当前位置:文档之家› 2013高中数学精讲精练(新人教A版)第06章 不等式

2013高中数学精讲精练(新人教A版)第06章 不等式

2013高中数学精讲精练(新人教A版)第06章 不等式
2013高中数学精讲精练(新人教A版)第06章 不等式

2013高中数学精讲精练第六章不等式

【知识图解】

【方法点拨】

不等式是高中数学的重要内容之一,不等式的性质是解、证不等式的基础,两个正数的算术平均数不小于它们的几何平均数的定理及其变形在不等式的证明和解决有关不等式的实际问题中发挥着重要的作用.解不等式是研究方程和函数的重要工具,不等式的概念和性质涉及到求最大(小)值,比较大小,求参数的取值范围等,不等式的解法包括解不等式和求参数,不等式的综合题主要是不等式与集合、函数、数列、三角函数、解析几何、导数等知识的综合,综合性强,难度较大,是高考命题的热点,也是高考复习的难点.

1.掌握用基本不等式求解最值问题,能用基本不等式证明简单的不等式,利用基本不等式求最值时一定

要紧扣“一正、二定、三相等”这三个条件。

2.一元二次不等式是一类重要的不等式,要掌握一元二次不等式的解法,了解一元二次不等式与相应函

数、方程的联系和相互转化。

3.线性规划问题有着丰富的实际背景,且作为最优化方法之一又与人们日常生活密切相关,对于这部分

内容应能用平面区域表示二元一次不等式组,能解决简单的线性规划问题。同时注意数形结合的思想在线性规划中的运用。

第1课 基本不等式

【考点导读】

1. 能用基本不等式证明其他的不等式,能用基本不等式求解简单的最值问题。

2. 能用基本不等式解决综合形较强的问题。 【基础练习】

1.“a >b >0”是“ab <22

2

a b +”的充分而不必要条件(填写充分而不必要条件、必要而不充分条件、充分必

要条件、既不充分也不必要条件)

2.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为

1

2

-3.已知,x y R +

∈,且41x y +=,则x y ?的最大值为

16

1 4.已知lg lg 1x y +=,则52

x y

+的最小值是2 【范例导析】 例1.已知54x <

,求函数14245

y x x =-+-的最大值. 分析:由于450x -<,所以首先要调整符号. 解:∵5

4

x <∴540x -> ∴y=4x-2+

145x -=154354x x ?

?--++ ?-??

≤-2+3=1 当且仅当1

5454x x

-=

-,即x=1时,上式成立,故当x=1时,max 1y =. 例2.(1)已知a ,b 为正常数,x 、y 为正实数,且

1a b

+=x y

,求x+y 的最小值。 (2) 已知00>>y x ,,且302=++xy y x ,求xy 的最大值.

分析:问题(1)可以采用常数代换的方法也可以进行变量代换从而转化为一元函数再利用基本不等式求解;问题(2)既可以直接利用基本不等式将题目中的等式转化为关于xy 的不等式,也可以采用变量代换转换为一元函数再求解.

解:(1)法一:直接利用基本不等式:a b bx ay

x +y =(x +y)(

+)=a +b++x y y x

≥当且仅当

ay bx =x y a b +=1x y

???

?

???

,即x =a y =b ????? 法二: 由

a b +=1x y 得ay

x =y -b

ay a(y b )ab

x y y y y b y b

ab ab a y (y b )a b

y b y b -++=

+=+--=++=+-++--∴

∵ x>0,y>0,a>0 ∴ 由

ay

y -b

>0得y-b>0 ∴

x+y≥ 当且仅当ab

=y -b y -b a b +=1x y

???

????

,即y =b x =a ?????

(2)法一:由302=++xy y x ,可得,)300(230<<+-=

x x

x

y . x x x x x x xy +-+++-=+-=264)2(34)2(23022 ?????

?+++-=264)2(34x x 注意到162

64

)2(2264)2(=+?+≥+++x x x x .可得,18≤xy . 当且仅当2

64

2+=

+x x ,即6=x 时等号成立,代入302=++xy y x 中得3=y ,故xy 的最大值为18. 法二:+∈R y x , ,xy xy y x ?=≥+∴22222, 代入302=++xy y x 中得:3022≤+?xy xy 解此不等式得180≤≤xy .下面解法见解法一,下略.

点拨:求条件最值的问题,基本思想是借助条件化二元函数为一元函数,代入法是最基本的方法,也可考虑通过变形直接利用基本不等式解决.

【反馈练习】

1.设a >1,且2

log (1),log (1),log (2)a a a m a n a p a =+=-=,则p n m ,,的大小关系为m >p >n 2.已知下列四个结论:

①若,,R b a ∈则22=?≥+b

a a

b b

a a

b ; ②若+∈R y x ,,则y x y x lg lg 2lg lg ≥+;

③若,-∈R x 则4424-=?-≥+x

x x

x ; ④若,-∈R x 则222222=?≥+--x x x x 。

其中正确的是④ 3.已知不等式1()()9a

x y x y

++

≥对任意正实数,x y 恒成立,则正实数a 的最小值为6 4.(1)已知:0>>x y ,且:1=xy ,求证:222

2≥-+y

x y x ,并且求等号成立的条件.

(2)设实数x ,y 满足y +x 2=0,0

x y

a log a +a ≤1log 28

+

a 。 解: (1)分析:由已知条件+∈R y x ,,可以考虑使用均值不等式,但所求证的式子中有y x -,无法利用xy y x 2≥+,故猜想先将所求证的式子进行变形,看能否出现)

(1

)(y x y x -+-型,再行论证.

证明:,1.

0,0=>-∴>>xy y x y x 又

y x xy y x y x y x -+-=-+∴2)(222y x y x -+-=2)(.22)

(2

)(2=-?-≥y x y x 等号成立

当且仅当)

(2

)(y x y x -=

-时..4,2,2)(222=+=-=-∴y x y x y x

,6)(,12=+∴=y x xy .6=+∴y x 由以上得2

2

6,226-=

+=

y x 即当2

2

6,226-=

+=

y x 时等号成立. 说明:本题是基本题型的变形题.在基本题型中,大量的是整式中直接使用的均值不等式,这容易形成思

维定式.本题中是利用条件将所求证的式子化成分式后再使用均值不等式.要注意灵活运用均值不等式. (2)∵ y

x

a a +≥8

1)21x (212

x x y

x 22

a 2a 2a

2+---+=

=

81)21x (212+--

≤8

1

,0

2+--≥8

1

a 2 ∴ y

x a a +≥8

1a 2

∴ )a a (log y x a +≤8

12log )a 2(log a 8

1

a +

=

第2课 一元二次不等式

【考点导读】

1. 会解一元二次不等式,了解一元二次不等式与相应函数、方程之间的联系和转化。

2. 能运用一元二次不等式解决综合性较强的问题. 【基础练习】 1.解不等式:

(1)2

3440x x -++> (2)

213

022

x x ++> (3)()()2

1322x x x x +->-- (4)22

32142-<---<-x x

解:(1)原不等式化为2

3440x x --<,解集为223

x -<<

(2)原不等式化为2

230x x ++>,解集为R (3)原不等式化为2

10x x ++<,解集为?

(4)由2

22221342101322

24,,13222502

22

x x x x x x x x x x ?++??<++??得得

得11,11

x x x ?>

<

(1,1)11)x ∴∈

点拨:解一元二次不等式要注意二次项系数的符号、对应方程?的判断、以及对应方程两根大小的比较. 2. 函数)1(log 22

1-=

x y 的定义域为

)(

1?-?

3..二次函数y=ax 2+bx+c (x ∈R )的部分对应值如下表:

则不等式ax 2+bx+c>0的解集是),3()2,(+∞--∞

4.若不等式02

>++c bx x 的解集是}13{-<>x x x 或,则b =__-2____ c =__-3____. 【范例导析】

例.解关于x的不等式

)1(12

)

1(≠>--a x x a

分析:本题可以转化为含参的一元二次不等式,要注意分类讨论.

解:原不等式等价于

02

)

2()1(>----x a x a ∵1≠a ∴等价于:

()02

121>-?

??

??----x a a x a (*)

a>1时,(*)式等价于

2

12

----

x a a x >0∵11112--=--a a a <1∴x <12--a a 或x >2 a<1时,(*)式等价于

2

12----

x a a x <0由2-12--a a =1-a a 知: 当02,∴2

--a a ;

当a<0时,12--a a <2,∴12

--a a

当a =0时,当1

2

--a a =2,∴x ∈φ

综上所述可知:当a<0时,原不等式的解集为(1

2

--a a ,2);当a =0时,原不等式的解集为φ;当0

1时,原不等式的解集为(2,12--a a );当a>1时,原不等式的解集为(-∞,1

2

--a a )∪(2,+∞)。

思维点拨:含参数不等式,应选择恰当的讨论标准对所含字母分类讨论,要做到不重不漏.

【反馈练习】

1.若关于x 的不等式2

10,ax ax a ++-<的解集为R ,则a 的取值范围是(],0-∞

2.不等式2

20ax bx ++>解集为11

23

x -<<,则ab 值分别为-12,-2 3.若函数

f(x) =

的定义域为R ,则a 的取值范围为[]10-,

4.已知M 是关于x 的不等式2x 2+(3a -7)x +3+a -2a 2<0解集,且M 中的一个元素是0,求实数a 的取值范

围,并用a 表示出该不等式的解集.

解:原不等式即(2x -a -1)(x +2a -3)<0,

由0=x 适合不等式故得0)32)(1(>-+a a ,所以1-

3>a . 若1-

5

2132>+-=+-

+-a a a ,∴2123+>-a a ,

此时不等式的解集是}232

1

|{a x a x -<<+;

若23>a ,由4

5

)1(252132-<+-=+-+-a a a ,∴2123+<-a a ,

此时不等式的解集是}2

1

23|{+<<-a x a x 。

第3课 线性规划

【考点导读】

1. 会在直角坐标系中表示二元一次不等式、二元一次不等式组对应的区域,能由给定的平面区域确定所

对应的二元一次不等式、二元一次不等式组.

2. 能利用图解法解决简单的线性规划问题,并从中体会线性规划所体现的用几何图形研究代数问题的思

想. 【基础练习】

1.原点(0,0)和点P (1,1)在直线0x y a +-=的两侧,则a 的取值范围是0

2. 设集合{}

(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( A )

A B C D

3.下面给出四个点中,位于1010x y x y +-?

表示的平面区域内的点是( C )

A.(02),

B.(20)-,

C.(02)-,

D.(20),

4.由直线x+y+2=0,x+2y+1=0,2x+y+1=0围成的三角形区域(不含边界)用不等式表示为 20

210210x y x y x y ++>??

++

5.在坐标平面上,不等式组???+-≤-≥1

31x y x y 所表示的平面区域的面积为23

【范例导析】

例1.设x,y 满足约束条件??

?

??≥≤+-≤-125533

4x y x y x ,求目标函数z =6x+10y 的最大值,最小值。

分析:求目标函数的最值,必须先画出准确的可行域,然后把线性目标函数转化为一族平行直线,这样就

把线性规划问题转化为一族平行直线与一平面区域有交点,直线在y 轴上截距的最大值与最小值问题. 解:先作出可行域,如图所示中ABC ?的区域,

且求得A(5,2),B(1,1),C(1,

5

22)

作出直线L 0:6x+10y=0,再将直线L 0平移

当L 0的平行线过B 点时,可使z =6x+10y 达到最小值 当L 0的平行线过A 点时,可使z =6x+10y 达到最大值 所以z min =16;z max =50

点拨:几个结论:(1)、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。 (2)、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义——在y 轴上的截距或其相反数。

例2.已知??

?

??≤--≥-+≥+-0520402y x y x y x ,

(1) 求y x z 2+=的最大和最小值。 (2) 求x

y

z =

的取值范围。 (3) 求22y x z +=的最大和最小值。 解析:注意目标函数是代表的几何意义. 解:作出可行域。 (1)1222z z x y y x =+?=-+,作一组平行线l :122

z y x =-+,解方程组0

4052{=-+=--y x y x 得最优解B (3,1),3215

m i

n z

∴=+?=。解0

2052{=+-=--y x y x 得最优解C (7,9),m a x 72925z ∴=+

?=

(2)0

0--==x y x y z 表示可行域内的点(x,y )与(0,0)的连线的斜率。从图中可得,k z k OB OA

≤≤,

又13,3k

k OA OB ==,133

z ∴≤≤。

(3)2222(0)(0)z x y x y =+=-+-表示可行域内的点(x,y )到(0,0)的距离的平方。从图中易

得,2m i n z

O F =,(OF 为O 到直线AB 的距离),2max

z OC =

OF =

=,

228,130OF OC ==,130max

z

∴=,8min

z =。

例1图

点拨:关键要明确每一目标函数的几何意义,从而将目标函数的最值问题转化为某几何量的取值范围. 例3.本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元? 分析:本例是线性规划的实际应用题,其解题步骤是:(1)设出变量,列出约束条件及目标函数;(2)画出可行域(3)观察平行直线系30002000z x y =+的运动,求出目标函数的最值. 解:设公司在甲电视台和乙电视台做广告的时间分别为

x 分钟和y 分钟,总收益为z 元,由题意得

3005002009000000.x y x y x y +??

+???

≤,≤,

≥,≥ 目标函数为30002000z x y =+.

二元一次不等式组等价于3005290000.x y x y x y +??

+???

≤,≤,≥,≥

作出二元一次不等式组所表示的平面区域,即可行域. 如图:

作直线:300020000l x y +=,

即320x y +=.

平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值. 联立30052900.

x y x y +=??

+=?,

解得100200x y ==,.

∴点M 的坐标为(100200),

. max 30002000700000z x y ∴=+=(元)

答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70

万元.

【反馈练习】

1.不等式组502x y y a x -+0??

???

≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是57a <≤

2.已知点P (x ,y )在不等式组??

?

??≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x -y 的取值范围是[-1,2]

l

例3

3.设x 、y 满足约束条件5,3212,03,0

4.

x y x y x y +≤??+≤?

?≤≤??≤≤?则使得目标函数65z x y =+的最大的点(,)x y 是(2,3).

4.已知实数x y ,满足2203x y x y y +??

-???

≥,≤,≤≤,则2z x y =-的取值范围是[]57-,

5.画出以A (3,-1)、B (-1,1)、C (1,3)为顶点的△ABC 的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数z =3x -2y 的最大值和最小值.

分析:本例含三个问题:①画指定区域;②写所画区域的代数表达式——不等式组;③求以所写不等式组为约束条件的给定目标函数的最值

解:如图,连结点A 、B 、C ,则直线AB 、BC 、CA 所围成的区域为所求△ABC 区域 直线AB 的方程为x +2y -1=0,BC 及CA 的直线方程分别为x -y +2=0,2x +y -5=0 在△ABC 内取一点P (1,1),

分别代入x +2y -1,x -y +2,2x +y -5 得x +2y -1>0,x -y +2>0,2x +y -5<0 因此所求区域的不等式组为

x +2y -1≥0,x -y +2≥0,2x +y -5≤0

作平行于直线3x -2y =0的直线系3x -2y =t (t 为参数),即平移直线y =

23x ,观察图形可知:当直线y =2

3x -21t 过A (3,-1)时,纵截距-21t 最小此时t 最大,t max =3×3-2×(-1)=11;当直线y =23x -2

1t 经过点B (-1,1)时,纵截距-2

1

t 最大,此时t 有最小值为t min = 3×(-1)-2×1=-5

因此,函数z =3x -2y 在约束条件x +2y -1≥0,x -y +2≥0,2x +y -5≤0下的最大值为11,最小值为-5 。

第10题

第4课 不等式综合

【考点导读】

能利用不等式性质、定理、不等式解法及证明解决有关数学问题和实际问题,如最值问题、恒成立问题、最优化问题等. 【基础练习】

1.若函数()()()()22

112,022x f x x x g x x x -??=+

>=≠ ?-??

,则()f x 与()g x 的大小关系是

()()f x g x >

2.函数()()

2

2f x a x a =-+在区间[]0,1上恒为正,则a 的取值范围是0<a <2

3.当点(),x y 在直线320x y +-=上移动时,3271x

y

z =++的最小值是7

4.对于0≤m ≤4的m ,不等式x 2+mx >4x +m -3恒成立,则x 的取值范围是x >3或x <-1 【范例导析】

例1、已知集合???

???=2,21P ,函数()

22log 22+-=x ax y 的定义域为Q

(1)若φ≠Q P ,求实数a 的取值范围。

(2)若方程()

222log 22=+-x ax 在??

?

???2,2

1内有解,求实数a 的取值范围。

分析:问题(1)可转化为2

220ax x -+>在??

?

???2,21内有有解;从而和问题(2)是同一类型的问题,既

可以直接构造函数角度分析,亦可以采用分离参数.

解:(1)若φ≠Q P ,0222

>+-∴x ax 在??

?

???2,21内有有解x x a 2

22+->∴

令212112222

2+??

?

??--=+-=x x x u 当??????∈2,21x 时,??????-∈21,4u

所以a>-4,所以a 的取值范围是{}

4->a a

(2)方程()

222log 2

2=+-x ax 在??

????2,21内有解, 则0222

=--x ax 在??

?

???2,2

1内有解。

2

1

2112222

2-??? ??+=+=∴x x x a

当???

???∈2,21x 时,??

????∈12,2

3a

所以??

???

?∈12,23a 时,()

222log 22=+-x ax 在??

????2,21内有解 点拨:本题用的是参数分离的思想.

例2.甲、乙两地相距km s ,汽车从甲地匀速行驶到乙地,速度不超过km/h c ,已知汽车每小时的运输成.......本.

(以元为单位)由可变部分和固定部分组成:可变部分与速度km/h v 的平方成正比,且比例系数为b ;固定部分为a 元.

(1)把全程运输成本y 元表示为速度km/h v 的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶? 分析:需由实际问题构造函数模型,转化为函数问题求解 解:(1)依题意知汽车从甲地匀速行驶到乙地所用的时间为

h v

s

,全程运输成本为 )(2bv v a s v s bv v s a y +=?+?=.故所求函数为)(bv b

a

s y +=,定义域为)0(c v ,∈.

(2)由于v b a s 、、、都为正数,

故有bv b

a

s bv v a s ??≥+2

)(,即ab s bv v a s 2)(≥+.

当且仅当

bv v a =,即b

a

v =时上式中等号成立. 若

c b a ≤时,则b

a

v =

时,全程运输成本y 最小; 当

c b

a

≤,易证c v <<0,函数)()(bv v a s v f y +==单调递减,即c v =时,)(min bc c a s y +=.

综上可知,为使全程运输成本y 最小, 在

c b a ≤时,行驶速度应为b a

v =

; 在

c b

a

≤时,行驶速度应为c v =. 点拨:本题主要考查建立函数关系式、不等式性质(公式)的应用.也是综合应用数学知识、思想和方法解决实际问题的一道优秀试题.

【反馈练习】

1.设10<

2.如果函数213

log (23)y x x =--的单调递增区间是(-∞,a ],那么实数a 的取值范围是____ a <-1____

3.若关于x 的不等式m x x ≥-42对任意]1,0[∈x 恒成立,则实数m 的取值范围为(,3]-∞-

4已知二次函数f (x)=()0,,12>∈++a R b a bx ax 且,设方程f (x )=x 的两个实根为x 1和x 2.如果x 1<2<x 2<4,且函数f (x )的对称轴为x =x 0,求证:x 0>—1.

证明:设g(x)= f (x)—x=()()0242.011212<<<<>+-+g x x a x b ax 得,由,且,且g(4)>0,即

,81

,221443,22144

3,03416,0124>-<--<<-∴??

?<-+<-+a a a a b a b a b a 得由 ∴.18

141

12,4112832-=?->-=->->-

a

b x a a b a 故

高中数学-不等式的基本性质(一)练习

高中数学-不等式的基本性质(一)练习 课后导练 基础达标 1若-1<α<β<1,则下列各式中成立的是( ) A.-2<α-β<0 B.-2<α-β<-1 C.-1<α-β<0 D.-1<α-β<1 解析:∵-1<α<β<1,∴-1<α<1,-1<β<1. ∴-1<-β<1.∴-2<α-β<2.又α-β<0, ∴-2<α-β<0. 答案:A 2“a+b>2c ”成立的一个充分条件是( ) A.a>c,或b>c B.a>c 且bc 且b>c D.a>c,或bc 且b>c ,∴a+b>c+c,即a+b>2c. 答案:C 3若x>1>y,下列不等式中不成立的是( ) A.x-1>1-y B.x-1>y-1 C.x-y>1-y D.1-x>y-x 解析:∵x>1>y, ∴x+(-1)>y+(-1),即B 正确; x+(-y)>1+(-y),即C 正确; 1+(-x)>y+(-x),即D 正确. 故选A. 答案:A 4若m<0,n>0,且m+n<0,则下列不等式中成立的是( ) A.-n0,m+n<0, ∴m<-n<0,-m>n,即n<-m. ∴m<-n0,m,n 互为倒数,易得m<10,∴4ac<0.∴b 2-4ac>0. 答案:b 2-4ac>0 7下列命题中真命题的个数为( )

沪教版高一数学教案

沪教版高一数学教案 精品文档 沪教版高一数学教案 了解集合、元素的概念,体会集合中元素的三个特征; 理解元素与集合的“属于”和“不属于”关系; 掌握常用数集及其记法; 教学重点:掌握集合的基本概念; 教学难点:元素与集合的关系; 教学过程: 一、引入课题 军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生~ 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。 阅读课本P2-P3内容 集合的有关概念 1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。 2. 一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合 ,也简称集。 3. 思考1:判断以下元素的全体是否组成集合,并说明理由: 大于3小于11的偶数; 我国的小河流; 非负奇数; 1 / 3 精品文档 方程x210的解; 某校2007级新生; 血压很高的人; 著名的数学家;

平面直角坐标系内所有第三象限的点全班成绩好的学生。 对学生的解答予以讨论、点评,进而讲解下面的问题。 4. 关于集合的元素的特征 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体, 因此,同一集合中不应重复出现同一元素。 无序性:给定一个集合与集合里面元素的顺序无关。集合相等:构成两个集合的元素完全一样。 5. 元素与集合的关系; 如果a是集合A的元素,就说a属于A,记作:a?A 如果a不是集合A的元素,就说a不属于A,记作:aA 例如,我们A表示 “1~20以内的所有质数”组成的集合,则有3?A 4A,等等。 6(集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C表示,集合的元素用 小写的拉丁字母a,b,c,表示。 ,(常用的数集及记法: 2 / 3 精品文档 非负整数集,记作N; 正整数集,记作N*或N+; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R; 例题讲解: 例1(用“?”或“”符号填空: ; ; Z; 设A为所有亚洲国家组成的集合,则中国A,美国,印度A, 英国 A。例2(已知集合P的元素为1,m,m23m3, 若3?P且-1P,求实数m的值。

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高中数学基本不等式的解法十例

高中数学基本不等式问题求解十例 一、基本不等式的基础形式 1.222a b a b +≥,其中,a b R ∈,当且仅当a b =时等号成立。 2.2a b a b +≥,其中[),0,a b ∈+∞,当且仅当a b =时等号成立。 3.常考不等式: 2 2 2 2112 2a b a b a b a b ++??≥≥≥ ??? + ,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。 二、常见问题及其处理办法 问题1:基本不等式与最值 解题思路: (1)积定和最小:若a b 是定值,那么当且仅当a b =时,()m in 2a b a b +=。其中[),0,a b ∈+∞ (2)和定积最大:若a b +是定值,那么当且仅当a b =时,()2 m a x 2a b a b +??= ??? ,其中,a b R ∈。 例题1:若实数,a b 满足221a b +=,则a b +的最大值是 . 解析:很明显,和为定,根据和定积最大法则可得:2 2 222 221222 4 a b a b a b a b -++?= ??≤≤? ??+≤-? ? ,当且 仅当1a b ==-时取等号。 变式:函数1 (0,1)x y a a a -=>≠的图象恒过定点A ,若点在直线1m x n y +=上,则m n 的最大值为______。 解析:由题意可得函数图像恒过定点()1,1A ,将点()1,1A 代入直线方程1m x n y +=中可得1m n +=,明显,和为 定,根据和定积最大法则可得:2 124m n m n +?? ≤= ? ?? ,当且仅当12m n ==时取等号。 例题2:已知函数()2 122 x x f x +=+ ,则()f x 取最小值时对应的x 的值为__________. 解析:很明显,积为定,根据积定和最小法则可得:2 2 1122212 2 x x x x +++≥? =,当且仅当2 12 12 x x x += ?=-时 取等号。 变式:已知2x >-,则12 x x + +的最小值为 。 解析:由题意可得()120,2 12 x x x +>+ ?= +,明显,积为定,根据和定积最大法则可得: ()1122 222 2 x x x x ++≥+?=++,当且仅当122112 x x x x += ?+=?=- +时取等号,此时可得

高中数学目录(沪教版)

高中数学教材(沪教版)目录 高一上 第一章集合与命题 一集合 1.1集合及其表示法 1.2集合之间的关系 1.3集合的运算 二四种命题的形式 1.4命题的形式及等价关系 三充分条件与必要条件 1.5充分条件、必要条件 1.6子集与推出关系 第二章不等式 2.1不等式的基本性质 2.2一元二次不等式的解法2.3其他不等式的解法 2.4基本不等式及其应用 *2.5不等式的证明 第三章函数的基本性质3.1函数的概念3.2函数关系的建立 3.3函数的运算 3.4函数的基本性质 第四章幂函数、指数函数和对数函数(上)一幂函数 4.1幂函数的性质与图像 二指数函数 4.2指数函数的性质与图像 *4.3借助计算器观察函数递增的快慢 高一下 第四章幂函数、指数函数和对数函数(下)三对数 4.4对数的概念及其运算 四反函数 4.5反函数的概念 五对数函数 4.6对数函数的性质与图像 六指数方程和对数方程 4.7简单的指数方程

4.8简单的对数方程 第五章 三角比 一 任意角的三角比 5.1任意角及其度量 5.2任意角的三角比 二 三角恒等式 5.3同角三角比的关系和诱导公式 5.4两角和与差的正弦、余弦和正切 5.5二倍角与半角的正弦、余弦和正切 三 解斜三角形 5.6正弦定理、余弦定理和解斜三角形 第六章 三角函数 一 三角函数的图像及性质 6.1正弦函数和余弦函数的图像与性质 6.2正切函数的图像与性质 6.3函数()sin y A x ωφ=+的图像与性质 二 反三角函数与最简三角方程 6.4反三角函数 6.5最简三角方程 高二上 第七章 数列与数学归纳法 一 数列 7.1数列 7.2等差数列 7.3等比数列 二 数学归纳法 7.4数学归纳法 7.5数学归纳法的应用 7.6归纳—猜想—证明 三 数列的极限 7.7数列的极限 7.8无穷等比数列各项的和 第八章 平面向量的坐标表示 8.1向量的坐标表示及其运算 8.2向量的数量积 8.3平面向量的分解定理 8.4向量的应用 第九章 矩阵和行列式初步 一 矩阵 9.1矩阵的概念 9.2矩阵的运算 二 行列式 9.3二阶行列式 9.4三阶行列式

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 考点不等式的解法 1不等式ax>b 若a>0,解集为 ? ? ? ? ? ? x| x> b a;若a<0,解集为?? ? ? ? ? x| x< b a;若a=0,当b≥0时,解集为?,当b<0时,解集为R. 2一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集,可归纳为: 判别式 Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程 ax2+bx+c=0 (a≠0)的根 有两相异实根 x=x1或x=x2 有两相同实根 x=x1=x2 无实根 一元 二次 不等 式的 解集 ax2+bx+ c>0(a>0) {x|xx2} { x∈R| x≠ - ? ? ? b 2a R ax2+bx+ c<0(a>0) {x|x10(a0≠0,n∈N*,n≥3)可以转化为a0(x-x1)(x-x2)…(x-x n)>0(其中x10时,由于f(x)=a0(x-x1)(x-x2)…(x-x n)的值的符号在上述区间自右至左依次为+、-、+、-、…,所以正值区间为f(x)>0的解集. 4分式不等式的解法 (1) f(x) g(x) >0(<0)?f(x)·g(x)>0(<0); (2) f(x) g(x) ≥0(≤0)? ?? ? ??f(x)·g(x)≥0(≤0), g(x)≠0.

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

2019-2020年高二数学 第六章 不等式: 6.1不等式的性质(一)优秀教案

2019-2020年高二数学第六章不等式: 6.1不等式的性质(一) 优秀教案 教学目的: 1了解不等式的实际应用及不等式的重要地位和作用; 2掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小. 教学重点:比较两实数大小. 教学难点:差值比较法:作差→变形→判断差值的符号 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、引入: 复习初中学过的不等式的性质 ①正数的相反数是负数 ②任意实数的平方不小于0。 ③不等式的两边都加上(或减去)同一个数或同一个整式, 不等号的方向不变。 ④不等式的两边都乘以(或除以)同一个正数,不等号的

方向不变。 ⑤不等式的两边都乘以(或除以)同一个负数,不等号的 方向改变。 人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的研究不等关系,反映在数学上就是证明不等式与解不等式实数的差的正负与实数的大小的比较有着密切关系,这种关系是本章内容的基础,也是证明不等式与解不等式的主要依据因此,本节课我们有必要来研究探讨实数的运算性质与大小顺序之间的关系 生活中为什么糖水中加的糖越多越甜呢? 转化为数学问题:a克糖水中含有b克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么? 分析:起初的糖水浓度为,加入m克糖后的糖水浓度为,只要证>即可怎么证呢?引人课题 二、讲解新课: 1.不等式的定义:用不等号连接两个解析式所得的式子,叫做不等式.

说明:(1)不等号的种类:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代数式和超越式(包括指数式、对数式和三角式等) (3)不等式研究的范围是实数集R. 2.判断两个实数大小的充要条件 对于任意两个实数a、b,在a>b,a= b,a<b三种关系中有且仅有一种成立.判断两个实数大小的充要条件是: 由此可见,要比较两个实数的大小,只要考察它们的差的符号就可以了,这好比站在同一水平面上的两个人,只要看一下他们的差距,就可以判断他们的高矮了. 三、讲解范例: 例1比较(a+3)(a-5)与(a+2)(a-4)的大小分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要)并根据实数运算的符号法则来得出两个代数

高中数学不等式解法15种典型例题

不等式解法15种典型例题 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<- 3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2 450)2)(4(050 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x 2 12 1 310 2730 132027301320 )273)(132(2 22222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或∴原不等式解集为),2()1,21()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法”∴原不等式解集为),2()1,2 1()31 ,(+∞??-∞ 典型例题三 例3 解不等式242+<-x x 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义? ??<-≥=)0() 0(a a a a a 二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法. 解法一:原不等式?????+<-<-?????+<-≥-?2 40 4240422 22x x x x x x 或 即? ? ?>-<<<-???<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<-+<-) 2(42 422x x x x ∴312132<<<-x x x x 故或. 典型例题四 例4 解不等式 04125 62 2<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组: ?????>-+<+-041205622x x x x 或?????<-+>+-0 4120 562 2x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.

沪教版高中数学高二下册 -12.7 抛物线的标准方程 教案

教学题目:抛物线的标准方程 教学目标: 1. 能力与技能: (1)掌握抛物线的定义,理解抛物线的发生过程 (2)掌握抛物线的四种标准方程、图像、焦点、准线之间的关系 (3)会用待定系数法确定抛物线标准方程。 2. 过程与方法: (1) 有实际问题引入要研究的课题,发展学生的实践能力,通过实验使学生 发现抛物线的形成过程。 (2) 求抛物线的焦点坐标和准线方程中贯彻数形结合的思想。 (3) 掌握待定系数法在方程中的应用。 3. 情感与价值观: 让学生学会细心观察周围的事物,数学来源于生活,又为生活服务。 教学过程: 一.引入:探照灯、汽车前灯、卫星天线、激光 望远镜都是利用抛物线原理制成的,因此在生活当 中,抛物线是一个用途非常广泛的曲线。下面简单 介绍抛物线的光学反射原理,引起学生的兴趣。从 而引出课题:抛物线的标准方程。 二.新课: 1. 抛物线的定义:先从一个有趣的实验说起,仔细讲解实验的过程,让学生从实验的过程中发现抛物线的特点,从中学生可以自己总结出抛物线的定义:平面上与一个定点F 和一条定直线l(F 不在l 上)的距离相等的点的轨迹叫做抛物线。点F 叫做抛物线的焦点。定直线l 叫做抛物线的准线。同时强调抛物线定义也是抛物线的性质即:是抛物线上的点就满足到焦点距离等于到准线的距离。 2. 抛物线标准方程的推导: 求一般曲线的方程(一般步骤):1.建系2.设点3列式4.化简 建立抛物线的坐标系(由学生讨论)过点F 做准线L 的垂线,垂足为K 。以直线KF 为x 轴,线段KF 的中垂线为y 轴建立直角坐标系。 设︱KF ︱= p,则焦点F 的坐标是(2p ,0),准线l 的方程为2 p x -=

高中数学基本不等式专题复习

第11课:基本不等式与双√函数 一、双√函数 形如.0,0,>>+=q p x q px y 图像如右图所示: (1)0>x 时,当p q x =时取到pq y 2min =; (2)值域: (3)当0,0<-+=x x x y 正确解法: 两者联系: (1)基本不等式去等号时的值即为双勾函数的拐点,

(2)凡是利用“积定和最小”求最值的函数均可换元为双勾函数! 三、利用基本不等式求最值 类型一:形如()()0,1≠++ +=c a d cx b ax y 采取配积为定! 1、求??? ??>-+ =455434x x x y 的最小值 2、求??? ??<-+=455433x x x y 的最大值 3、求()π,0,sin 2sin ∈+ =x x x y 的最小值的值域 4、求()的最小值01 1>-+=x e e y x x 的最小值 类型二:形如()0,2≠+++=c a d cx c bx ax y 采取配凑——分离术! 1、求0,92>++=x x x x y 的最小值 2、求0,192>+++=x x x x y 的最小值 3、求?? ????-∈+++=1,31,12122x x x x y 的值域 4、求4,1822-<+++=x x x x y 的最值

人教A版新课标高中数学必修一教案-《等式性质与不等式性质》

《 等式性质与不等式性质》 1、知识与技能 (1)能用不等式 (组)表示实际问题的不等关系; (2)初步学会作差法比较两实数的大小; (3)掌握不等式的基本性质,并能运用这些性质解决有关问题. 2、过程与方法 使学生感受到在现实世界和日常生活中存在着大量的不等关系;以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等式的有关基本性质研究不等关系. 3、情感态度与价值观 通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量. 【教学重点】 能用不等式(组)表示实际问题的不等关系, 会作差法比较两实数的大小 ,通过类比法,掌握不等式的基本性质. 【教学难点】 运用不等式性质解决有关问题. (一)新课导入 用不等式(组)表示不等关系

中国"神舟七号”宇宙飞船飞天取得了最圆满的成功.我们知道,它的飞行速度(v )不小于第一宇宙速度(记作2v ),且小于第二宇宙速度(记 1v ). 12v v v ≤< (二)新课讲授 问题1:你能用不等式或不等式组表示下列问题中的不等关系吗 (1)某路段限速40km /h ; (2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于%,蛋白质的含量p 应不少于%; (3)三角形两边之和大于第三边、两边之差小于第三边; (4)连接直线外一点与直线上各点的所有线段中,垂线段最短. 对于(1),设在该路段行驶的汽车的速度为vkm /h ,“限速40km /h ”就是v 的大小不能超过40,于是0<v ≤40. 对于(2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于%,蛋白质的含量p 应不少于%. 2.5%2.3% f p ≥??≥? 对于(3),设△ABC 的三条边为a ,b ,c ,则a +b >c ,a -b <c . 对于(4),如图,设C 是线段AB 外的任意一点,CD 垂直于AB ,垂足 为D ,E 是线段AB 上不同于D 的任意一点,则CD <CE . 以上我们根据实际问题所蕴含的不等关系抽象出了不等式图接着, 就可以用不等式研究相应的问题了 问题2:某种杂志原以每本元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高元,销售量就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万元 解:提价后销售的总收入为错误!x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 若a<0时,可以先将二次项系数化为正数,对照上表求解. 3高次不等式的解法 如果一元 n 次不等式 a o x n + a 1X n 1+ …+ a n >0(a o 工 0, n € N *, n > 3)可以转化为 a °(x — X 1)(x — X 2)…(X — X n )>0(其中X 10时,由于f(x) = a o (x — X 1)(X — X 2)…(X — X n )的值的符号在上述区间自右至 左依次为+、一、+、一、…,所以正值区间为 f(x)>0的解集. 4分式不等式的解法 f x (1) g T>0(<0) ? f(x) g(x)>0(<0); y x f x f x g x > 0 < 0, (2严> 0( < 0)? g x g x 工 0. 总基础点重难点 1 不等式ax>b 若a>0,解集为x | x>-;若a<0,解集为 x | xv-;若a = 0,当b > 0时,解集为?,当b<0 a a — 时,解集为R. 2 一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式 集,可归纳为: ax 2 + bx + c>0 与 ax 2 + bx + c<0 的解 判别式 △= b 2 — 4ac 二次函数 y = ax 2 + bx + c (a>0)的图象 元二次方程 ax 2 + bx + c = 0 有两相异实根 有两相同实根 无实根 二次 不等 式的 解集 (a ^ 0)的根 ax 2 + bx + c>0(a>0) ax 2+ bx + c<0(a>0) X = X 1 或 X = X 2 X = X 1= X 2 {xxX 2} {X|X 1VX

中职数学2.2.1不等式的基本性质

2.2.1不等式的基本性质 【学习目标】: 1.复习归纳不等式的基本性质; 2.学会证明这些性质; 3.并会利用不等式的性质解决一些简单的比较大小的问题。 【学习重点】:不等式性质的证明 【课前自主学习】: 1、数轴上右边的点表示的数总左边的点所表示的数,可知: ? a- > b b a a- = b ? a b ? < a- a b b 结论:要比较两个实数的大小,只要考察它们的差的符号即可。2、不等式的基本性质: (1)对称性:b a>?; (2)传递性:? b a,; b > >c (3)同加性:? a; >b 推论:同加性:? > a,; b c >d (4)同乘性:? b ,c a, >0 > ,c a; b ? < >0 推论1:同乘性:? ,0d c b a; >0 > > > 推论2:乘方性:? n N a,0; b ∈ > >+ 推论3:开方性:? b n a,0; > ∈ >+ N 【问题发现】:

【问题导学,练习跟踪】: 例1. 用符号“>”或“<”填空,并说出应用了不等式的哪条性质. (1) 设a b >,3a - 3b -; (2) 设a b >,6a 6b ; (3) 设a b <,4a - 4b -; (4) 设a b <,52a - 52b -. 变式练习(1)设36x >,则 x > ; (2)设151x -<-,则 x > . 例2. 已知0a b >>,0c d >>,求证ac bd >. 变式练习:已知a b >,c d >,求证a c b d +>+. 当堂检测: 1.如果b a >,则下列不等式成立的是( ) A.b a 55-<- B.b a > C.bc ac > D.22bc ac > 2.如果0< B.b a > C.b b a 1 1 >- D.22b a > 3.已知b a ,为任意实数,那么( ) A.b a >是的22b a >必要条件 B.b a >是b a -<-11的充要条件 C.b a >是b a >的充分条件 D.b a >是22b a >的必要条件 归纳小结 强化思想 本次课学了哪些内容?重点和难点各是什么?

高中数学不等式的分类、解法讲解学习

高中数学不等式的分 类、解法

精品文档 收集于网络,如有侵权请联系管理员删除 高中数学简单不等式的分类、解法 一、知识点回顾 1.简单不等式类型:一元一次、二次不等式, 分式不等式,高次不等式,指数、对数不等 式,三角不等式,含参不等式,函数不等式, 绝对值不等式。 2.一元二次不等式的解法 解二次不等式时,将二次不等式整理成首 项系数大于0的一般形式,再求根、结合图像 写出解集 3三个二次之间的关系: 二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系(见复习教材P228) 二次函数的零点---对应二次方程的实根----对应二次不等式解集区间的端点 4.分式不等式的解法 法一:转化为不等式组;法二:化为整式不等式;法三:数轴标根法 5.高次不等式解法 法一:转化为不等式组;法二:数轴标根法 6.指数与对数不等式解法 a>1时)()()()(x g x f a a x g x f >?>; 0)()()(log )(log >>?>x g x f x g x f a a 0; ) ()(0)(log )(log x g x f x g x f a a < 7.三角不等式解法 利用三角函数线或用三角函数的图像求解 8.含参不等式解法 根据解题需要,对参数进行分类讨论 9.函数不等式解法 利用函数的单调性求解,化为基本不等式 (有时还会结合奇偶性) 10.绝对值不等式解法(后面详细讨论) 二、练习: (1)23440x x -++>解集为 (2 23x -<< )(一化二算三写) (2)213 022 x x ++>解集为 (R ) (变为≤,则得?)(无实根则配方) 三、例题与练习 例1已知函数)()1()(b x ax x f +?-= ,若不等式0)(>x f 的解集为)3,1(-,则不等式 0)2(<-x f 的解集为 ),2 1 ()23,(+∞--∞Y 解法一:由根与系数关系求出3,1-=-=b a ,得32)(2++-=x x x f ,再得出新不等式,求解

高中数学 不等式的基本性质

高中数学不等式的基本性质不等式的基本性质 1.不等式的定义:a-b0ab,a-b=0a=b,a-b0a ①其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。 ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。 作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。 2.不等式的性质: ①不等式的性质可分为不等式基本性质和不等式运算性质两部分。 不等式基本性质有: (1)abb (2)ab,bcac(传递性) (3)aba+cb+c(cR) (4)c0时,abacbc c0时,abac 运算性质有: (1)ab,cda+cb+d。 (2)ab0,cd0acbd。 (3)ab0anbn(nN,n1)。

(4)ab0(nN,n1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ②关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。 (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 要练说,先练胆。说话胆小是幼儿语言发展的障碍。不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。总之,说话时外部表现不自然。我抓住练胆这个关键,面向全体,偏向差生。一是和幼儿建立和谐的语言交流关系。每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。二是注重培养幼儿敢于当众说话的习惯。或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励

高中数学不等式的解法

高中数学不等式的解法 复习目标 1.掌握一元一次不等式(组) ,一元二次不等式,分式不等式,含绝对值的不等式,简单的 无理不等式的解法. 2.会在数轴上表示不等式或不等式组的解集. 3.培养运算能力. 知识回顾 一、一元一次不等式的解法 一元一次不等式 ax b(a 0) 的解集情况是 b b (1)当 a 0 时,解集为 { x | } (2)当 a 0时,解集为 { | } x x x a a 二、一元二次不等式的解法 2 bx c 2 的有 一般的一元二次不等式可利用一元二次方程 ax 0与二次函数 y ax bx c 关性质求解,具体见下表: 2 0 0 0 a 0 , b 4ac 二次函数 y 2 ax b x c 的图象 一元二次方程 有两个相等的实根 有两实根 2 bx c ax 的根 x x 或 1 x x 2 x x 1 x 2 b 2a 无实根 不等式 一 式 元 的 2 bx c ax {x| x x 1或x x 2} { x | x x 1 } R 二 解 次 集 不 的解集 不等式 等 2 bx c ax {x|x 1 x x 2} Φ Φ 的解集

注:1.解一元二次不等式的步骤: (1)把二次项的系数a变为正的.(如果a 0,那么在不等式两边都乘以1,把系 数变为正) 1

(2)解对应的一元二次方程.(先看能否因式分解,若不能,再看△,然后求根)(3)求解一元二次不等式.(根据一元二次方程的根及不等式的方向) 2.当a 0 且0 时,定一元二次不等式的解集的口诀:“小于号取中间,大于号取两边”. 三、含有绝对值的不等式的解法 1.绝对值的概念 a (a 0) a 0 a 0 a a 0 2.含绝对值不等式的解: (1)| x | a(a 0) a x a (2)| x | a(a 0) x a或x a (3)| f (x) | a(a 0) a f (x) a (4)| f (x) | a(a 0) f (x) a或f (x) a 注:当a 0时,| x | a 无解,| x | a的解集为全体实数. 四、一元高次不等式的解法 一元高次不等式 f ( x) 0(或 f (x) 0),一般用数轴标根法求解,其步骤是: (1)将 f ( x) 的最高次项的系数化为正数; (2)将 f ( x) 分解为若干个一次因式的积; (3)将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; (4)根据曲线显现出 f (x) 值的符号变化规律,写出不等式的解集. 如:若a1 a2 3 ,则不等式(x a1)(x a2) (x a n) 0 a a n 或(x 1)(x a ) (x a n ) 0的解法如下图(即“数轴标根法”): a 2 五、分式不等式的解法 ' ' f (x) f ( x) 对于解 a a 或型不等式,应先移项、通分,将不等式整理成 ' g ( x) g'( x)

相关主题
文本预览
相关文档 最新文档