m 要使1D Q 在平面1APD 上的射影垂直于AP ,等价于111 0(1)02 D Q AP AP D Q x x x ?=?-+-=?=⊥.即Q 为11A C 的中点时,满足题设要求.

2020-2021学年高考数学二轮复习:第2部分_八大难点突破_难点2_立体几何中的探索性与存在性问题_有答案

难点二 立体几何中的探索性与存在性问题 (对应学生用书第65页) 数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.立体几何中的探索性与存在性问题实质是对线面平行与垂直性质定理的考查. 探究性与存在性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性与存在性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力. 1.对命题条件的探索 探索条件,即探索能使结论成立的条件是什么.对命题条件的探索常采用以下三种方法: (1)先猜后证,即先观察与尝试给出条件再给出证明; (2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性; (3)把几何问题转化为代数问题,探索出命题成立的条件. 【例1】 如图1,在四棱锥P -ABCD 中,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12 AD ,E 为棱AD 的中点,异面直线PA 与CD 所成的角为90°. 在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由. 【导学号:56394092】

图1 [解] 在梯形ABCD中,AB与CD不平行.如图,延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点. 理由如下: 由已知,知BC∥ED,且BC=ED, 所以四边形BCDE是平行四边形, 从而CM∥EB. 又EB?平面PBE,CM?平面PBE, 所以CM∥平面PBE. (说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点) [思路分析] 证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解

立体几何存在性问题

立体几何存在性问题
未命名
一、解答题 1.在多面体
中,底面
是梯形,四边形
形,

,面
面,
.
.
(1)求证:平面
平面 ;
是正方
(2)设 为线段 上一点,
,试问在线段 上是否存在一点 ,使得
平面 ,若存在,试指出点 的位置;若不存在,说明理由?
(3)在(2)的条件下,求点 到平面 的距离.
2.如图,四棱锥
中,底面
是直角梯形,


,侧面 是等腰直角三角形,
,平面
平面
,点 分别是棱
上的点,平面 平面
(Ⅰ)确定点 的位置,并说明理由;
(Ⅱ)求三棱锥
的体积.
3.如图,在长方体
中,
,点 在棱 上,


点 为棱 的中点,过 的平面 与棱 为菱形.
交于 ,与棱 交于 ,且四边形
(1)证明:平面
平面

(2)确定点 的具体位置(不需说明理由),并求四棱锥
的体积.
4.如图 2,已知在四棱锥
中,平面
平面 ,底面 为矩形.
(1)求证:平面
平面 ;
(2)若 5.如图,三棱锥 点.
的三条侧棱两两垂直,
,试求点 到平面 的距离. , , 分别是棱 , 的中
(1)证明:平面
平面 ;
(2)若四面体 的体积为 ,求线段 的长.
6.如图,在四棱锥
中,



.

相关主题
文本预览
相关文档 最新文档