当前位置:文档之家› Midas_顶推法桥梁的施工阶段分析

Midas_顶推法桥梁的施工阶段分析

Midas_顶推法桥梁的施工阶段分析
Midas_顶推法桥梁的施工阶段分析

MIDAS—GEN施工阶段分析例题

例题钢筋混凝土结构施工阶段分析 2 例题. 钢筋混凝土结构施工阶段分析 概要 本例题介绍使用MIDAS/Gen 的施工阶段分析功能。真实模拟建筑物的实际建造过 程,同时考虑钢筋混凝土结构中混凝土材料的时间依存特性(收缩徐变和抗压强度的 变化)。 此例题的步骤如下: 1.简要 2.设定操作环境及定义材料和截面 3.利用建模助手建立梁框架 4.使用节点单元及层进行建模 5.定义边界条件 6.输入各种荷载 7.定义结构类型 8.运行分析 9.查看结果 10.配筋设计

例题 钢筋混凝土结构施工阶段分析 3 1.简要 本例题介绍使用MIDAS/Gen 的施工阶段分析功能。(该例题数据仅供参考) 例题模型为六层钢筋混凝土框-剪结构。 基本数据如下: 轴网尺寸:见平面图 主梁: 250x450,250x500 次梁: 250x400 连梁: 250x1000 混凝土: C30 剪力墙: 250 层高: 一层:4.5m 二~六层 :3.0m 设防烈度:7o(0.10g ) 场地: Ⅱ类 图1 结构平面图

例题 钢筋混凝土结构 抗震分析及设计 1

例题钢筋混凝土结构抗震分析及设计 例题. 钢筋混凝土结构抗震分析及设计 概要 本例题介绍使用MIDAS/Gen 的反应谱分析功能来进行抗震设计的方法。 此例题的步骤如下: 1.简要 2.设定操作环境及定义材料和截面 3.利用建模助手建立梁框架 4.建立框架柱及剪力墙 5.楼层复制及生成层数据文件 6.定义边界条件 7.输入楼面及梁单元荷载 8.输入反应谱分析数据 9.定义结构类型 10.定义质量 11.运行分析 12.荷载组合 13.查看结果 14.配筋设计 2

midas连续梁分析报告实例

1. 连续梁分析概述 比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、 内力。 3跨连续两次超静定 3跨静定 3跨连续1次超静定 图 1.1 分析模型

?材料 钢材: Grade3 ?截面 数值 : 箱形截面 400×200×12 mm ?荷载 1. 均布荷载 : 1.0 tonf/m 2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差) 设定基本环境 打开新文件,以‘连续梁分析.mgb’为名存档。单位体系设定为‘m’和‘tonf’。 文件/ 新文件 文件/ 存档(连续梁分析 ) 工具 / 单位体系 长度> m ; 力 > tonf 图 1.2 设定单位体系

设定结构类型为 X-Z 平面。 模型 / 结构类型 结构类型> X-Z 平面? 设定材料以及截面 材料选择钢材GB(S)(中国标准规格),定义截面。 模型 / 材料和截面特性 / 材料 名称( Grade3) 设计类型 > 钢材 规范> GB(S) ; 数据库> Grade3 ? 模型 / 材料和截面特性 / 截面 截面数据 截面号( 1 ) ; 截面形状 > 箱形截面; 用户:如图输入 ; 名称> 400×200×12 ? 选择“数据库”中的任 意材料,材料的基本特 性值(弹性模量、泊松 比、线膨胀系数、容 重)将自动输出。 图 1.3 定义材料图 1.4 定义截面建立节点和单元

为了生成连续梁单元,首先输入节点。 正面, 捕捉点 (关), 捕捉轴线 (关) 捕捉节点 (开), 捕捉单元 (开), 自动对齐 模型 / 节点 / 建立节点 坐标 ( x, y, z ) ( 0, 0, 0 ) 图 1.5 建立节点 参照用户手册的“输 入单元时主要考虑事项”

midas_civil简支梁模型计算

第一讲 简支梁模型的计算 工程概况 20 米跨径的简支梁,横截面如图 1-1 所示。 迈达斯建模计算的一般步骤 1- 理处 前 第五步:定义荷载工况 第六步:输入荷载第四步:定义边界条件 第三步:定义材料和截面 第二步:建立单元 第一步:建立结点

具体建模步骤 第 01 步:新建一个文件夹,命名为 Model01,用于存储工程文件。这里,在桌面的“迈达斯”文件夹下新建了它,目录为 C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01。 第 02 步:启动 Midas ,程序界面如图 1-2 所示。 图 1-2 程序界面 第 03 步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图 1-3 所示。

图 1-3 新建工程 第04 步:选择菜单“文件(F)->保存(S) ”,选择目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01,输入工程名“简支梁.mcb”。如图 1-4 所示。 图 1-4 保存工程

第05 步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01,新建一个 excel 文件,命名为“结点坐标”。在 excel 里面输入结点的 x,y,z 坐标值。如图 1-5 所示。 图 1-5 结点数据 第 06 步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel 里面的数据拷贝到节点表格,并“ctrl+s”保存。如图 1-6 所示。

MIDAS GTS-地铁施工阶段分析资料精

高级例题1
地铁施工阶段分析

GTS高级例题1.
- 地铁施工阶段分析
运行GTS
1
概要
2
生成分析数据
6
属性 / 6
几何建模
20
矩形, 隧道, 复制移动 / 20
扩展, 圆柱 / 25
嵌入, 分割实体 / 27
矩形, 转换, 分割实体 (主隧道) / 30
矩形, 转换, 分割实体 (连接通道) / 33
矩形, 转换, 分割实体 (竖井,岩土) / 36
直线, 旋转 / 39
生成网格
41
网格尺寸控制 / 41
自动划分实体网格 / 44
析取单元 / 46
自动划分线网格 / 48
重新命名网格组 / 53
修改参数 / 57
分析
58
支撑 / 58
自重 / 60
施工阶段建模助手 / 61
定义施工阶段 / 67
分析工况 / 68
分析 / 70

查看分析结果
71
位移 / 71
实体最大/最小主应力 / 74
喷混最大/最小主应力 / 77
桁架 Sx / 79

GTS 高级例题1
GTS高级例题1
建立由竖井、连接通道、主隧道组成的城市隧道模型后运行分析。 在此GTS里直接利用4节点4面体单元直接建模。
运行GTS
运行程序。
1. 运行GTS 。
2. 点击 文件 > 新建建立新项目。
3. 弹出项目设置对话框。
4. 项目名称里输入‘高级例题 1’。
5. 其它的项直接使用程序的默认值。
6. 点击

7. 主菜单里选择视图 > 显示选项...。
8. 一般表单的网格 > 节点显示指定为‘False’。
9. 点击

1

midas分析弯桥的一点经验总结

midas分析弯桥的一点经验总结 分析弯桥的一点经验总结(2007-05-24 21:23:31) 今天看了桥头堡的一个帖子感觉不错可以作为设计弯桥的借鉴。 关于MIDAS曲线桥双支座的模拟 用MIDAS建立了一个曲线桥的试验模型,模型所采用的材料是有机玻璃。模型分析的目的是根据各种工况下不同支承布置方式的不同来验证曲线梁桥支承布置方式的不同对桥梁内力分布的影响。。。实验基本资料见附图一。 首先我采取的是相关书籍都比较推崇的两端采用抗扭支座,而中间采用点铰支承。 我分别用MIDAS的梁单元以及板单元对该模型进行了模拟。。。 加载工况是在外腹板处加一个F=400N的力 其中,梁单元采取两种方式布置支座 1.截面下偏心,然后用弹性连接的刚性连接截面形心和沿桥横向即Y轴正负方向的两个节点,分别建立两个支左。 2.截面上偏心,先用刚性连接形心节点和其Y轴正负两侧的两个节点,然后用弹性连接中的刚性连接这两个节点和它们沿Z轴负向所对应的支左节点。 板单元则直接在支座相应的节点进行约束即可。 得出的分析结果梁单元的两种支座布置方式所得的支反力结果是相同的,均是曲桥内侧产生支座悬空现象出现拉力。而它们跟板单元的支反

力却有很大的差别(最明显的地方是表现在梁两端的抗扭支座的数值上,方向还是大致一样的) 我自己分析结果的差别主要是因为对梁单元进行分析的时候,我所加的集中力进行了力的平移动,也就是把位于腹板处的集中力平移到了箱梁质心处,变为了一个集中力加一个力矩,力矩的值为F*E(腹板中心到截面中心的距离)。但是我们知道曲线桥的实际的扭转中心并不是位于各截面形心的连线处的,所以我认为我的这个作用力的简化有问题。。。因此板单元所得出的分析结果肯定是相对准确的,可是按理说这个小小的错误也不能导致支座反力会有如此大的差别啊。。。 请大家讨论下MIDAS梁单元双支座的模拟,应该还有更多的错误需要发现,请大家指教一二。。。。 我发现了自己模拟支座时的错误。。。 原来我在用梁单元进行双支座模拟的时候,端部两侧的支座的间距跟用板单元分析的时候不一致,所以这就直接导致了结果的不同。发上我重新修改支座后的反力结果。。。 结果基本吻合,板单元的反力结果还是准确些的。我想梁单元反力的结果还是值得相信的,只是因为曲线桥的扭转中心跟各截面形心的连线是不重合的,而我的梁单元分析的时候却是始终以截面形心进行分析计算的。因此会产生误差。。。不过误差应该在允许范围之内。。。 下图是梁单元修正支座间距后的反力结果。可以跟板单元的反力结果做比较

midas入门教程

目录 建立模型○1 设定操作环境 (2) 定义材料 (4) 输入节点和单元 (5) 输入边界条件 (8) 输入荷载 (9) 运行结构分析 (10) 查看反力 (11) 查看变形和位移 (11) 查看内力 (12) 查看应力 (14) 梁单元细部分析(Beam Detail Analysis) (15) 表格查看结果 (16) 建立模型○2 设定操作环境 (19) 建立悬臂梁 (20) 输入边界条件 (21) 输入荷载 (21) 建立模型○3 建模 (23) 输入边界条件 (24) 输入荷载 (24) 建立模型○4 建立两端固定梁 (26) 输入边界条件 (27) 输入荷载 (28) 建立模型○5○6○7○8

简要 本文来自:中国范文网【https://www.doczj.com/doc/6217616681.html,/】详细出处参考: https://www.doczj.com/doc/6217616681.html,/275.html 本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和一些基本功能。包含的主要内容如下。 1. MIDAS/Civil 的构成及运行模式 2. 视图(View Point)和选择(Select)功能 3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等) 4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果) 使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。 图1. 分析模型 ○1 ○2 ○3 ○4 ○5 ○6 ○ 7 ○ 8 6@2 = 12 m 截面 : HM 440×300×11/18 材料 : Grade3 悬臂梁、两端固定梁 简支梁

midas分析总结

1.在midas中横向计算问题. 在midas中横向计算时遇到下列几个问题,请教江老师. 1.荷载用"用户定义的车辆荷载",DD,FD,BD均取1.3m,P1,P2为计算值,输入时为何提示最后一项的距离必须为0? 2.同样在桥博中用特列荷栽作用时,计算连续盖梁中中支点的负弯距相差很大.其他位置相差不多. 主要参数:两跨2X7.5m,bXh=1.4X1.2m,P1,P2取100 midas结果支点活载负弯矩-264.99kn.m 桥博结果支点活载负弯矩-430kn.m 通过多次尝试及MIDAS公司的大力支持,现在最终的结果如下: 肯定是加载精度的问题,可以通过将每个梁单元的计算的影响线点数改成6,或者,将梁单元长度改成0.1米,就能保证正好加载到这一点上。由这个精度引起的误差应该可以接受的,如果非要消除,也是有办法的。 2.梁板模拟箱梁问题 腹板用梁单元, 顶底板用板单元,腹板和顶底板间用什么连接,刚性?用这个模型做顶底板验算是否合适?在《铁道标准》杂志的“铁道桥梁设计年会专辑”上有一篇文章,您可以参考一下: 铁四院 康小英 《组合截面计算浅析》 里面讨论组合截面分别用MIDAS施工阶段联合截面与梁+板来实现,最后得出结论是用梁+板的结果是会放大板的内力。可能与您关心的问题有相似的地方。 建议您可以先按您的想法做一个,再验证一下,一定要验证!c 3.midas里面讲质量转换为荷载什么意思! 是否为“荷载转为质量”? 在线帮助中这么写: 将输入的荷载(作用于整体坐标系(-)Z方向)的垂直分量转换为质量并作为集中质量数据。 该功能主要用于计算地震分析时所需的重力荷载代表值。 直观的理解就是将已输入的荷载,转成质量数据,不必第二次输入。一般用得比较多的是将二期恒载转成质量。 另外,这里要注意的是,自重不能在这里转换,应该在模型--结构类型中转换。 准确来讲,是算自振频率时(特征值分析)时用的,地震计算时需要各振形,所以间接需要输入质量。

迈达斯Midas-civil梁格法建模实例

北京迈达斯技术有限公司

目录 概要 (3) 设置操作环境........................................................................................................... 错误!未定义书签。定义材料和截面....................................................................................................... 错误!未定义书签。建立结构模型........................................................................................................... 错误!未定义书签。PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。输入荷载 .................................................................................................................. 错误!未定义书签。定义施工阶段. (60) 输入移动荷载数据................................................................................................... 错误!未定义书签。输入支座沉降........................................................................................................... 错误!未定义书签。运行结构分析 .......................................................................................................... 错误!未定义书签。查看分析结果........................................................................................................... 错误!未定义书签。PSC设计................................................................................................................... 错误!未定义书签。

midas施工阶段分析

目录 Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 (2) Q2、 POSTCS阶段的意义 (2) Q3、施工阶段定义时结构组激活材龄的意义 (2) Q4、施工阶段分析独立模型和累加模型的关系 (2) Q5、施工阶段接续分析的用途及使用注意事项 (2) Q6、边界激活选择变形前变形后的区别 (3) Q7、体内力体外力的特点及其影响 (4) Q8、如何考虑对最大悬臂状态的屈曲分析 (4) Q9、需要查看当前步骤结果时的注意事项 (5) Q10、普通钢筋对收缩徐变的影响 (5) Q11、如何考虑混凝土强度发展 (5) Q12、从施工阶段分析荷载工况的含义 (5) Q13、转换最终阶段内力为POSTCS阶段初始内力的意义 (6) Q14、赋予各构件初始切向位移的意义 (6) Q15、如何得到阶段步骤分析结果图形 (6) Q16、施工阶段联合截面分析的注意事项 (6) Q17、如何考虑在发生变形后的钢梁上浇注混凝土板 (7)

Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 A1.“施工阶段荷载”类型仅用于施工阶段荷载分析,在POSTCS阶段不能进行分析。如果将在施工阶段作用的荷载定义为其他荷载类型,则该荷载既在施工阶段作用,也在成桥状态作用。在施工阶段作用的效应累加在CS合计中,在成桥状态作用的荷载效应以“ST荷载工况名称”的形式体现。 因此为了避免相同的荷载重复作用,对于在施工阶段作用的荷载,其荷载类型最好定义为施工阶段荷载。 注:荷载类型“施工荷载”和“恒荷载”一样,都属于既可以在施工阶段作用也可以在POSTCS阶段独立作用的荷载类型。 Q2、P OSTCS阶段的意义 A2.POSTCS是以最终分析阶段模型为基础,考虑其他非施工阶段荷载作用的状态。通常是成桥状态,但如果在施工阶段分析控制数据中定义了分析截止的施工阶段,则那个施工阶段的模型就是POSTCS阶段的基本模型。沉降、移动荷载、动力荷载(反应谱、时程)都是只能在POSTCS阶段进行分析的荷载类型。 施工阶段的荷载效应累计在CS合计中,而POSTCS阶段各个荷载的效应独立存在。 POSTCS阶段荷载效应有ST荷载,移动荷载,沉降荷载和动力荷载工况。 有些分析功能也只能在POSTCS阶段进行:屈曲、特征值。 Q3、施工阶段定义时结构组激活材龄的意义 A3.程序中有两个地方需要输入材龄,一处是收缩徐变函数定义时需输入材龄,用于计算收缩应变;一处是施工阶段定义时结构组激活材龄,用于计算徐变系数和混凝土强度发展。因此当考虑徐变和混凝土强度发展时,施工阶段定义时的激活材龄一定要准确定义。 当进行施工阶段联合截面分析时,计算徐变和混凝土强度发展的材龄采用的是施工阶段联合截面定义时输入的材龄,此时在施工阶段定义时的结构组激活材龄不起作用。 为了保险起见,在定义施工阶段和施工阶段联合截面分析时都要准确的输入结构组的激活材龄。 Q4、施工阶段分析独立模型和累加模型的关系 A4.进行施工阶段分析的目的,就是通过考虑施工过程中前后各个施工阶段的相互影响,对各个施工阶段以及POSTCS阶段进行结构性能的评估,因此通常进行的都是累加模型分析。 对于线性分析,程序始终按累加模型进行分析,如欲得到某个阶段的独立模型下的受力状态,可以通过另存当前施工阶段功能,自动建立当前施工阶段模型,进行独立分析。 在个别情况下,需要考虑当前阶段的非线性特性时,可以进行非线性独立模型分析,如悬索桥考虑初始平衡状态时的倒拆分析,需用进行非线性独立模型分析。 Q5、施工阶段接续分析的用途及使用注意事项 A5.对于复杂施工阶段模型,一次建模很难保证结构布筋合理,都要经过反复调整布筋。 每次修改施工阶段信息后,都必须重新从初始阶段计算。接续分析的功能就是可以指定接续分析的阶段,被指定为接续分析开始阶段前的施工阶段不能进行修改,其后的施工阶段可以进行再次修改,修改完毕后,不必重新计算,只需执行分析〉运行接续

(整理)midas简支梁步骤.

简支梁T梁桥建模与分析 桥梁的基本数据: 桥梁形式:单跨简支梁桥 桥梁等级:I级 桥梁全长:30m 桥梁宽度:13.5m 设计车道:3车道 分析与设计步骤: 1.定义材料和截面特性 材料 截面 定义时间依存性材料(收缩和徐变) 时间依存性材料连接 2.建立结构模型 建立结构模型 修改单元依存材料 3.输入荷载 恒荷载(自重和二期恒载) 预应力荷载 钢束特性值 钢束布置形状 钢束预应力荷载 4.定义施工阶段 5.输入移动荷载数据 选择规范 定义车道 定义车辆 移动荷载工况 6.运行结构分析 7.查看分析结果 查看设计结果 使用材料以及容许应力 > 混凝土 采用JTG04(RC)规范的C50混凝土 >普通钢筋 普通钢筋采用HRB335(预应力混凝土结构用普通钢筋中箍筋、主筋和辅筋均采用带肋钢筋既HRB系列) >预应力钢束 采用JTG04(S)规范,在数据库中选Strand1860

钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类) 钢束类型为:后张拉 钢筋松弛系数(开),选择JTG04和0.3(低松弛) 超张拉(开) 预应力钢筋抗拉强度标准值(fpk):1860N/mm^2 预应力钢筋与管道壁的摩擦系数:0.3 管道每米局部偏差对摩擦的影响系数:0.0066(1/m) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm 张拉力:抗拉强度标准值的75% >徐变和收缩 条件 水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥) 28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2 长期荷载作用时混凝土的材龄:= t5天 o 混凝土与大气接触时的材龄:= t3天 s 相对湿度: % RH = 70 大气或养护温度: C = T 20 ° 构件理论厚度:程序计算 适用规范:中国规范(JTG D62-2004) 徐变系数: 程序计算 混凝土收缩变形率: 程序计算 荷载 静力荷载 >自重 由程序内部自动计算 >二期恒载 桥面铺装、护墙荷载、栏杆荷载、灯杆荷载等 具体考虑: 桥面铺装层:厚度100mm的钢筋混凝土和80mm的沥青混凝土,钢筋混凝土的重力密度为25kN/m3, 沥青混凝土的重力密度为23kN/m3。每 片T梁宽2.5m,所以铺装层的单位长度质量为: (0.1×25+0.08×23)×2.25=9.765kN/m2. 护墙、栏杆和灯杆荷载:以3.55kN/m2计。 二期恒载=桥面铺装+护墙、栏杆和灯杆荷载=9.765+3.55=13.315kN/m2

迈达斯Midas-civil梁格法建模实例

迈达斯技术

目录 概要 (3) 设置操作环境................................................................................................................ 错误!未定义书签。定义材料和截面............................................................................................................ 错误!未定义书签。建立结构模型................................................................................................................ 错误!未定义书签。PSC截面钢筋输入......................................................................................................... 错误!未定义书签。输入荷载 ........................................................................................................................ 错误!未定义书签。定义施工阶段. (62) 输入移动荷载数据........................................................................................................ 错误!未定义书签。输入支座沉降................................................................................................................ 错误!未定义书签。运行结构分析................................................................................................................ 错误!未定义书签。查看分析结果................................................................................................................ 错误!未定义书签。PSC设计 ......................................................................................................................... 错误!未定义书签。

栈桥——迈达斯分析验算示例(清晰版)

栈桥分析 北京迈达斯技术有限公司

目 录 栈桥分析 (1) 1、工程概况 (1) 2、定义材料和截面 (2) 定义钢材的材料特性 (2) 定义截面 (2) 3、建模 (4) 建立第一片贝雷片 (4) 建立其余的贝雷片 (8) 建立支撑架 (9) 建立分配梁 (12) 4、添加边界 (17) 添加弹性连接 (17) 添加一般连接 (19) 释放梁端约束 (22) 5、输入荷载 (22)

添加荷载工况 (22) 6、输入移动荷载分析数据 (23) 定义横向联系梁组 (23) 定义移动荷载分析数据 (23) 输入车辆荷载 (24) 移动荷载分析控制 (26) 7、运行结构分析 (27) 8、查看结果 (27) 生成荷载组合 (27) 查看位移 (28) 查看轴力 (29) 利用结果表格查看应力 (30)

栈桥分析 1、工程概况 一座用贝雷片搭建的施工栈桥,跨径15m(5片贝雷片),支承条件为简支,桥面宽6米。设计荷载汽—20,验算荷载挂—50。贝雷片的横向布置为5×90cm,共6片主梁,在贝雷片主梁上布置I20a分配梁,位置作用于贝雷片上弦杆的每个节点处,间距约75cm。如下图所示: 贝雷片参数:材料16Mn;弦杆2I10a槽钢(C 100x48x5.3/8.5,间距8cm),腹杆I8(h=80mm,b=50mm, tf=4.5mm ,tw=6.5mm)。贝雷片的连接为销接。 图1 贝雷片计算图示(单位:mm) 支撑架参数:材料A3钢,截面L63X4。 分配横梁参数:材料A3钢,截面I20a,长度6m。

建模要点:贝雷片主梁用梁单元,销接释放绕梁端y-y轴的旋转自由度;支撑架用桁架单元;分配横梁用梁单元,与贝雷主梁的连接采用节点弹性连接(仅连接平动自由度,旋转自由度不连接);车道布置一个车道,居中布置。 2、定义材料和截面 定义钢材的材料特性 模型 / 材料和截面特性 / 材料/添加 材料号:1 类型>钢材;规范:JTJ(S) 数据库>16Mn (适用) 材料号:2 类型>钢材;规范:JTJ(S) 数据库>A3 确认 定义截面 注:midas/Civil的截面库中含有丰富的型钢截面,同时还拥有强大的截面自定义功能。 模型 / 材料和截面特性 / 截面/添加 数据库/用户 截面号1; 名称:(弦杆) 截面类型:(双槽钢截面) 选择用户定义,数据库名称(GB-YB); 截面名称:C 100x48x5.3/8.5 C:(80mm)点击适用

MIDASCivil中施工阶段分析后自动生成的荷载工况说明

MIDAS/Civil 中施工阶段分析后自动生成的荷载工况说明 CS: 恒荷载: 除预应力、徐变、收缩之外的在定义施工阶段时激活的所有荷载的作用效应 CS: 施工荷载 为了查看CS: 恒荷载中部分恒荷载的结果而分离出的荷载的作用效应。分离荷载在“分析>施工阶段分析控制数据”对话框中指定。 输出结果(对应于输出项部分结果无用-CS:合计内结果才有用) No. 荷载工况名称 反力 位移 内力 应力 1 CS: 恒荷载 O O O O 2 CS: 施工荷载 O O O O 3 CS: 钢束一次 O O O O 4 CS: 钢束二次 O X O O 5 CS: 徐变一次 O O O O 6 CS: 徐变二次 O X O O 7 CS: 收缩一次 O O O O 8 CS: 收缩二次 O X O O 9 CS: 合计 O O O O CS: 合计中包含的工况 1+2+4+6+8 1+2+3+5+7 1+2+3+4+6+8 1+2+3+4+6+8 CS: 钢束一次 反力: 无意义 位移: 钢束预应力引起的位移(用计算的等效荷载考虑支座约束计算的实际位移) 内力: 用钢束预应力等效荷载的大小和位置计算的内力(与约束和刚度无关)

应力: 用钢束一次内力计算的应力 CS: 钢束二次 反力: 用钢束预应力等效荷载计算的反力 内力: 因超静定引起的钢束预应力等效荷载的内力(用预应力等效节点荷载考虑约束和刚度后计算的内力减去钢束一次内力得到的内力) 应力: 由钢束二次内力计算得到的应力 CS: 徐变一次 反力: 无意义 位移: 徐变引起的位移(使用徐变一次内力计算的位移) 内力: 引起计算得到的徐变所需的内力(无实际意义---计算徐变一次位移用) 应力: 使用徐变一次内力计算的应力(无实际意义) CS: 徐变二次 反力: 徐变二次内力引起的反力 内力: 徐变引起的实际内力(参见下面例题中收缩二次的内力计算方法) 应力: 使用徐变二次内力计算得到的应力 CS: 收缩一次 反力: 无意义 位移: 收缩引起的位移(使用收缩一次内力计算的位移) 内力:引起计算得到的收缩所需的内力(无实际意义---计算收缩一次位移用) 应力: 使用收缩一次内力计算的应力(无实际意义) CS: 收缩二次 反力: 收缩二次内力引起的反力 内力: 收缩引起的实际内力(参见下面例题) 应力: 使用收缩二次内力计算得到的应力 例题1: P R2 e sh:收缩应变(Shrinkage strain) (随时间变化) P: 引起收缩应变所需的内力 (CS: 收缩一次) 因为用变形量较难直观地表现收缩量,所以MIDAS程序中用内力的表现方式表 现收缩应变. ?: 使用P计算(考虑结构刚度和约束)的位移 (CS: 收缩一次) e E:使用?计算的结构应变 F: 收缩引起的实际内力 (CS: 收缩二次)

迈达斯Midascivil梁格法建模实例

目录 概要......................................................... 设置操作环境 ................................................. 定义材料和截面 ............................................... 建立结构模型 ................................................. PSC截面钢筋输入 .............................................. 输入荷载 ..................................................... 定义施工阶段 ................................................. 输入移动荷载数据 ............................................. 输入支座沉降 ................................................. 运行结构分析 ................................................. 查看分析结果 ................................................. PSC设计......................................................

Midas Civil中各种时间的含义

midas Civil中各种时间的含义 在使用midas Civil,需要对桥梁结构进行施工阶段分析,那必然会碰到混凝土收缩徐变的问题,利用midas建模时,经常会碰到一些时间的定义,我在这里把这些时间的含义罗列出来,以供大家参考。 首先需要注意一点:收缩的龄期与徐变的龄期是没有任何联系的,收缩龄期是计算混凝土收缩的时间,而徐变龄期是计算徐变的时间,只有结构上作用荷载,才会发生徐变的效应。 一、收缩开始的混凝土龄期: 收缩开始时的混凝土龄期:浇筑混凝土后开始收缩时间,即发生收缩效应的时间;midas 是在定义时间依存材料特性中定义,按规范要求,一般取3d。 二、混凝土徐变的材龄: 混凝土发生徐变的时间为徐变材龄,这个值是在定义混凝土施工阶段的时候定义的,如下图:即在midas中的“混凝土材龄”,这个材龄是混凝土从浇筑到激活(即参与受力)的时间,同时也是发生徐变的时间,因为有荷载作用采用徐变。针对徐变的计算材材龄。不要输入0,按实际的天数输入即可。 三、施工阶段持续时间: 施工的持续时间,是指该施工过程持续的天数,这个持续时间不包括结构的材龄。对于持续时间可能会有个疑问,从混凝土浇筑到受力需要一段时间养护,那如何考虑这弹模的变化?这个可以利用midas中“强度发展曲线”来考虑,对于中国规范,强度发展未作规定,故一般可以不需要定义强度发展曲线。 四、施工阶段荷载-时间荷载: 为了考虑相邻构件的时间经历差异,并反映到材料的时间依存特性(徐变、收缩、强度的变化等),给构件施加时间荷载。 一般时间荷载主要用在:两个桥墩在模拟施工阶段时是同时激活的,但是实际上只有一套模板,这样一个桥墩的悬臂段比另一个晚了60天,也即第一个桥墩了60天时间经历,由于这60天的时间差异,两个桥墩的悬臂梁的挠度也将有差别,为了最大限度降低合龙段完工时产生的残留应力,必须正确预测两个桥墩悬臂梁的挠度,故做施工阶段分析时,可以用时间荷载来考虑两个桥墩的时间经历差异。 midas 在定义施工阶段时会要求输入材龄 该材龄为该结构组的初始材龄,即在该施工阶段开始时,结构组已经具备的材龄。程序将按输入的材龄计算徐变。一般输入从浇筑混凝土后到拆模直到该单元开始发生作用(拆除了脚手架)的时间。当定义了强度发展函数时,一定要准确输入该材龄。重点就是这是徐变材料。也就是混凝土有强度开始算起,跟施工持续时间没有必然联系。他们相互独立。比如浇筑混凝土到拆模10天,材龄小于10天,因为刚浇筑没有强度,也就不存在徐变。 如果是预制构件,当前施工阶段结构材龄就大于施工持续时间,因为在当前施工之前,构件就具备材龄了.

迈达斯midas简支梁模型计算

第一讲 简支梁模型的计算 1.1 工程概况 20米跨径的简支梁,横截面如图1-1所示。 图1-1 横截面 1.2 迈达斯建模计算的一般步骤 后处理理处 前 第五步:定义荷载工况 第八步:查看结果 第七步:分析计算第六步:输入荷载 第四步:定义边界条件 第三步:定义材料和截面 第二步:建立单元第一步:建立结点 1.3 具体建模步骤 第01步:新建一个文件夹,命名为Model01,用于存储工程文件。这里,在桌面的“迈达斯”文件夹下新建了它,目录为C:\Documents and Settings\Administrator\桌面\迈达斯\模型01。 第02步:启动Midas Civil.exe ,程序界面如图1-2所示。

第03步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图1-3所示。 图1-3 新建工程 第04步:选择菜单“文件(F)->保存(S)”,选择目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,输入工程名“简支梁.mcb”。如图1-4所

示。 图1-4 保存工程 第05步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,新建一个excel文件,命名为“结点坐标”。在excel里面输入结点的x,y,z 坐标值。如图1-5所示。 图1-5 结点数据 第06步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel里面的数据拷贝到节点表格,并“ctrl+s”保存。如图1-6所示。

图1-6 建立节点 第07步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,再新建一个excel文件,命名为“单元”。在excel里面输入单元结点号。如图 1-6所示。 图1-6 单元节点

基于Midas Civil的连续刚构桥受力分析

基于Midas Civil的连续刚构桥受力分析 摘要:本案例通过Midas软件建立连续刚构桥受力结构模型,对连续刚构桥持久状况正常使用极限状态内力分析,清晰表达出其各使用阶段内力,从而更好地进行内力分析计算,为以后连续刚构桥施工受力分析方案提供理论依据。 关键词:Midas分析;连续刚构桥;内力分析 1 工程概况 本工程位于广东省,东莞麻涌至长安高速公路路线跨越漳彭运河后,于大娘涡、沙头顶之间跨越淡水河。淡水河上游接东江北干流和中堂水道,下游汇入狮子洋。淡水河特大桥设计起点从路线K20+060开始至K21+184终止。其中主桥为(82+2×140+80)m的连续刚构桥,梁部采用C60混凝土,根部梁高8m,高跨比为1/17.5,跨中梁高为3m,高跨比为1/46.67,跨中根部梁高之比为1/2.67,底板按1.8次抛物线变化,桩基采用9根φ2.2m桩(半幅桥)。 2 主要技术标准 本桥采用对称逐段悬臂灌注和支架现浇两种施工方法。先托架浇注0号块,再对称逐段悬臂浇筑其它块件。边跨端头块采用支架现浇法施工。先合拢边跨,再合拢中跨。中跨采用挂篮合拢。边跨采用支架施工,先现浇端头块,然后浇筑2m 长合拢段进行边跨合拢。相关计算参数如下所示: 1、公路等级:高速公路,双向八车道。 2、桥面宽度:2×19.85m。 3、荷载等级:公路-I级。 4、设计时速:100km/h 5、设计洪水频率:1/300。 6、设计通航水位:H5%=3.14m。 7、设计基本风速:V10%=31.3m/s 3 计算理论 构件纵向计算均按空间杆系理论,采用Midas Civil V7.41进行计算。(1)将计算对象作为平面梁划分单元作出构件离散图,全桥共划分711个节点和676个单元;(2)根据连续刚构的实际施工过程和施工方案划分施工阶段;(3)根据规范规定的各项容许指标,验算构件是否满足规范规定的各项要求。 4建立计算模型及离散图 4.1计算模型 主桥主墩采用桩基采用9根φ2.2m桩(半幅桥)。根据等刚度原则,将承台以下群桩模拟成二根短柱,柱底固接,桩顶与承台相接形成“门”形结构,令群桩和模拟的两根短柱在单位水平位移、单位竖向位移和单位转角时所需施加的外力相等,解决了桩土互相作用的计算问题。计算模型如下: 4.2构件离散图 5 计算分析 5.1 持久状况承载力极限状态计算 1)正截面受压区高度计算 按《公桥规》规定,混凝土受压区高度:x=ξbh0 相对界限受压区高度ξb=0.38(C60 混凝土、钢绞线)。对各截面受压区高度进行计算,受压区高度最小富余量为96.0cm。最小富余百分比65.7%。计算下表所示:

Midas桁架分析

2. 桁架分析 概述 通过下面的例题,比较内部1次超静定桁架和内、外部1次超静定桁架两种结构在制作误 差产生的荷载和集中力作用时结构的效应。 页脚内容1

图2.1 分析模型 材料 钢材类型: Grade3 截面 数据: 箱形截面300×300×12 mm 荷载 1. 节点集中荷载: 50 tonf 2. 制作误差: 5 mm 预张力荷载(141.75 tonf) P = K = EA/L x = 2.1 x 107 x 0.0135 / 10 x 0.005 = 141.75 tonf 设定基本环境 打开新文件以‘桁架分析.mgb’为名存档。设定长度单位为‘m’, 力单位为‘tonf’。 文件/ 新文件 文件/ 保存( 桁架分析) 工具/ 单位体系 页脚内容2

长度> m; 力> tonf 图2.2 设定单位体系 页脚内容3

设定结构类型为X-Z 平面。 模型/ 结构类型 结构类型> X-Z 平面 定义材料以及截面 构成桁架结构的材料选择Grade3(中国标准),截面以用户定义的方式输入。 模型/ 特性/ 材料 设计类型> 钢材 规范> GB(S); 数据库> Grade3 模型/ 特性/ 截面 数据库/用户 截面号( 1 ); 形状> 箱形截面; 名称(300x300x12 ); 用户(如图2.4输入数据) 页脚内容4

图2.3 定义材料图2.4 定义截面 页脚内容5

页脚内容6建立节点和单元 首先建立形成下弦构件的节点。 正面 捕捉点 (关) 捕捉轴线 (关) 捕捉节点 (开) 捕捉单元(开) 自动对齐 (开) 模型 / 节点/ 建立节点 坐标系 (x , y, z ) ( 0, 0, 0 ) 图 2.5 建立节点

Midas Civil悬索桥分析功能使用

MIDAS/Civil悬索桥分析功能使用说明 资料制作日期:2006-8-9 对应软件版本:Civil 2006 1.使用MIDAS/Civil分析悬索桥的基本操作步骤 A.定义主缆、主塔、主梁、吊杆等构件的材料和截面特性; B.打开主菜单“模型/结构建模助手/悬索桥”,输入相应参数(各参数意义请参考联 机帮助的说明以及下文中的一些内容); C.将建模助手的数据另存为“*.wzd”文件,以便以后修改或确认; D.运行建模助手后,程序会提供几何刚度初始荷载数据和初始单元内力数据,并自动 生成“自重”的荷载工况; E.对模型根据实际状况,对单元、边界条件和荷载进行一些必要的编辑后,将主缆上 的各节点定义为更新节点组,将塔顶节点和跨中最低点定义为垂点组; F.定义悬索桥分析控制数据后运行。运行过程中需确认是否最终收敛。运行完了后程 序会提供平衡单元节点内力数据; G.删除悬索桥分析控制数据,将所有结构、边界条件和荷载都定义为相应的结构组、 边界组和荷载组,定义一个一次成桥的施工阶段,在施工阶段对话框中选择“考虑 非线性分析/独立模型”,并勾选“包含平衡单元节点内力”; H.运行分析后查看该施工阶段的位移是否接近于0以及一些构件的内力是否与几何刚 度初始荷载表格或者平衡单元节点内力表格的数据相同; I.各项结果都满足要求后即可进行倒拆施工阶段分析或者成桥状态的各种分析; J.详细计算原理请参考技术资料《用MIDAS做悬索桥分析》。 2.建模助手中选择三维和不选择三维的区别? A.选择三维就是指按空间双索面来计算悬索桥,需要输入桥面的宽度,输入的桥面系 荷载将由两个索面来承担; B.不选择三维时,程序将给建立单索面的空间模型,不需输入桥面的宽度,输入的桥 面系荷载将由单索面来承担。 3.建模助手中主梁和主塔的材料、截面以及重量是如何考虑的? A.因为索单元必须考虑自重,因此建模助手分析中对于主缆和吊杆的自重,程序会自 动考虑; B.但在建模助手中主梁和主塔的材料和截面并不介入分析,程序只是根据输入的几何 数据,给建立几何模型,以便进行下一步的悬索桥精密分析。即,程序不会根据定

相关主题
文本预览
相关文档 最新文档