当前位置:文档之家› 空间向量及其运算

空间向量及其运算

空间向量及其运算
空间向量及其运算

§8.5 空间向量及其运算

1. 空间向量的概念

(1)定义:空间中既有大小又有方向的量叫作空间向量.

(2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB →

,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理

(1)共线向量定理

对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理

如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律

(1)定义

空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用

(1)数量积的坐标运算

设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示

设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),

则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式

设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),

则|a |=a·a =a 21+a 22+a 23,

cos 〈a ,b 〉=a·b

|a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23

(a ≠0,b ≠0) .

1. 判断下面结论是否正确(请在括号中打“√”或“×”)

(1)空间中任意两非零向量a ,b 共面.

( √ ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ). ( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .

( × ) (4)两向量夹角的范围与两异面直线所成角的范围相同.

( × ) (5)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →

=0. ( √ ) (6)|a |-|b |=|a +b |是a 、b 共线的充要条件.

( × )

2. 如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1

的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →

相等的向 量是

( )

A .-12a +1

2b +c

B.12a +1

2b +c C .-12a -1

2b +c

D.12a -1

2

b +

c 答案 A

解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →

)

=c +12(b -a )=-12a +1

2

b +

c .

3. 已知正方体ABCD -A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AE →=AA 1→+xAB →+yAD →

则x ,y 的值分别为

( )

A .x =1,y =1

B .x =1,y =1

2

C .x =12,y =1

2

D .x =1

2

,y =1

答案 C

解析 如图,AE →=AA 1→+A 1E →=AA 1→+12A 1C 1→=AA 1→+12(AB →+AD →

).

4. 同时垂直于a =(2,2,1)和b =(4,5,3)的单位向量是_______________.

答案 ????13

,-23,23或????-13,23,-2

3 解析 设与a =(2,2,1)和b =(4,5,3)同时垂直的单位向量是c =(p ,q ,r ),

则????

?

p 2+q 2+r 2=1,

2p +2q +r =0,4p +5q +3r =0,

解得????? p =13

,q =-23,

r =23,

或?????

p =-13

q =23,

r =-23,

即同时垂直于a ,b 的单位向量为

????13

,-23,23或????-13,23,-23.

5. 在四面体O -ABC 中,OA →=a ,OB →=b ,OC →

=c ,D 为BC 的中点,E 为

AD 的中点,则OE →

=________(用a ,b ,c 表示). 答案 12a +14b +14

c

解析 OE →=12OA →+12OD →=12OA →+14OB →+14OC →

=12a +14b +1

4

c

.

题型一 空间向量的线性运算

例1 三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC

的重心,用基向量OA →,OB →,OC →表示MG →,OG →

.

思维启迪 利用空间向量的加减法和数乘运算表示即可. 解 MG →=MA →+AG →=12OA →+23AN →

=12OA →+23(ON →-OA →

) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13

OC →

.

OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →

=13OA →+13OB →+13

OC →

. 思维升华 用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.

如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中

点.

(1)化简A 1O →-12AB →-12

AD →

=________;

(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→

=________. 答案 (1)A 1A →

(2)12AB →+12AD →+AA 1→

解析 (1)A 1O →-12AB →-12AD →=A 1O →-12AC →

=A 1O →-AO →=A 1A →

.

(2)OC 1→=OC →+CC 1→=12AB →+12AD →+AA 1→.

题型二 共线定理、空间向量基本定理的应用

例2 已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、

DA 的中点,

(1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH ;

(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →

).

思维启迪 对于(1)只要证出向量EG →=EF →+EH →即可;对于(2)只要证出BD →与EH →

共线即可;对于(3),易知四边形EFGH 为平行四边形,则点M 为线段EG 与FH 的中点,于是向量OM →可由向量OG →和OE →表示,再将OG →与OE →分别用向量OC →,OD →和向量OA →,OB →

表示.

证明 (1)连接BG , 则EG →=EB →+BG →

=EB →+12

(BC →+BD →)

=EB →+BF →+EH →=EF →+EH →, 由共面向量定理的推论知: E 、F 、G 、H 四点共面. (2)因为EH →=AH →-AE →

=12AD →-12AB →=12(AD →-AB →)=12BD →, 所以EH ∥BD .

又EH 平面EFGH ,BD 平面EFGH ,

所以BD ∥平面EFGH .

(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,

所以EH →=FG →

,即EH 綊FG , 所以四边形EFGH 是平行四边形. 所以EG ,FH 交于一点M 且被M 平分. 故OM →=12(OE →+OG →

)=12OE →+12OG →

=12????12(OA →+OB →)+12????12(OC →+OD →) =14(OA →+OB →+OC →+OD →). 思维升华 (1)证明点共线的方法

证明点共线的问题可转化为证明向量共线的问题,如证明A ,B ,C 三点共线,即证明AB →

,AC →共线,亦即证明AB →=λAC →

(λ≠0). (2)证明点共面的方法

证明点共面问题可转化为证明向量共面问题,如要证明P ,A ,B ,C 四点共面,只要能证明P A →=xPB →+yPC →或对空间任一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+

zOC (x +y +z =1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件.

如图,正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 上的点,

F 是AC 上的点,且A 1E =2EB ,CF =2AF ,则EF 与平面A 1B 1CD 的位置关系为________. 答案 平行

解析 取AB →=a ,AD →=b ,AA 1→

=c 为基底, 易得EF →

=-13

(a -b +c ),

而DB 1→=a -b +c ,即EF →∥DB 1→

,故EF ∥DB 1, 且EF

平面A 1B 1CD ,DB 1平面A 1B 1CD ,

所以EF ∥平面A 1B 1CD . 题型三 空间向量数量积的应用

例3 如图所示,已知空间四边形AB -CD 的各边和对角线的长都等于a ,

点M 、N 分别是AB 、CD 的中点. (1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;

(3)求异面直线AN 与CM 所成角的余弦值.

思维启迪 两条直线的垂直关系可以转化为两个向量的垂直关系;利用|a |2=a ·a 可以求线段长;利用cos θ=a ·b |a ||b |可求两条直线所成的角.

(1)证明 设AB →=p ,AC →=q ,AD →

=r .

由题意可知,|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=1

2(q +r -p ),

∴MN →·AB →=1

2(q +r -p )·p =12(q ·p +r ·p -p 2)

=1

2(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN →⊥AB →. 即MN ⊥AB .

同理可证MN ⊥CD .

(2)解 由(1)可知MN →=1

2(q +r -p ),

∴|MN →

|2=14

(q +r -p )2

=1

4[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )] =14[a 2+a 2+a 2

+2(a 22-a 22-a 22

)] =14×2a 2=a 22

. ∴|MN →

|=22a .

∴MN 的长为

22

a . (3)解 设向量AN →与MC →

的夹角为θ. ∵AN →=12(AC →+AD →)=1

2(q +r ),

MC →=AC →-AM →

=q -12p ,

∴AN →·MC →=1

2(q +r )·(q -12p )

=12(q 2-12q ·p +r ·q -1

2

r ·p ) =12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →

|=32

a ,

∴AN →·MC →=|AN →||MC →

|cos θ=32a ×32a ×cos θ=a 22.

∴cos θ=2

3

.

∴向量AN →与MC →

的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.

思维升华 (1)当题目条件有垂直关系时,常转化为数量积为零进行应用;

(2)当异面直线所成的角为α时,常利用它们所在的向量转化为向量的夹角θ来进行计

算.应该注意的是α∈(0,π2],θ∈[0,π],所以cos α=|cos θ|=|a ·b |

|a ||b |

(3)立体几何中求线段的长度可以通过解三角形,也可依据|a |=a 2转化为向量求解.

已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →

.

(1)求向量a 与向量b 的夹角的余弦值;

(2)若k a +b 与k a -2b 互相垂直,求实数k 的值. 解 (1)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2, |b |=

(-1)2+02+22=5,

∴cos 〈a ,b 〉=

a ·

b |a ||b |=-110

=-10

10, 即向量a 与向量b 的夹角的余弦值为-10

10

. (2)方法一 ∵k a +b =(k -1,k,2). k a -2b =(k +2,k ,-4), 且k a +b 与k a -2b 互相垂直,

∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0, ∴k =2或k =-52

∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-5

2.

方法二 由(1)知|a |=2,|b |=5,a ·b =-1, ∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2 =2k 2+k -10=0, 得k =2或k =-52

.

“两向量同向”意义不清致误

典例:(5分)已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为

________.

易错分析 将a ,b 同向和a ∥b 混淆,没有搞清a ∥b 的意义:a ·b 方向相同或相反.

解析 由题意知a ∥b ,所以x 1=x 2

+y -22=y

3

即?

????

y =3x ①

x 2

+y -2=2x ②

把①代入②得x 2+x -2=0,(x +2)(x -1)=0, 解得x =-2,或x =1

当x =-2时,y =-6;当x =1时,y =3.

当?

????

x =-2y =-6时,b =(-2,-4,-6)=-2a , 两向量a ,b 反向,不符合题意,所以舍去.

当????? x =1y =3时,b =(1,2,3)=a ,a 与b 同向,所以?????

x =1y =3.

答案 1,3

温馨提醒 (1)两向量平行和两向量同向不是等价的,同向是平行的一种情况.两向量同向能

推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件;

(2)若两向量a ,b 满足a =λb (b ≠0)且λ>0则a ,b 同向;在a ,b 的坐标都是非零的条件下,a ,b 的坐标对应成比例.

方法与技巧

1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础.

2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量积运算可以解决一些距离、夹角问题.

3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知

向量,然后通过向量的运算或证明去解决问题. 失误与防范

1.向量的数量积满足交换律、分配律,但不满足结合律,即a·b =b·a ,a ·(b +c )=a·b +a·c 成立,(a·b )·c =a·(b·c )不一定成立.

2.求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.

A 组 专项基础训练 (时间:40分钟)

一、选择题

1. 空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的

位置关系是

( )

A .垂直

B .平行

C .异面

D .相交但不垂直

答案 B

解析 由题意得,AB →=(-3,-3,3),CD →

=(1,1,-1), ∴AB →=-3CD →,

∴AB →与CD →共线,又AB →与CD →

没有公共点. ∴AB ∥CD .

2. 已知O ,A ,B ,C 为空间四个点,又OA →,OB →,OC →

为空间的一个基底,则

( )

A .O ,A ,

B ,

C 四点不共线 B .O ,A ,B ,C 四点共面,但不共线 C .O ,A ,B ,C 四点中任意三点不共线

D .O ,A ,B ,C 四点不共面 答案 D

解析 OA →,OB →,OC →为空间的一个基底,所以OA →,OB →,OC →

不共面,但A ,B ,C 三种情况都有可能使OA →,OB →,OC →

共面.

3. 已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是

( )

A .2,1

2

B .-13,12

C .-3,2

D .2,2

答案 A

解析 由题意知:???

λ+16

=22λ,

2μ-1=0,

解得?????

λ=2,μ=12或?????

λ=-3,μ=12.

4. 空间四点A (2,3,6)、B (4,3,2)、C (0,0,1)、D (2,0,2)的位置关系是

( )

A .共线

B .共面

C .不共面

D .无法确定

答案 C

解析 ∵AB →=(2,0,-4),AC →=(-2,-3,-5),AD →

=(0,-3,-4). 假设四点共面,由共面向量定理得,存在实数x ,y , 使AD →=xAB →+yAC →

,即?????

2x -2y =0, ①-3y =-3, ②

-4x -5y =-4, ③

由①②得x =y =1,代入③式不成立,矛盾. ∴假设不成立,故四点不共面.

5. 如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π

3

则cos 〈OA →,BC →

〉的值为

( )

A .0 B.12 C.3

2

D.22

答案 A

解析 设OA →=a ,OB →=b ,OC →

=c ,则|b |=|c |, 〈a ,b 〉=〈a ,c 〉=π3

,BC →

=c

-b ,

∴OA →·BC →=a ·(c -b )=a ·c -a ·b =|a ||c |cos π3-|a ||b |cos π

3=0,

∴OA →⊥BC →,∴cos 〈OA →,BC →

〉=0. 二、填空题

6. 已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的

两直线的夹角为________. 答案 60°

解析 由题意得,(2a +b )·c =0+10-20=-10. 即2a ·c +b ·c =-10, 又∵a ·c =4,∴b ·c =-18, ∴cos 〈b ,c 〉=

b ·

c |b |·|c |=-1812×1+4+4

=-1

2

, ∴〈b ,c 〉=120°,∴两直线的夹角为60°.

7. 已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值为________.

答案

35

5

解析 b -a =(1+t,2t -1,0), ∴|b -a |=(1+t )2+(2t -1)2

5????t -152+95

, ∴当t =15时,|b -a |取得最小值35

5

.

8. 如图所示,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则

PC 等于________. 答案 12

解析 因为PC →=P A →+AB →+BC →

, 所以PC →2=P A →2+AB →2+BC →2+2AB →·BC → =36+36+36+2×36cos 60°=144. 所以|PC →

|=12.

三、解答题

9. 已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).

(1)求|2a +b |;

(2)在直线AB 上是否存在一点E ,使得OE →

⊥b (O 为原点)? 解 (1)∵a =(1,-3,2),b =(-2,1,1), ∴2a +b =(0,-5,5), ∴|2a +b |=

02+(-5)2+52=5 2.

(2)假设存在点E ,其坐标为E (x ,y ,z ), 则AE →=λAB →,

即(x +3,y +1,z -4)=λ(1,-1,-2), ∴????

?

x =λ-3y =-λ-1z =-2λ+4

,∴E (λ-3,-λ-1,-2λ+4),

∴OE →

=(λ-3,-λ-1,-2λ+4). 又∵b =(-2,1,1),OE →

⊥b ,

∴OE →·b =-2(λ-3)+(-λ-1)+(-2λ+4)=-5λ+9=0, ∴λ=95,∴E (-65,-145,25

),

∴在直线AB 上存在点E (-65,-145,25

),使OE →

⊥b .

10.如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,

以顶点A 为端点的三条棱长都为1,且两两夹角为60°. (1)求AC 1的长;

(2)求BD 1与AC 夹角的余弦值. 解 记AB →=a ,AD →=b ,AA 1→

=c ,

则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.

(1)|AC 1→

|2=(a +b +c )2

=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =1+1+1+2×(12+12+1

2)=6,

∴|AC 1→

|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →

=a +b , ∴|BD 1→|=2,|AC →

|=3, BD 1→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.

∴cos 〈BD 1→,AC →

〉=BD 1→·AC →

|BD 1→||AC →

|=66.

∴BD 1与AC 夹角的余弦值为

66

. B 组 专项能力提升 (时间:30分钟)

1. 若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ、μ∈R ,且λμ≠0),则

( )

A .c ∥d

B .c ⊥d

C .c 不平行于d ,c 也不垂直于d

D .以上三种情况均有可能 答案 B

解析 由题意得,c 垂直于由a ,b 确定的平面. ∵d =λa +μb ,∴d 与a ,b 共面.∴c ⊥d . 2. 以下命题中,正确的命题个数为

( ) ①若a ,b 共线,则a 与b 所在直线平行;

②若{a ,b ,c }为空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ③若空间向量m 、n 、p 满足m =n ,n =p ,则m =p ;

④对空间任意一点O 和不共线三点A 、B 、C ,若OP →=xOA →+yOB →+zOC →

(其中x ,y ,z ∈R ),则P 、A 、B 、C 四点共面. A .1 B .2

C .3

D .4

答案 B

解析由共线向量知a与b所在直线可能重合知①错;

若a+b,b+c,c+a共面,则存在实数x,y,使a+b=x(b+c)+y(c+a)=y a+x b+(x +y)c,

∵a,b,c不共面,∴y=1,x=1,x+y=0,∴x,y无解,

∴{a+b,b+c,c+a}能构成空间的一个基底,∴②正确;

由向量相等的定义知③正确;

由共面向量定理的推论知,当x+y+z=1时,P,A,B,C四点共面,∴④不正确.故选B.

3. 如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1

和BB 1的中点,那么直线AM 和CN 所成角的余弦值为________. 答案 25

解析 以D 为原点,DA 、DC 、DD 1为x 、y 、z 轴正半轴建立空间直 角坐标系,

则A (1,0,0),A 1(1,0,1),B 1(1,1,1),B (1,1,0),C (0,1,0), ∴M (1,12,1),N (1,1,1

2),

∴AM →=(0,12,1),CN →

=(1,0,12),

∴cos 〈AM →,CN →

〉=AM →·CN →

|AM →|·|CN →|

12

(1

2

)2+12× 12

+(12

)

2=25. 4. 已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).

(1)求以AB →,AC →

为边的平行四边形的面积;

(2)若|a |=3,且a 分别与AB →,AC →

垂直,求向量a 的坐标. 解 (1)由题意可得:

AB →=(-2,-1,3),AC →

=(1,-3,2),

∴cos 〈AB →,AC →

〉=AB →·AC →|AB →||AC →|=-2+3+614×14=714=12.

∴sin 〈AB →,AC →

〉=32

∴以AB →,AC →

为边的平行四边形的面积为 S =2×12|AB →|·|AC →|·sin 〈AB →

,AC

→〉=14×32=7 3.

(2)设a =(x ,y ,z ),

由题意得????

? x 2+y 2+z 2=3

-2x -y +3z =0

x -3y +2z =0

解得????? x =1y =1

z =1

或?????

x =-1

y =-1z =-1

∴向量a 的坐标为(1,1,1)或(-1,-1,-1).

5. 直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、

E 分别为AB 、BB ′的中点. (1)求证:CE ⊥A ′D ;

(2)求异面直线CE 与AC ′所成角的余弦值. (1)证明 设CA →=a ,CB →=b ,CC ′→

=c , 根据题意,|a |=|b |=|c |,且a·b =b·c =c·a =0, ∴CE →=b +12c ,A ′D →

=-c +12b -12a .

∴CE →·A ′D →

=-12c 2+12b 2=0.

∴CE →⊥A ′D →

,即CE ⊥A ′D .

(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →

|=52|a |.

AC ′→·CE →=(-a +c )·????b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →

〉=12|a |2

2·52|a |

2=1010.

即异面直线CE 与AC ′所成角的余弦值为

1010

.

空间向量及其运算详细教案

空间向量及其运算 3.1.1 空间向量及其加减运算 教学目标: (1)通过本章的学习,使学生理解空间向量的有关概念。 (2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。 能力目标: (1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。 (2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。(3)培养学生空间向量的应用意识 教学重点: (1)空间向量的有关概念 (2)空间向量的加减运算及其运算律、几何意义。 (3)空间向量的加减运算在空间几何体中的应用 教学难点: (1)空间想象能力的培养,思想方法的理解和应用。 (2)空间向量的加减运算及其几何的应用和理解。 考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。 易错点:空间向量的加减运算及其几何意义在空间几何体中的应用 教学用具:多媒体 教学方法:研讨、探究、启发引导。 教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。 教学过程: (老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定? (学生):矢量,由大小和方向确定 (学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? (老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么? (学生)向量 (老师):这三个向量和以前我们学过的向量有什么不同? (学生)这是三个向量不共面 (老师):不共面的向量问题能直接用平面向量来解决么? (学生):不能,得用空间向量 (老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算 (老师):实际上空间向量我们随处可见,同学们能不能举出一些例子? (学生)举例 (老师):然后再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) (老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量

《空间向量运算的坐标表示》说课稿

《空间向量运算的坐标表示》——说课稿 各位评委、老师:大家好! 今天我说课的内容是《空间向量运算的坐标表示》的第一课时,我将从教材分析、教学目标、学生情况、教法学法分析、教学过程、教学效果及反思六个方面来介绍: 一、教材分析 (一)地位和作用 本节课内容选自人教数学选修2-1第三章,这节课是在学生学习了空间向量几何形式及其运算、空间向量基本定理的基础上进一步学习的知识内容,是在学生已经学过的二维的平面直角坐标系的基础上的推广,是《空间向量运算的坐标表示》的第一课时,是以后学习“立体几何中的向量方法”等内容的基础。它将数与形紧密地结合起来。这节课学完后,如把几何体放入空间直角坐标系中来研究,几何体上的点就有了坐标表示,一些题目如两点间距离、异面直线成的角等就可借助于空间向量来解答,所以,这节课对于沟通高中各部分知识,完善学生的认知结构,起到了很重要的作用。 (二)目标的确定及分析 根据新课标和我对教材的理解,结合学生实际水平,从知识与技能;过程和方法;情感态度价值观三个层面出发,我将本课的目标定位以下三个:(1)知识与技能:通过与平面向量类比学习并掌握空间向量加法、减法、数乘、数量积运算的坐标表示以及向量的长度、夹角公式的坐标表示,并能初步应用这些知识解决简单的立体几何问题。(2)过程与方法:①通过将空间向量运算与熟悉的平面向量的运算进行类比,使学生掌握空间向量运算的坐标表示,渗透类比的数学方法;②会用空间向量运算的坐标表示解决简单的立体几何问题,体会向量方法在研究空间图形中的作用,培养学生的空间想象能力和几何直观能力。(3)情感态度价值观:通过提问、讨论、合作、探究等主动参与教学的活动,培养学生主人翁意识、集体主义精神。 (三)重难点的确定及分析 本节课的重点是:空间向量运算的坐标表示,应用向量法求两条异面直线所

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

空间向量的基本运算

第六节 空间向量 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a = 。 4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。 说明:空间任意的两向量都是 的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y ,使 。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使 。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

空间向量知识点与题型归纳总结

空间向量知识点与题型归纳总结 知识点精讲 一、空间向量及其加减运算 1.空间向量 在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可 用有向线段表示,有向线段的长度表示向量的模,若向量a r 的起点是A ,终点是B ,则向量a r 也可以记作 AB u u u r ,其模记为a r 或AB u u u r . 2.零向量与单位向量 规定长度为0的向量叫做零向量,记作0r .当有向线段的起点A 与终点B 重合时,0AB =u u u r r . 模为1的向量称为单位向量. 3.相等向量与相反向量 方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量. 与向量a r 长度相等而方向相反的向量,称为a r 的相反向量,记为a -r . 4.空间向量的加法和减法运算 (1)OC OA OB a b =+=+u u u r u u u r u u u r r r ,BA OA OB a b =-=-u u u r u u u r u u u r r r .如图8-152所示. (2)空间向量的加法运算满足交换律及结合律 a b b a +=+r r r r ,()() a b c a b c ++=++r r r r r r 二、空间向量的数乘运算 1.数乘运算 实数λ与空间向量a r 的乘积a λr 称为向量的数乘运算.当0λ>时,a λr 与向量a r 方向相同;当0λ<时,向量a λr 与向量a r 方向相反. a λr 的长度是a r 的长度的λ倍. 2.空间向量的数乘运算满足分配律及结合律 () a b a b λλλ+=+r r r r ,() ()a a λμλμ=r r . 3.共线向量与平行向量 如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a r 平行于b r ,记作//a b r r . 4.共线向量定理

3.1.1空间向量及其运算

3. 1.1空间向量及其运算(一) 教学目标: ㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律; ㈡能力目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. ㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程: Ⅰ.复习引入 [师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢? [生]既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. [师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量. [师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积 是一个向量,记作λa,其长度 和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa 与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. [师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb [师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本

空间向量的坐标运算

空间向量的坐标运算 第一课时空间直角坐标系 教学目标: ㈠知识目标: ⒈空间直角坐标系; ⒉空间向量的坐标表示; ⒊空间向量的坐标运算; ⒋平行向量、垂直向量坐标之间的关系; 5.中点公式。 ㈡能力目标: ⒈掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; ⒉掌握空间向量坐标运算的规律; 3.会根据向量的坐标,判断两个向量共线或垂直; 4.会用中点坐标公式解决有关问题。 教学重点:空间右手直角坐标系,向量的坐标运算 教学难点:向量坐标的确定 教学方法:讨论法. 教具准备:多媒体投影. 教学过程: 复习回顾 空间向量基本定理 探索研究 1、空间右手直角坐标系的概念 ⑴单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{i,j,k}表示。 ⑵空间直角坐标系O-xyz 在空间选定一点O和一个单位正交基底{i,j,k},以点O 为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,这时我们说建立了一个直角坐标系O-xyz,点O叫做原点,向量i,j,k叫做坐标向 量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面,yOz平面,zOx平面。 ⑶空间直角坐标系的画法作空间直角坐标系O-xyz 时,一般使∠xOy=135°(或45°),∠yOz=90°。 注:在空间直角坐标系O-xyz中,让右手拇指指向x轴 的正方向,食指指向y轴的正方向,如果中指能指向z轴的正 方向,则称这个坐标系为右手直角坐标系。 ⑷空间向量的坐标表示给定一空间直角坐标系和向

向量的直角坐标运算设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3),则a+b=(a 1+b 1,a 2+b 2,a 3+b 3) a -b=(a 1- b 1,a 2-b 2,a 3-b 3)λa=(λa 1,λa 2,λa 3) a ?b=a 1 b 1+a 2b 2+a 2b 2 a//b a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R)a ⊥b a 1b 1+a 2b 2+a 3b 3=0设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则 AB =OB -OA =(x 2-x 1,y 2-y 1,z 2-z 1)  量a ,且设i,j,k 为坐标向量(如图),由空间向量基本定理,存在唯一的有序实数组(a 1,a 2,a 3)叫做向量a 在此直角坐标系中的坐标,可简记作a =(a 1,a 2,a 3)。 在空间直角坐标系O -xyz 中,对于空间任一点A ,对应一个向量OA ,若 ,k z j y i x OA ++=则有序数组(x,y,z)叫做点A 在 此空间直角坐标系中的坐标,记为A(x,y,z),其中x 叫做A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标,写点的坐标时,三个坐标间的顺序不能变。 ⑸空间任一点P 的坐标的确定 过P 分别作三个与坐标平面平行的平面(或垂面),分别交坐标轴于A 、B 、C 三点,|x|=|OA|,|y|=|OB|,|z|=|OC|,当OA 与i 方向相同时,x >0,反之x <0,同理可确定y 、z (如图) 例1已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E 、F 分别是BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出图中各点的坐标。 分析:要求点E 的坐标,过点E 与x 轴、y 轴垂直的平面已存在,只要过E 作平面垂直于z 轴交E ‘ 点,此时|x|=|,|DA |y|=|,|DC |z|=||'DE ,当DA 的方向与x 轴正向相同时,x >0,反之x <0,同理确定y 、z 的符号,这样可求得点E 的坐标。 解:D(0,0,0),A(2,0,0),B(0,2,0),C(0,0,2), A 1(2,0,2), B 1(2,2,2), C 1(0,2,2),, D 1(0,0,2),E(2,2,1),F(0,1,0) 2、向量的直角坐标运算 注:3 32 21 1i 321321b a b a b a b //a 1,2,3),0(i b ),b ,b ,(b b ),a ,a ,(a a = = ? =≠==则若

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

空间向量及其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

空间向量及其运算和空间位置关系 练习题

空间向量及其运算和空间位置关系 1.在下列命题中: ①若向量a ,b 共线,则向量a ,b 所在的直线平行; ②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面; ④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y , z 使得p =x a +y b +z c. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 解析:选A a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A. 2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1 的交点.若AB ―→=a ,AD ―→=b ,AA 1―→=c ,则下列向量中与BM ―→ 相等的向量是( ) A .-12a +12b +c B.12a +1 2b +c C .-12a -12b +c D.12a -1 2 b +c 解析:选A BM ―→=BB 1―→+B 1M ―→=AA 1―→+12(AD ―→-AB ―→ )=c +12(b -a)=-12a +12b +c. 3.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→ (x , y ,z ∈R),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 解析:选B 当x =2,y =-3,z =2时,OP ―→=2OA ―→-3OB ―→+2OC ―→.则AP ―→-AO ―→=2OA ―→-3(AB ―→-AO ―→)+2(AC ―→-AO ―→),即AP ―→=-3AB ―→+2AC ―→ ,根据共面向量定理

空间向量及其运算测试题答案

新课标高二数学同步测试(2-1第三章3.1) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分). 1.在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a , 11D A =b ,A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++-2121 B .c b a ++2 121 C .c b a +-2121 D .c b a +--2 1 21 2.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 3.已知平行六面体''''ABCD A B C D -中,AB=4,AD=3,'5AA =,090BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于( ) A .85 B .85 C .52 D .50 4.与向量(1,3,2)a =-r 平行的一个向量的坐标是( ) A .(31 ,1,1) B .(-1,-3,2) C .(-21,2 3 ,-1) D .(2,-3,-22) 5.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB u u u r u u u r 与的夹角是( ) A .0 B . 2 π C .π D . 32 π 6.已知空间四边形ABCD 中,c OC ,b OB , a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( ) A .c b a 213221+- B . c b a 21 2132++- C .c b a 212121-+ D .c b a 2 13232-+ 7.设A 、B 、C 、D 是空间不共面的四点,且满足000=?=?=?AD AB ,AD AC , AC AB ,则BCD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .不确定 图

高中数学人教A版选修(2—1)第三章3.1空间向量及其运算测试题(含解析答案)

祈福教育 高二选修(2—1)第三章3.1空间向量及其运算测试题 一、选择题 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 3.在棱长都是1的三棱锥A -BCD 中,下列各数量积的值为1 2的是 ( ) A. BC AB ? B. BD AB ? C.DA AB ? D.AC AB ? 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 5.若向量{c b a ,,}是空间的一个基底,向量b a n b a m -=+=,,那么可以与m 、n 构成空间另一个基底的向量是 ( ) A .a B .b C .c D .2a 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( )

空间向量的运算及应用

空间向量的运算及应用 [考纲传真]1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量及平面的法向量.5.能用向量语言表述线线、线面、面面的平行和垂直关系.6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理. 【知识通关】 1.空间向量的有关概念 (1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb. (2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb. (3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中,{a,b,c}叫做空间的一个基底. 3.两个向量的数量积 (1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉. (2)空间向量数量积的运算律: ①结合律:(λa)·b=λ(a·b); ②交换律:a·b=b·a; ③分配律:a·(b+c)=a·b+a·c. 4.空间向量的坐标表示及其应用

设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 5.空间位置关系的向量表示 1.对空间任一点O ,若OP →=xOA →+yOB → (x +y =1),则P ,A ,B 三点共线. 2.对空间任一点O ,若OP →=xOA →+yOB →+zOC → (x +y +z =1),则P ,A ,B ,C 四点共面. 3.平面的法向量的确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为??? n· a =0,n· b =0. 【基础自测】 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)空间中任意两非零向量a ,b 共面.( ) (2)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA → =0.( ) (3)设{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.( ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( ) [答案] (1)√ (2)√ (3)× (4)×

空间向量及其运算和空间位置关系(含解析)

归纳与技巧:空间向量及其运算和空间位置关系 基础知识归纳 一、空间向量及其有关概念 二、数量积及坐标运算 1.两个向量的数量积 (1)a·b=|a||b|cos〈a,b〉; (2)a⊥b?a·b=0(a,b为非零向量); (3)|a|2=a2,|a|=x2+y2+z2. 2.向量的坐标运算

三、平面的法向量 (1)所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量有无数多个,它们是共线向量. (2)在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一的. 基础题必做 1.(课本习题改编)已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2)则下列结论正确的是( ) A .a ∥c ,b ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥b D .以上都不对 解析:选C ∵c =(-4,-6,2)=2a ,∴a ∥c .又a ·b =0,故a ⊥b . 2. 若{a ,b ,c }为空间的一组基底,则下列各项中,能构成基底的一组向量是( ) A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 解析:选C 若c 、a +b 、a -b 共面, 则c =λ(a +b )+m (a -b )=(λ+m )a +(λ-m )b ,则a 、b 、c 为共面向量,与{a ,b ,c }为空间向量的一组基底矛盾,故c ,a +b ,a -b 可构成空间向量的一组基底. 3.(教材习题改编)下列命题: ①若A 、B 、C 、D 是空间任意四点,则有AB u u u r +BC u u u r +CD u u u r +DA u u u r =0; ②若MB u u u r =x MA u u u r +y MB u u u r ,则M 、P 、A 、B 共面; ③若p =x a +y b ,则p 与a ,b 共面. 其中正确的个数为( ) A .0 B .1 C .2 D .3 解析:选D 可判断①②③正确. 4.在四面体O -ABC 中,OA u u u r =a ,OB u u u r =b ,OC u u u r =c ,D 为BC 的中点,E 为AD 的 中点,则OE u u u r =________(用a ,b ,c 表示). 解析:如图,OE u u u r =12OA u u u r +12 OD u u u r

3.1空间向量及其运算教案(经典例题及答案详解)

3.1 空间向量及其运算 第一课时 3.1.1 空间向量及其加减运算----3.1.2 空间向量的数乘运 算 教学要求:理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:由平面向量类比学习空间向量. 教学过程: 一、复习引入 1、有关平面向量的一些知识:什么叫做向量?向量是怎样表示的呢? 既有大小又有方向的量叫向量.向量的表示方法有:用有向线段表示;用字母a 、b 等表示; 用有向线段的起点与终点字母:AB .长度相等且方向相同的向量叫相等向量. 2. 向量的加减以及数乘向量运算: 向量的加法: 向量的减法: 实数与向量的积: 实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下:|λa |=|λ||a | (2)当λ>0时,λa 与a 同向; 当λ<0时,λa 与a 反向; 当λ=0时,λa =0. 3. 向量的运算运算律:加法交换律:a +b =b +a 4. 三个力都是200N ,相互间夹角为60°,能否提起一块重500N 的钢板? 二、新课讲授 1. 定义:我们把空间中具有大小和方向的量叫做空间向量.向量的大小叫做向量的长度或模. → 举例? 表示?(用有向线段表示) 记法? → 零向量? 单位向量? 相反向量? → 讨论:相等向量? 同向且等长的有向线段表示同一向量或相等的向量. → 讨论:空间任意两个向量是否共面? 2. 空间向量的加法、减法、数乘向量的定义与平面向量的运算一样: OB OA AB =+=a +b , AB OB OA =-(指向被减向量), OP =λa ()R λ∈ (请学生说说数乘运算的定义?) 3. 空间向量的加法与数乘向量的运算律. ⑴加法交换律:a + b = b + a ; ⑵加法结合律:(a + b ) + c =a + (b + c ); ⑶数乘分配律:λ(a + b ) =λa +λb ; ⑶数乘结合律:λ(u a ) =(λu )a . 4. 推广:⑴12233411n n n A A A A A A A A A A -++++=; ⑵122334110n n n A A A A A A A A A A -+++++=;⑶空间平行四边形法则. 5. 出示例:已知平行六面体(底面是平行四边形的四棱柱)''''ABCD A B C D - (如图),化简下列向量表达式,并标出化简结果的向量: AB BC +⑴; 'AB AD AA ++⑵; 1(3)'2AB AD CC ++; 1(')3 AB AD AA ++⑷. 师生共练 → 变式训练 6. 小结:概念、运算、思想(由平面向量类比学习空间向量)

空间向量及其运算

空间向量及其运算 1.空间向量的有关概念 2.空间向量中的有关定理 (1)共线向量定理 空间两个向量a与b(b≠0)共线的充要条件是存在实数λ,使得a=λb. (2)共面向量定理 共面向量定理的向量表达式:p=x a+y b,其中x,y∈R,a,b为不共线向量. (3)空间向量基本定理 如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p =x a+y b+z c,{a,b,c}叫作空间的一个基底.

3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π 2,则称a 与b 互相垂直, 记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫作向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ; ③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 概念方法微思考 1.共线向量与共面向量相同吗? 提示 不相同.平行于同一平面的向量就为共面向量. 2.零向量能作为基向量吗? 提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量. 3.空间向量的坐标运算与坐标原点的位置选取有关吗? 提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.

相关主题
文本预览
相关文档 最新文档