当前位置:文档之家› 离散数学作业4_集合与关系_关系的性质

离散数学作业4_集合与关系_关系的性质

离散数学作业4_集合与关系_关系的性质

离散数学作业4_集合与关系

——关系的性质

1.判断正误,若错误请说明原因或给出反例。

(1) R是自反的,则R不是反自反的。

(2) R不是反自反的,则R是自反的。

(3) R是反自反的,则R不是自反的。

(4) R不是自反的,则R是反自反的。

2. 考虑任意集合A上的二元关系的集合,如果某一集合运算施于关系后,所得关系仍具有相同的性质,那么说一个关系的性质在该集合运算下是保持的。按照在指出的集合运算下给出的性质是否保持,填充下表。若回答是肯定(Y),则证明之;否则,给出反例。

离散数学形成性考核作业4题目与答案

离散数学形成性考核作业4作业与答案 离散数学综合练习书面作业 要求:学生提交作业有以下三种方式可供选择: 1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档. 3. 自备答题纸张,将答题过程手工书写,并拍照上传. 一、公式翻译题 1.请将语句“小王去上课,小李也去上课.”翻译成命题公式. 设P:小王去上课 Q:小李去上课 则:命题公式P∧Q 2.请将语句“他去旅游,仅当他有时间.”翻译成命题公式. 设P:他去旅游 Q:他有时间 则命题公式为P→Q

3.请将语句“有人不去工作”翻译成谓词公式. 设A(x):x是人 B(x):去工作 则谓词公式为?x(A(x)∧-B(x)) 4.请将语句“所有人都努力学习.”翻译成谓词公式. 设A(x): x是人 B(x):努力学习 则谓词公式为?x(A(x)∧B(x)) 二、计算题 1.设A={{1},{2},1,2},B={1,2,{1,2}},试计算 (1)(A-B);(2)(A∩B);(3)A×B. 解: (1)(A-B)={{1},{2}} (2)(A∩B)={1,2} (3)A×B= {<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1, 2>,<1,{1,2}>,<2,1>,<2,2>,<2,{1,2}>} 2.设A={1,2,3,4,5},R={|x∈A,y∈A且x+y≤4},S={|x∈A,y∈A且x+y<0},试求R,S,R?S,S?R,R-1,S-1,r(S),s(R). 解: R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>} S=空集 R?S=空集 S?R =空集 R-1={<1,1>,<2,1>,<3,1>,<1,2>,<2,2>,<1,3>} S-1=空集 r(S) ={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R) ={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>} 3.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6}. (1) 写出关系R的表示式;(2) 画出关系R的哈斯图; (3) 求出集合B的最大元、最小元.

离散数学作业答案

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月19日前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.命题公式()P Q P →∨的真值是 1 . 2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为 (PQ)R . 3.含有三个命题变项P ,Q ,R 的命题公式PQ 的主析取范式是 (PQR) (PQR) . 4.设P(x):x 是人,Q(x):x 去上课,则命题“有人去上课.” 可符号化为 (x)(P(x) →Q(x)) . 5.设个体域D ={a, b},那么谓词公式)()(y yB x xA ?∨?消去量词后的等值式为 (A(a) A(b)) (B(a) B(b)) . 6.设个体域D ={1, 2, 3},A(x)为“x 大于3”,则谓词公式(x)A(x) 的真值为 . 7.谓词命题公式(x)((A(x)B(x)) C(y))中的自由变元为 . 8.谓词命题公式(x)(P(x) Q(x) R(x ,y))中的约束变元为 X . 三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. 1.解:设P :今天是天晴; 则 P . 2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式. 解:设P :小王去旅游,Q :小李去旅游, 则 PQ . 3.请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式. 解:设P:明天天下雪 。 Q:我去滑雪 则 P Q . 4.请将语句“他去旅游,仅当他有时间.”翻译成命题公式. 7.解:设 P :他去旅游,Q :他有时间, 则 P Q . 5.请将语句 “有人不去工作”翻译成谓词公式. 11.解:设P(x):x 是人,Q(x):x 去工作,

应用离散数学-集合与关系

集合与关系《应用离散数学》 第3章 21世纪高等教育计算机规划教材

目录 3.1 集合及其运算 3.2 二元关系及其运算3.3 二元关系的性质与闭包3.4 等价关系与划分 3.5 偏序关系与拓扑排序3.6 函 数 3.7 集合的等势与基数3.8 多元关系及其应用

集合是现代数学中最重要的基本概念之一,数学概念的建立由于使用了集合而变得完善并且统一起来。集合论已成为现代各个数学分支的基础,同时还渗透到各个科学技术领域,成为不可缺少的数学工具和表达语言。对于计算机科学工作者来说,集合论也是必备的基础知识,它在开关理论、形式语言、编译原理等领域中有着广泛的应用。 本章首先介绍集合及其运算,然后介绍二元关系及其关系矩阵和关系图,二元关系的运算、二元关系的性质、二元关系的闭包,等价关系与划分、函数,最后介绍多元关系及其在数据库中的应用等。

3.1 集合及其运算 3.1.1 基本概念 集合是数学中最基本的概念之一,如同几何中的点、线、面等概念一样,是不能用其他概念精确定义的原始概念。集合是什么呢?直观地说,把一些东西汇集到一起组成一个整体就叫做集合,而这些东西就是这个集合的元素或叫成员。 例3.1 (1)一个班级里的全体学生构成一个集合。 (2)平面上的所有点构成一个集合。 (3)方程 的实数解构成一个集合。 (4)自然数的全体(包含0)构成一个集合,用N表示。 (5)整数的全体构成一个集合,用Z表示。 (6)有理数的全体构成一个集合,用Q表示。 (7)实数的全体构成一个集合,用R表示。

(8)复数的全体构成一个集合,用C表示。 (9)正整数集合Z+,正有理数集合Q+,正实数集合R+。(10)非零整数集合Z*,非零有理数集合Q*,非零实数集合R*。(11)所有n 阶(n≥2)实矩阵构成一个集合,用M n(R)表示,即

离散数学(大作业)与答案

一、请给出一个集合A,并给出A上既具有对称性,又具有反对称性的关系。(10分)解:A={1,2} R={(1,1),(2,2)} 二、请给出一个集合A,并给出A上既不具有对称性,又不具有反对称性的关系。(10分)集合A={1,2,3} A上关系{<1,2>,<2,1>,<1,3>},既不具有对称性,又不具有反对称性 三、设A={1,2},请给出A上的所有关系。(10分) 答:A上的所有关系: 空关系,{<1,1>,<1,2>,<2,1>,<2,2>} {<1,1>} {<1,2>} {<2,1>} {<2,2>} {<1,1>,<1,2>} {<1,1>,<2,1>} {<1,1>,<2,2>} {<1,2>,<2,1>} {<1,2>,<2,2>} {<2,1>,<2,2>} {<1,1>,<1,2>,<2,1>} {<1,1>,<1,2>,<2,2>}

{<1,2>,<2,1>,<2,2>} {<1,1>,<2,1>,<2,2>} 四、设A={1,2,3},问A 上一共有多少个不同的关系。(10分) 设A={1,2,3},A 上一共有2^(3^2)=2^9=512个不同的关系。 五、证明: 命题公式G 是恒真的当且仅当在等价于它的合取范式中,每个子句均至少包含一个原子及其否定。(10分) 证明:设公式G 的合取范式为:G ’=G1∧G2∧…∧Gn 若公式G 恒真,则G ’恒真,即子句Gi ;i=1,2,…n 恒真 为其充要条件。 Gi 恒真则其必然有一个原子和它的否定同时出现在Gi 中,也就是说无论一个解释I 使这个原子为1或0 ,Gi 都取1值。 若不然,假设Gi 恒真,但每个原子和其否定都不同时出现在Gi 中。则可以给定一个解释I ,使带否定号的原子为1,不带否定号的原子为0,那么Gi 在解释I 下的取值为0。这与Gi 恒真矛盾。 因此,公式G 是恒真的当且仅当在等价于它的合取范式中,每个子句均至少包含一个原子及其否定。 六、若G=(P ,L)是有限图,设P(G),L(G)的元数分别为m ,n 。证明:n ≤2m C ,其中2m C 表 示m 中取2的组合数。(10分) 证明:如果G=(P,L)为完全图,即对于任意的两点u 、v (u ≠v ),都有一条边uv ,则此时对于元数为m 的P(G),L(G)的元数取值最大为C m 2。因此,若G=(P,L)为一有限图,设P(G)的元数为m ,则有L(G)

离散数学作业答案完整版

离散数学作业答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

离散数学集合论部分形成性考核书面作 业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数 理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题 目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识 点,重点复习,争取尽快掌握。本次形考书面作业是第一次作业,大家要认真及时地 完成集合论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答 过程,要求本学期第11周末前完成并上交任课教师(不收电子稿)。并在03任务界 面下方点击“保存”和“交卷”按钮,完成并上交任课教师。 一、填空题 1.设集合{1,2,3},{1,2} ==,则P(A)- A B P(B )={{3},{1,3},{2,3},{1,2,3}},A? B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} . 2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 . 3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系, 则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>} . 4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系 R=} ∈ y x∈ y < > = {B , , x , 2 y A x 那么R-1={<6,3>,<8,4>} 5.设集合A={a, b, c, d},A上的二元关系R={, , , },则R具有的性质是没有任何性质. 6.设集合A={a, b, c, d},A上的二元关系R={, , , },若在R中再增加两个元素{,} ,则新得到的关系就具有对 称性. 7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个. 8.设A={1, 2}上的二元关系为R={|x?A,y?A, x+y =10},则R的自反闭 包为 {<1,1>,<2,2>} . 9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含 <1,1>,<2,2>,<3,3> 等元素. 10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是 {<1,a>,<2,b>}或{<1,b>,<2,a>} . 二、判断说明题(判断下列各题,并说明理由.)

离散数学关系性质的C++或C语言判断实验报告

1.【实验目的】 对称: 通过算法设计并编程实现对给定集合上的关系是否为对称关系的判断,加深学生对关系性质的理解,掌握用矩阵来判断关系性质的方法 自反: 通过算法设计并编程实现对给定集合上的关系是否为自反关系的判断,加深学生对关系性质的理解,掌握用矩阵来判断关系性质的方法。 2.【实验内容】 已知关系R 由关系矩阵M 给出,要求判断由M 表示的这个关系是否为对称关 系。假定R 的关系矩阵为:?????? ? ??=1234210330124321M 3.【实验要求】 C 语言编程实现 4.【算法描述】 对称: 从给定的关系矩阵来判断关系R 是否为对称是很容易的。若M (R 的关系矩阵)为对称矩阵,则R 是对称关系;若M 为反对称矩阵,则R 是反对称关系。因为R 为对称的是等价关系的必要条件,所以,本算法可以作为判等价关系算法的子程序给出。 算法实现: (1) 输入关系矩阵M (M 为n 阶方阵); (2) 判断对称性,对于i=2,3,….,n ;j=1,2,……,i-1,若存在m ij =m ji , 则R 是对称的; (3) 判断反对称性; (4) 判断既是对称的又是反对称的; (5) 判断既不是对称的又不是反对称的; (6) 输出判断结果。

自反: 从给定的关系矩阵来断判关系R是否为自反是很容易的。若M(R的关系矩阵)的主对角线元素均为1,则R是自反关系;若M(R的关系矩阵)的主对角线元素均为0,则R是反自反关系;若M(R的关系矩阵)的主对角线元素既有1又有0,则R既不是自反关系也不是反自反关系。本算法可以作为判等价关系算法的子程序给出。 算法实现 (1)输入关系矩阵M(M为n阶方阵)。 (2)判断自反性,对于i=1,2,….,n;若存在m =0,则R不是自反 ii =1,则R是自反的;否则R既不是自反关系也不是的;若存在m ii 反自反关系。 (3)输出判断结果。 源代码 #include void z(); void r(); void main() { int d; while(d) { printf("欢迎使用关系性质的判断系统\n\n 1. 对称关系的判断 2. 自反关系的判断\n\n请输入选项:"); scanf("%d",&d); switch(d){ case 1: r();break; case 2: z();break; case 0: break; }

离散数学作业答案

第一章 1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。请用A 和B表示ECNU不必学习离散数学的二年级的学生的集合。 2.试求: (1)P(φ) (2)P(P(φ)) (3)P(P(P(φ))) 3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个? 能被5整除的有40个, 能被15整除的有13个, ∴能被3或5整除,但不能被15整除的正整数共有 66-13+40-13=80个。 第三章 1.下列语句是命题吗? (1)2是正数吗? (2)x2+x+1=0。 (3)我要上学。 (4)明年2月1日下雨。 (5)如果股票涨了,那么我就赚钱。 2.请用自然语言表达命题(p?→r)∨(q?→r),其中p、q、r为如下命题: p:你得流感了 q:你错过了最后的考试

3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。 4.给出p→(q→s),q,p∨?r?r→s的形式证明。 第四章 1.将?x(C(x)∨?y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同 班同学,个体域是学校全体学生的集合。 解: 学校的全体学生要么自己有电脑,要么其同班同学有电脑。 2.构造?x(P(x)∨Q(x)),?x(Q(x)→?R(x)),?xR(x)??xP(x)的形式证明。 解: ①?xR(x) 前提引入 ②R(e) ①US规则 ③?x(Q(x)→?R(x)) 前提引入 ④Q(e) →?R(e) ③US规则 ⑤?Q (e) ②④析取三段论 ⑥?x(P(x)∨Q(x)) 前提引入 ⑦P(e) ∨Q(e) ⑥US规则 ⑧P(e) ⑤⑦析取三段论 ⑨?x (P(x)) ⑧EG规则 第五章

离散数学作业标准答案

离散数学作业 一、选择题 1、下列语句中哪个是真命题(C )。 A .我正在说谎。 B .如果1+2=3,那么雪是黑色的。 C .如果1+2=5,那么雪是白色的。 D .严禁吸烟! 2、设命题公式))((r q p p G →∧→=,则G 是( C )。 A. 恒假的 B. 恒真的 C. 可满足的 D. 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ??→中的变元x ( C )。 A .是自由变元但不是约束变元 B .既不是自由变元又不是约束变元 C .既是自由变元又是约束变元 D .是约束变元但不是自由变元 4、设A={1,2,3},则下列关系R 不是等价关系的是(C ) A .R={<1,1>,<2,2>,<3,3>} B .R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>} C .R={<1,1>,<2,2>,<3,3>,<1,4>} D .R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>, <3,1>,<3,2>} 5、设R 为实数集,映射σ=R →R ,σ(x )= -x 2+2x-1,则σ是( D )。 A .单射而非满射 B .满射而非单射 C .双射 D .既不是单射,也不是满射 6、下列二元运算在所给的集合上不封闭的是( D ) A. S={2x-1|x ∈Z +},S 关于普通的乘法运算 B. S={0,1},S 关于普通的乘法运算 C. 整数集合Z 和普通的减法运算 D. S={x | x=2n ,n ∈Z +},S 关于普通的加法运算 7、*运算如下表所示,哪个能使({a,b},*)成为含幺元半群( D ) b a b b a a b a * b b b a a a b a * a a b a a a b a * a b b b a a b a * A B C D 8、下列图中是欧拉图的是( A )。

离散数学 作业及答案

2011-2012学年第一学期离散数学作业及参考答案---信息安全10级5-1 1.利用素因子分解法求2545与360的最大公约数。 解:掌握两点:(1) 如何进行素因子分解 从最小素数2的素数去除n。 (2) 求最大公约数的方法 gcd(a,b) = p1min(a1,b1)p2min(a2,b2)pn min(an,bn) 360=2332515090 2545=2030515091 gcd(2545,360) =2030515090=5 2.求487与468的最小公倍数。 解:掌握两点:(1) 如何进行素因子分解 从最小素数2的素数去除n。 (2) 求最小公倍数的方法 lcm(a,b) = p1max(a1,b1)p2max(a2,b2)pn max(an,bn) ab=gcd(a, b)﹡lcm (a, b) 487是质数,因此gcd(487,468)=1 lcm(487,468)= (487*468)/1=487*468=227916 3.设n是正整数,证明:6|n(n+1)(2n+1) 证明:用数学归纳法: 归纳基础:当n=1时,n(n+1)(2n+1)=1*2*3=6,6|6 归纳假设:假设当n=m时,6|m(m+1)(2m+1) 归纳推导:当n=m+1时, n(n+1)(2n+1)=(m+1)(m+1+1)[2(m+1)+1] =(m+1)(m+2)(2m+3) = m(m+1)(2m+3)+2(m+1)(2m+3) = m(m+1)(2m+1+2)+2(m+1)(2m+3) = m(m+1)(2m+1)+2 m(m+1)+ 2(m+1)(2m+3) = m(m+1)(2m+1)+ 2(m+1)(m+2m+3) = m(m+1)(2m+1)+ 2(m+1)(3m+3) = m(m+1)(2m+1)+ 6(m+1)2 因为由假设6|m(m+1)(2m+1)成立。 而6|6(m+1)2 所以6|m(m+1)(2m+1)+ 6(m+1)2 故当n=m+1时,命题亦成立。 所以6| n(n + 1)(2n + 1) 5-2 1 已知 6x ≡7 (mod 23),下列式子成立的是( D ): A. x ≡7 (mod 23) B. x ≡8 (mod 23) C. x ≡6 (mod 23) D. x ≡5 (mod 23) 2 如果a ≡b (mod m) , c是任意整数,则(A ):

离散数学 作业 3~4 答案

『离散数学』课程 作业3: P64:3 某班有25个学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。已知6个会打网球的人中有4人会打排球。求不会打球的人数。 解:直接使用容斥原理。我们做如下设定: A:会打篮球的学生;B:会打排球的学生;C:会打网球的学生; 根据题意:|E|=25,|A|=14,|B|=12,|C|=6,|A∩B|=6,|A∩C|=5,|B∩C|=4,|A∩B∩C|=2 由容斥原理: |A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|=14+12+6-6-5-4+2=19 —————————————————————————————————————— 但相当一部分同学没有直接使用容斥原理, 而是画了文氏图。 使用文氏图的方法,会发现此题存在问题: 表示只会打网球的同学是-1人, 此种情况与实际不符。 这可能是作者的疏忽,该教材第一版中, “已知6个会打网球的人中有4人会打排球。” 一句是写作 “已知6个会打网球的人都会打篮球或排球。” 则用容斥原理或文氏图,都可以得到5的结果。 A:会打篮球的学生;B:会打排球的学生;C:会打网球的学生; 根据题意:|E|=25,|A|=14,|B|=12,|C|=6,|A∩B|=6,|A∩C|=5,|A∩B∩C|=2 因为“会打网球的人都会打篮球或排球。” 所以C =(A∩C)∪(B∩C) 由容斥原理: |C|=|(A∩C)∪(B∩C)| = |(A∩C)|+|(B∩C)|-|(A∩C)∩(B∩C)| 可知|(B∩C)|= |C|-|(A∩C)|+|(A∩C)∩(B∩C)| = 6-5+2=3 |A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C| =14+12+6-6-5-3+2=20

离散数学(第2版)_在线作业_4

离散数学(第2版)_在线作业 _4 交卷时间:2017-01-12 14:00:56 一、单选题 1. (5分) ? A. q ∧┐q ? B. p →┐q ? C. p → (p ∨q) ? D. (p ∨┐p)→q 纠错 得分: 5 知识点: 离散数学(第2版) 收起解析 答案 C 解析 2. (5分) ? A. ? B. ? C. ? D. 下列命题公式为重言式的是( )。 设,下列式子正确的是( )。

纠错 得分: 5 知识点: 离散数学(第2版 ) 收起解析 答案 C 解析 3. (5分) ? A. ? B. ? C. ? D. 纠错 得分: 5 知识点: 离散数学(第2版) 收起解析 答案 D 解析 4. (5分) ? A. ? B. ? C. 下列是两个命题变元的极小项的是( )。 设G 是有个顶点, 条边和个面的连通平面图,则 等于( )。

? D. 纠错 得分: 5 知识点: 离散数学(第2版) 收起解析 答案 C 解析 5. (5分) ? A. 满射函数 ? B. 非单射非满射函数 ? C. 双射函数 ? D. 单射函数 纠错 得分: 5 知识点: 离散数学(第2版) 收起解析 答案 C 解析 6. (5分) 设R 是实数集合,函数,则是( )。

? A. 11,3,4 ? B. 10,4,3 ? C. 11,3,5 ? D. 12,3,6 纠错 得分: 5 知识点: 离散数学(第2版) 收起解析 答案 A 解析 7. (5分) ? A. x*y=gcd(x,y),即x,y 的最大公约数 ? B. x*y=lcm(x,y),即x,y 的最小公倍数 ? C. x*y=max{x,y} ? D. x*y=min{x,y} 纠错 得分: 5 知识点: 离散数学(第2版) 下列平面图的三个面的次数分别是( )。 设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A 是不封闭的?( )。

离散数学 集合与关系 函数 习题 测验

一、已知A、B、C是三个集合,证明(A∪B)-C=(A-C)∪(B-C) 证明:因为 x∈(A∪B)-C?x∈(A∪B)-C ?x∈(A∪B)∧x?C ?(x∈A∨x∈B)∧x?C ?(x∈A∧x?C)∨(x∈B∧x?C) ?x∈(A-C)∨x∈(B-C) ?x∈(A-C)∪(B-C) 所以,(A∪B)-C=(A-C)∪(B-C)。 二、设R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R),并作出它们及R的关系图。 解:r(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>} R2=R5={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} t(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>, <5,5>} 三、证明等价关系 设R是集合A上的一个具有传递和自反性质的关系,T是A上的关系,使得∈T?∈R且∈R,证明T是一个等价关系。 证明因R自反,任意a∈A,有∈R,由T的定义,有∈T,故T自反。 若∈T,即∈R且∈R,也就是∈R且∈R,从而∈T,故T对称。 若∈T,∈T,即∈R且∈R,∈R且∈R,因R 传递,由∈R和∈R可得∈R,由∈R和∈R可得∈R,由∈R和∈R可得∈T,故T传递。 所以,T是A上的等价关系。 四、函数 设A、B、C、D是集合,f是A到B的双射,g是C到D的双射,令h:A×C→B×D且?∈A×C,h()=。证明h是双射。 证明:1)先证h是满射。 ?∈B×D,则b∈B,d∈D,因为f是A到B的双射,g是C到D的双射,所以存在a∈A,c∈C,使得f(a)=b,f(c)=d,亦即存在∈A×C,使得h()=

《离散数学》作业参考答案

《离散数学》作业参考答案一、选择或填空: 1. B C D 2. A, F B,F C,F D,T 3. 2n-2 4. I A 5.单位元,1 6. A 7. A D 8. (1) P→?Q (2) P??Q 9.偶数 10.自反性、对称性和传递性 11. 1,单位元,0 12.所有边一次且恰好一次 13. B C D E F 14. B D 15. 5,10 16. D 17. B 18. D 19. A 20.(1)R R={ 〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉} (2)R-1={〈1,2〉,〈2,1〉,〈3,2〉,〈4,3〉} 21. m=n-1 22. 9,3 23. A 24. D 25 (1) 26 (2) 27 (3) 28 (1) 29 (1) 30 (3) 31 (2) 32 (3) 33 (2) 34 (4)

35 (2) 36 (1) 二、求下列各公式的主析取范式和主合取范式 解:1. P∨?Q (主合取范式) ?(P∧(?Q∨Q))∨((?P∨P)∧?Q) ?(P∧?Q)∨(P∧Q)∨(?P∧?Q)∨(P∧?Q) ?(P∧?Q)∨(P∧Q)∨(?P∧?Q)(主析取范式) 2.Q→( P∨?R) ??Q∨P∨?R(主合取范式) ?(Q→( P∨?R)) ?(?P∨?Q∨?R)∧(?P∨?Q∨R)∧(?P∨Q∨?R)∧(?P∨Q∨R)∧(P∨?Q∨R)∧ (P∨Q∨?R)∧(P∨Q∨R)(原公式否定的主合取范式) Q→( P∨?R) ?(P∧Q∧R)∨(P∧Q∧?R)∨(P∧?Q∧R)∨(P∧?Q∧?R)∨(?P∧Q∧?R)∨(?P∧?Q∧R)∨(?P∧?Q∧?R)(主析取范式) 3. P→Q??P∨Q(主合取范式) ?(?P∧(Q∨?Q))∨((?P∨P)∧Q) ?(?P∧Q)∨(?P∧?Q)∨(?P∧Q)∨(P∧Q) ?(?P∧Q)∨(?P∧?Q)∨(P∧Q)(主析取范式) 4.?(P→Q)∨(R∧P)??(?P∨Q)∨(R∧P) ?(P∧?Q)∨(R∧P)(析取范式) ?(P∧?Q∧(R∨?R))∨(P∧(?Q∨Q) ∧R) ?(P∧?Q∧R)∨(P∧?Q∧?R)∨(P∧?Q∧R)∨(P∧Q∧R) ?(P∧?Q∧R)∨(P∧?Q∧?R)∨(P∧Q∧R)(主析取范式) ?(?(P→Q)∨(R∧P)) ?(P∧Q∧?R)∨(?P∧Q∧R)∨(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R) (原公式否定的主析取范式) ?(P→Q)∨(R∧P) ?(?P∨?Q∨R)∧(P∨?Q∨?R)∧(P∨Q∨?R)∧(P∨Q∨R)∧(P∨?Q∨R)(主合取范式)5.P∧Q(主析取范式) ?(P∨(Q∧?Q))∧((P∧?P)∨Q) ?(P∨?Q)∧(P∨Q)∧(P∨Q)∧(?P∨Q) ?(P∨?Q)∧(P∨Q)∧(?P∨Q)(主合取范式) 6 Q→(P∨?R) ??Q∨P∨?R(主合取范式) ?(Q→(P∨?R))

组合数学作业答案1-2章2016

组合数学作业 第一章引言 Page 13, ex3,4,7,30 ex3. 想象一座有64个囚室组成的监狱,这些囚室被排列成8 8棋盘。所有相邻的囚室间都有门。某角落处意见囚室例的囚犯被告知,如果他能够经过其它每一个囚室正好一次之后,达到对角线上相对的另一间囚室,那么他就可以获释。他能获得自由吗? 解:不能获得自由。 方法一:对64个囚室用黑白两种颜色染色,使得横和竖方向相邻的囚室颜色不同。则对角线上两个囚室颜色为同黑或同白。总共偶数个囚室,若能遍历且不重复,则必然是黑出发白结束,矛盾。 方法二:64个囚室,若要经过每个囚室正好一次,需要走63步,即奇数步。 不妨假设该囚犯在第1行第1列,那么到第8行第8列,横着的方向需要走奇数步,竖着的方向需要走奇数步,即总共需要偶数步。 所以不能恰好经过每个囚室一次到达对角线上的囚室。 ex4. (a) 设f(n)是用多米诺牌(2-牌)对2×n棋盘作完美覆盖的个数。估计一下f(1),f(2),f(3),f(4)和f(5). 试寻找(或证明)这个计数函数f满足的简单关系。利用这个关系计算f(12)。 (b) 设g(n)是用多米诺牌(2-牌)对3×n棋盘作完美覆盖的个数。估计g(1),g(2),…,g(6). 解:(a) f(1)=1, f(2)=2, f(3)=3, f(n+2)=f(n+1)+f(n) f(4)=f(3)+f(2)=5, f(5)=f(4)+f(3)=8 f(6)=f(5)+f(4)=13 f(7)=f(6)+f(5)=21 f(8)=f(7)+f(6)=34 f(9)=f(8)+f(7)=55 f(10)=f(9)+f(8)=89 f(11)=f(10)+f(9)=144 f(12)=f(11)+f(10)=233 (b) g(1)=0, g(2)=3, g(3)=0, g(4)=9+2=11, g(n+4)=4g(n+2)-g(n), g(5)=0, g(6)=41. ex7. 设a和b是正整数,且a是b的因子。证明m×n棋盘有a×b的完美覆盖当且仅当a 既是m又是n的因子,而b是m或n的因子。(提示: 把a×b牌分割成a个1×b牌。) 解:充分性。当a既是m又是n的因子,而b是m或n的因子,则m×n棋盘有a×b的平凡完美覆盖。 必要性。假设m×n棋盘有a×b牌的完美覆盖。则m×n棋盘必有b牌的完美覆盖。根据书中的定理,b是m的因子或n的因子。 下面证明a既是m的因子又是n的因子。 方法一: 因为a是b的因子,所以a×b牌可以分割成b/a个a×a牌。m×n棋盘有a×a的完美覆盖,则必然有a×a牌的完美覆盖。而a×a牌是正方形的,所以只有唯一的一种平凡覆盖方式。从而m是a的倍数,n也是a的倍数。 方法二: 因为a是b的因子,不妨设b=ka。由m×n棋盘有a×b牌的完美覆盖,可任取一个完美覆盖。设第一行的n个方格由p个a×b牌和q个b×a牌盖住,则有n=pb+qa=(pk+q)a,所以n是a的倍数。同理,m也是a的倍数。

离散数学形成性考核作业4答案教案资料

1. 设有向图(a)、(b)、(c)与(d)如图所示,则下列结论成立的是( ). A. (a)是强连通的 B. (b)是强连通的 C. (c)是强连通的 D. (d)是强连通的 2. 设有向图(a)、(b)、(c)与(d)如图所示,则下列结论成立的是( ). A. (a)是弱连通的 B. (b)是弱连通的 C. (c)是弱连通的 D. (d)是弱连通的 3. 设无向图G的邻接矩阵为则G的边数 为( ). A. 1 B. 6 C. 7 D. 14 4. 设无向图G的邻接矩阵为则G的边数为 ( ). A. 6 B. 5 C. 4

D. 3 5. 已知无向图G的邻接矩阵为则G有 (). A. 5点,8边 B. 6点,7边 C. 6点,8边 D. 5点,7边 6. 如图所示,以下说法正确的是( ). A. e是割点 B. {a,e}是点割集 C. {b, e}是点割集 D. {d}是点割集 7. 如图所示,以下说法正确的是( ) . A. {(a, e)}是割边 B. {(a, e)}是边割集 C. {(a, e) ,(b, c)}是边割集 D. {(d, e)}是边割集 8. 图G如图所示,以下说法正确的是( ).

A. a是割点 B. {b,c}是点割集 C. {b, d}是点割集 D. {c}是点割集 9. 图G如图所示,以下说法正确的是( ) . A. {(a, d)}是割边 B. {(a, d)}是边割集 C. {(a, d) ,(b, d)}是边割集 D. {(b, d)}是边割集 10. 设图G=,v V,则下列结论成立的是 ( ) . A. deg(v)=2|E| B. deg(v)=|E| C. D. 11. 设完全图K n有n个结点(n 2),m条边,当()时,K n中存在欧拉回路. A. m为奇数 B. n为偶数 C. n为奇数 D. m为偶数 12. 若G是一个汉密尔顿图,则G一定是( ).

离散数学第一次作业参考答案

4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q)) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 14.在自然推理系统P中构造下面推理的证明: (4)前提:q→p,q?s,s?t,t∧r 结论:p∧q 证明: ②t∧r 前提引入 ②t ①化简律 ③q?s 前提引入 ④s?t 前提引入 ⑤q?t ③④等价三段论 ⑥(q→t)∧(t→q) ⑤置换 ⑦(t→q)⑥化简 ⑧q ②⑥假言推理 ⑨q→p 前提引入 ⑩p ⑧⑨假言推理 ○11p∧q ⑧⑩合取 P59. 18. 在自然推理系统P中构造下面推理证明

(1)如果今天是星期六,我们就要到颐和园或圆明园去玩,如果颐和园游人太多,我们就不去颐和园玩,今天是周末颐和园游人太多,所以我们去圆明园玩。 证明:设p:今天是星期六,q:我们到颐和园玩,r:我们到圆明园玩,s:颐 和园游人太多 前提:p → (q∨r), s →?q ,p ,s 结论:r 推理:① s →?q 前提引入 ② s 前提引入 ③?q ①②假言推理 ④ p 前提引入 ⑤ p → (q∨r) 前提引入 ⑥ q∨r ④⑤假言推理 ⑦ r ③⑥析取三段论 P86. 22. 在自然推理系统N£中,构造下列推理的证明。 (1)偶数都能被2整除。6是偶数。所以6能被2整除。 设:F(x):x为偶数,G(x):x能被2整除,a:6 前提:?x(F(x) →G(x)), F(a) 结论:G(a) 证明: ①任意x(F(x)—>G(x))前提引入 ②F(a)—>G(a)①全称量词消去规则 ③F(a)前提引入 ④G(a)假言推理

离散数学图论部分形成性考核书面作业4答案

离散数学作业4 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 一、填空题 1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15 . 2.设给定图G(如右由图所示),则图G的点割集是 {f} . 3.设G是一个图,结点集合为V,边集合为E,则 G的结点度数之和等于边数的两倍. 4.无向图G存在欧拉回路,当且仅当G连通且等于出 度. 5.设G=是具有n个结点的简单图,若在G中每一对结点度数之和大于等于n-1 ,则在G中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为W(G-V1) ≤∣V1∣. 7.设完全图K n 有n个结点(n≥2),m条边,当n为奇数时,K n 中存在欧拉回路.姓名:学号:得分:

8.结点数v与边数e满足e=v-1 关系的无向连通图就是树. 9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去 4 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 5 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.. (1) 不正确,缺了一个条件,图G应该是连通图,可以找出一个反例,比如图G是一个有孤立结点的图。 2.如下图所示的图G存在一条欧拉回路. (2) 不正确,图中有奇数度结点,所以不存在是欧拉回路。 3.如下图所示的图G不是欧拉图而是汉密尔顿图. 解:正确 因为图中结点a,b,d,f的度数都为奇数,所以不是欧拉图。

国开离散数学作业及答案

2018年国开离散数学作业2及答案 离散数学集合论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论 部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试 的题型(除单项选择题外)安排练习题目,目的是通过综合性书 面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重 点复习,争取尽快掌握。本次形考书面作业是第一次作业,大家 要认真及时地完成集合论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工 整,解答题要有解答过程,要求2010年11月7日前完成并上交 任课教师(不收电子稿)。并在03任务界面下方点击“保存” 和“交卷”按钮,完成并上交任课教师。 一、填空题 1.设集合{1,2,3},{1,2}A B ==,则 P (A )-P (B )={{1,2},{2,3},{1,3},{1,2,3}},A B ={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>}. 2.设集合A 有10个元素,那么A 的幂集合P (A )的元素个 数为1024. 3.设集合A ={0, 1, 2, 3},B ={2, 3, 4, 5},R 是A 到B 的二元 关系, },,{B A y x B y A x y x R ?∈∈∈><=且且 则R 的有序对集合为 {<2,2>,<2,3>,<3,2>,<3,3>} . 姓 名: 学 号: 得 分: 教师签名:

4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系 R=} y y x∈ = < > ∈ x x , , , 2 {B A y 那么R-1={<6,3>,<8,4>} 5.设集合A={a,b,c,d},A上的二元关系R={, , , },则R具有的性质是反自反性. 6.设集合A={a,b,c,d},A上的二元关系R={, , , },若在R中再增加两个元素, ,则新得到的关系就具有对称性. 7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R -R2中自反关系有2个. 1 8.设A={1,2}上的二元关系为R={|x A, y A,x+y=10},则R的自反闭包为{<1,1>,<2,2>}. 9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R 中至少包含<1,1>,<2,2>,<3,3>等元素. 10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是 {<1,a>,<2,b>}或{<1,b>,<2,a>}. 二、判断说明题(判断下列各题,并说明理由.) 1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则 (1) R是自反的关系;(2) R是对称的关系. 解:(1) 结论不成立. 因为关系R要成为自反的,其中缺少元素<3, 3>. (2) 结论不成立. 因为关系R中缺少元素<2, 1>.

(完整版)离散数学作业答案一

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、 数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练 习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄 弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要 认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有 解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。并在 07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.命题公式()P Q P →∨的真值是 T 或1 . 2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如 果他生病或出差了,我就同意他不参加学习”符号化的结果为 (P ∨Q)→R . 3.含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 )()(R Q P R Q P ?∧∧∨∧∧ . 4.设P (x ):x 是人,Q (x ):x 去上课,则命题“有人去上课.” 可符号化为 ))()((x Q x P x ∧? . 5.设个体域D ={a , b },那么谓词公式)()(y yB x xA ?∨?消去量词后的等值式为 ))()(())()((b B a B b A a A ∧∨∨ . 6.设个体域D ={1, 2, 3},A (x )为“x 大于3”,则谓词公式(?x )A (x ) 的真值 为 F 或0 . 7.谓词命题公式(?x )((A (x )∧B (x )) ∨C (y ))中的自由变元为 y . 8.谓词命题公式(?x )(P (x ) →Q (x ) ∨R (x ,y ))中的约束变元为 x . 三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. P 。,P 则今天是天晴设答::

相关主题
文本预览
相关文档 最新文档