当前位置:文档之家› 三角函数恒等变换证明积化和差经典例题

三角函数恒等变换证明积化和差经典例题

三角函数恒等变换证明积化和差经典例题
三角函数恒等变换证明积化和差经典例题

求证:tan

23x - tan 21x =x

x x 2cos cos sin 2+ 思路分析:本题的关键是角度关系:x=23x -2

1x , 右式=x x x x 2

1cos 23cos 2)2123sin(2-=x x x x x x 21cos 23cos 21sin 23cos 21cos 23sin - = tan 23x - tan 21x 。

αααα22sin cos cos sin 21--=α

αtan 1tan 1+- 思路分析:将左式分子中“1”用“sin 2α+cos 2

α”替换,

左边=)

sin )(cos sin (cos )cos (sin 2

αααααα+--=ααααsin cos )cos (sin +--=ααtan 1tan 1+-=右边

2

.在△ABC 中,求证:

sin2A +sin2B -sin2C =2sin A sin B sin C

证明:sin2A +sin2B -sin2C

=sin2(B +C )+ -

=sin2(B +C )+ (cos2C -cos2B )

=sin2(B +C )+sin(B +C )sin(B -C )

=sin(B +C )[sin(B +C )+sin(B -C )]

=sin A ·2sin B sin C =2sin A sin B sin C .

3.

这一类恒等式可与数学求和结合起来,一般拆积化和差法。

求cosx+cos2x+…+cosnx=2

sin 2sin 21cos

x x n x n + 题目分析:积化和差可得

左边=21[(sin 23x -sin 2x )+(sin 25x -sin 2

3x )+…+(sin 2)12(x n +-sin 2)12(x n -)] =21(sin 2)12(x n +- sin 2x )=cos 2)1(x n +sin 2

nx

2sin 2xsin 212n cos x 2n xsin 21n s 22

x 2sin 1)2sin -x 212n sin (2x 2sin 1)21-2n sin -x 212n sin ()23x sin 25x (sin )2x sin -23x (sin 2x 2sin

1cosnx)2x sin cosx 2x sin cosx 2x (sin 2

x sin 1x x n co x x +=+?=+=

??????++???+-+=+???++= 2 sin20)cos40sin202sin402cos20 2cos40- sin20

)cos30sin10sin30(cos102cos20 2cos40- sin20

)sin103(cos10cos20 2cos40- sin20

cos20sin103cos10cos20 2cos40- cos70

sin70sin103 sin20cos10cos20 2cos40-tan70sin103cos10sin20

cos20=-=+=+=+=+=+

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

(完整版)三角函数恒等变换高一

三角函数恒等变换 ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αααβα αβααβα αα αα=±=???→=-↓=-=-±±= ?-↓= -m m 说明:和差角公式和二倍角公式主要用于诱导公式无法使用的复合角求值问题,对于已知部分,要尽量和所求部分找出角度之间的关系。公式优先级:二倍角》诱导公式》和差角。 题型一,和差角公式的直接应用 分为展开计算和合并计算两类。对于展开计算即给角求角问题,无论所给的是否为单角,一律看成单角并用其凑出所求角;合并计算针对于给出正余弦的和差式,要想法朝角度的和差角展开式式凑,具体为先统一为两角再合并。 1计算: (1)??+??20sin 80sin 20cos 80cos = ; (2)??+??55cos 10cos 35cos 80cos = ; (3)cos 5πcos 103π-sin 5πsin 103π= ; (4)-sin 3πcos 6π+sin 6πcos 3π =__________; (5) sin 2πcos 6π-cos 2πsin 6π = _________ ; (6)cos 3πcos 6π+sin 6πsin 3π =____________; (7)cos 4πcos 2π-sin 2πsin 4 π =_____________;

三角函数常用公式以及证明

三角函数公式和相关证明 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示, 即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么i=h/l=tan a. 锐角三角函数公式 正弦:sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切 tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式

锐角三角函数经典总结

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记 作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A = sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

高考真题 三角函数的概念、诱导公式与三角恒等变换

三角函数的概念、诱导公式与三角恒等变换 2019年 1.(2019北京9)函数f (x )=sin 2 2x 的最小正周期是 ________. 2.(2019全国Ⅲ理12)设函数()f x =sin (5 x ωπ + )(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0, 10 π )单调递增 ④ω的取值范围是[1229 510 ,) 其中所有正确结论的编号是 A . ①④ B . ②③ C . ①②③ D . ①③④ 3.(2019天津理7)已知函数()sin()(0,0,||)f x A x A ω?ω?π=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π ,且π4g ??= ???3π8f ?? = ??? A.2- B. D.2 4.(2019全国Ⅱ理10)已知α∈(0, 2 π),2sin 2α=cos 2α+1,则sin α= A . 15 B . 5 C . 3 D 5 5.(2019江苏13)已知tan 2 π3tan 4αα=-? ?+ ?? ?,则πsin 24α??+ ?? ?的值是_________. 6.(2019浙江18)设函数()sin ,f x x x =∈R . (1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;

(2)求函数22[()][()]124 y f x f x ππ =+ ++ 的值域. 2010-2018年 一、选择题 1.(2018全国卷Ⅲ)若1 sin 3 α=,则cos2α= A . 89 B . 79 C .79 - D .89 - 2.(2016年全国III )若3 tan 4 α= ,则2cos 2sin 2αα+= A . 6425 B .4825 C .1 D .1625 3.(2016年全国II )若3 cos( )45π α-=,则sin 2α=( ) A .7 25 B .15 C .15- D .725- 4.(2015新课标Ⅰ)sin 20cos10cos160sin10-= A . B C .12- D .1 2 5.(2015重庆)若tan 2tan 5 π α=,则 3cos()10sin() 5 π απ α- -= A .1 B .2 C .3 D .4 6.(2014新课标Ⅰ)若0tan >α,则 A .0sin >α B . 0cos >α C . 02sin >α D . 02cos >α 7.(2014新课标Ⅰ)设(0, )2π α∈,(0,)2 π β∈,且1sin tan cos βαβ+= ,则 A .32 π αβ-= B .22 π αβ-= C .32 π αβ+= D .22 π αβ+= 8.(2014江西)在ABC ?中,内角A ,B ,C 所对应的边分别为,,,c b a ,若32a b =,则 2222sin sin sin B A A -的值为( ) A .19- B . 13 C .1 D .72

三角函数公式的推导及公式大全

诱导公式 目录·诱导公式 ·诱导公式记忆口诀 ·同角三角函数基本关系 ·同角三角函数关系六角形记忆法 ·两角和差公式 ·倍角公式 ·半角公式 ·万能公式 ·万能公式推导 ·三倍角公式 ·三倍角公式推导 ·三倍角公式联想记忆 ·和差化积公式 ·积化和差公式 ·和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα

tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

三角函数恒等变换复习

三角函数 1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β,(C (α-β)) cos(α+β)=cos αcos β-sin αsin β,(C (α+β)) sin(α-β)=sin αcos β-cos αsin β,(S (α-β)) sin(α+β)=sin αcos β+cos αsin β,(S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β ,(T (α-β)) tan(α+β)=tan α+tan β1-tan αtan β .(T (α+β)) 2.二倍角公式 sin 2α=2sin αcos α; cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α . 3.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2 . 4.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中sin φ=b a 2+ b 2,cos φ= a a 2+ b 2. 练习题: 1.sin 18°cos 27°+cos 18°sin 27°的值是( ) A.22 B.12 C.32 D .-22 2.(2016·全国丙卷)若tan α=34 ,则cos 2α+2sin 2α等于( ) A.6425 B.4825 C .1 D.1625 3.在△ABC 中,A =π4,cos B =1010 ,则sin C 等于( ) A.255 B .-255 C.55 D .-55 4.若函数f (x )=-sin 2 x +12 (x ∈R),则f (x )是( ) A .最小正周期为π2 的奇函数 B .最小正周期为π的奇函数

三角形内有关角的三角函数恒等式的证明

三角形内有关角的三角函数恒等式的证明 张思明 课型和教学模式:习题课,“导学探索,自主解决”模式 教学目的: (1)掌握利用三角形条件进行角的三角函数恒等式证明的主要方法,使学生熟悉三角变换的一些常用方法和技巧(如定向变形,和积互换等)。 (2)通过自主的发现探索,培养学生发散、创造的思维习惯和思维能力,体验数形结合、特殊一般转化的数学思想。并利用此题材做学法指导。 (3)通过个人自学、小组讨论、互相启发、合作学习,培养学生自主与协作相结合的学习能力和敢于创新,不断探索的科学精神。 教学对象:高一(5)班 教学设计: 一.引题:(A,B环节) 1.1复习提问:在三角形条件下,你能说出哪些有关角的三角恒等式? 拟答: , …… , , …… 这些结果是诱导公式,的特殊情况。 1.2今天开始的学习任务是解决这类问题:在三角形条件下,有关角的三角恒等式的证明。学习策略是先分若干个学习小组(四人一组),分头在课本P233---P238,P261-266的例题和习题中,找出有三角形条件的所有三角恒等式。 1.3备考:期待找出有关△ABC内角A、B、C的三角恒等式有: (1)P233:例题10:sinA+sinB+sinC=4cosA/2cosB/2cosC/2

(2)P238:习题十七第6题:sinA+sinB-sinC=4sinA/2sinB/2cosC/2. (3) cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2. (4) sin2A+sin2B+sin2C=4sinAsinBsinC. (5)cos2A+cos2B+cos2C=-1-4cosAcosBcosC. (6)P264:复参题三第22题:tgA+tgB+tgC = tgAtgBtgC. (7) 也许有学生会找出:P264--(23)但无妨。 1.4请各组学生分工合作完成以上恒等式的证明: 提示:建议先自学例题10,注意题目之间的联系,以减少证明的重复劳动。 二.第一层次的问题解决(C,D环节) 2.1让一个组上黑板,请学生自主地挑出有“代表性”的3题(不超过3题)书写证明过程。然后请其他某一个组评判或给出不同的证法。 证法备考:(1)左到右:化积---->提取----->化积。 (2)左到右:化积---->提取----->化积sin(A+B)/2=cosC/2 (3)左到右:化积--->--->留“1”提取-->化积 (4)左到右:化积--->提取---->化积sin2C=sin2(A+B) (5)左到右: (6)左到右:tgA+tgB=tg(A+B)(1-tgAtgB) (7)左到右:通分后利用(4)的结果 2.2教师注意记录学生的“选择”,问:为什么认为你们的选择有代表性? 体现学法的“暗导”。选择的出发点可以多种多样,如从品种、不同的证法、逻辑源头等考虑。 2.3另一组学生判定结果或给出其他解法,(解法可能多样。)也可对前一组学生所选择书写的“例题”的“代表性”进行评价。教师记录之。注意学生的书写中的问题(不当的跳步等……)。 2.4其他证法备考: 1.如右到左用积化和差,(略) 2.利用已做的习题:

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

三角函数恒等变换练习题与答案详解

两角和与差的正弦、余弦、正切 1.利用两角和与差的正弦、余弦、正切公式进行三角变换; 2.利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键. 知识点回顾 1. 两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β 1+tan αtan β (T α-β) tan(α+β)=tan α+tan β 1-tan αtan β (T α+β) 2. 二倍角公式 sin 2α=ααcos sin 2; cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α 1-tan 2α . 3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如 T α±β可变形为 tan α±tan β=tan(α±β)(1?tan_αtan_β), tan αtan β=1-tan α+tan βtan α+β=tan α-tan β tan α-β-1. 4. 函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)= a 2+ b 2sin(α+φ)或f (α)=a 2+b 2cos(α -φ),其中φ可由a ,b 的值唯一确定.

三角函数恒等式证明的基本方法

三角函数恒等式证明的基本方法 三角函数恒等式是指对定义域内的任何一个自变量x 都成立的等式;三角函数恒等式的证明问题是指证明给定的三角函数等式对定义域内的任何一个自变量x 都成立的数学问题。这类问题主要包括:①三角函数等式一边较繁杂,一边较简单;②三角函数等式的两边都较繁杂两种类型。那么在实际解答三角函数恒等式的证明问题时,到底应该怎样展开思路,它的基本方法如何呢?下面通过典型例题的解析来回答这个问题。 【典例1】解答下列问题: 1、证明下列三角函数恒等式: (1)4222sin sin cos cos 1αααα++=; (2) 22(cos 1)sin 22cos ααα-+=-; (3)若sin α.cos α<0,sin α.tan α<0, =±2tan 2 α 。 【解析】 【知识点】①同角三角函数的基本关系;②二次根式的定义与性质;③分式的定义与性质。 【解题思路】(1)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(2)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(3)对左边运用分式的性质,同角三角函数的基本关系和二次根式的性质,通过运算就

可得到右边,从而证明恒等式。 【详细解答】(1)Q 左边=sin 2α( sin 2α+ cos 2α)+ cos 2α= sin 2α+ cos 2α=1 =右边,∴4222sin sin cos cos 1αααα++=;(2)Q 左边= cos 2α-2 cos α+1+ sin 2α =2-2 cos α=右边,∴22(cos 1)sin 22cos ααα-+=-;(3) Q sin α.cos α<0,sin α.tan α<0,∴α是第二象限的角,?2 α 是第一象限或第三象限的角,①当 2 α 是第一象限的角时,左边 |1sin |2|cos | 2α α+- |1sin |2|cos | 2 α α-=1sin 1sin 2 2cos 2 α α α +-+=2tan 2α;②当2 α是第一象限的角时,左边 |1sin |2|cos |2α α+-|1sin | 2|cos | 2α α- = 1sin 1sin 2 2cos 2 α α α --+-=-2tan 2α;?左边=±2tan 2 α=右边,∴若若 sin α.cos α<0,sin α.tan α<0 ±2tan 2α。 2、求证:22sin()sin() sin cos αβαβαβ+-=1-22tan tan βα ; 【解析】

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

高中数学函数、三角函数、三角恒等变换公式

函数、三角函数、三角恒等变换重要公式 1. B A = {|,}x x A x B ∈∈或 ;B A = {|,}x x A x B ∈∈且; {|,}U C A x x U x U =∈?且 2、 当n 为奇数时, a a n n =;当n 为偶数时,a a n n =. 3、 ⑴m n m n a a =()1,,,0*>∈>m N n m a ; ⑵()01 >= -n a a n n ; 4、 运算性质: ⑴()Q s r a a a a s r s r ∈>=+,,0;⑵()()Q s r a a a rs s r ∈>=,,0;⑶()()Q r b a b a ab r r r ∈>>=,0,0. 5、指数函数解析式:()1,0≠>=a a a y x 6、指数函数性质: 7、指数与对数互化式:log x a a N x N =?=; 8、对数恒等式:log a N a N = 9、基本性质:01log =a ,1log =a a . 10、运算性质:当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=;⑵N M N M a a a log log log -=?? ? ??;⑶M n M a n a log log =. 11、换底公式:a b b c c a log log log = ()0,1,0,1,0>≠>≠>b c c a a . 12、重要公式:log log n m a a m b b n = 13、倒数关系:a b b a log 1 log = ()1,0,1,0≠>≠>b b a a .

三角函数万能公式及推导过程

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。接下来分享三角函数万能公式及推导过程。 三角函数万能公式 (1)(sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 (4)tanA+tanB+tanC=tanAtanBtanC(任意非直角三角形) 三角函数万能公式推导过程 由余弦定理:a^2+b^2-c^2-2abcosC=0 正弦定理:a/sinA=b/sinB=c/sinC=2R 得(sinA)^2+(sinB)^2-(sinC)^2-2sinAsinBcosC=0 转化1-(cosA)^2+1-(cosB)^2-[1-(cosC)^2]-2sinAsinBcosC=0 即(cosA)^2+(cosB)^2-(cosC)^2+2sinAsinBcosC-1=0 又cos(C)=-cos(A+B)=sinAsinB-cosAcosB 得(cosA)^2+(cosB)^2-(cosC)^2+2cosC[cos(C)+cosAcosB]-1=0 (cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC 得证(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC 同角三角函数的关系公式 倒数关系公式 ①tanαcotα=1 ②sinαcscα=1 ③cosαsecα=1 商数关系公式 tanα=sinα/cosα

cotα=cosα/sinα平方关系公式 ①sin2α+cos2α=1 ②1+tan2α=sec2α ③1+cot2α=csc2α

初三锐角三角函数知识点总结典型例题练习

三角函数专项复习 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性: 当0°<α<90°时,tan α随α的增大而增大, A 90B 90∠-?=∠?=∠+∠得由B A 对 边 C

7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 8、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做 坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°(东北方向) , 南偏东45°(东南方向), 南偏西45°(西南方向), 北偏西45°(西北方向)。 :i h l =h l α

锐角三角函数经典总结

锐角三角函数经典总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做 A ∠的正弦,记作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A =sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

相关主题
文本预览
相关文档 最新文档