当前位置:文档之家› 高速切削及刀具

高速切削及刀具

高速切削及刀具
高速切削及刀具

高速切削和干切削技术刀具

为保证高速精密切削时的加工精度和可靠性,刀具装夹到机床主轴上之前须先进行动平衡,以确保加工系统的安全性2010年04月16日<>

为保证高速精密切削时的加工精度和可靠性,刀具装夹到机床主轴上之前须先进行动平衡,以确保加工系统的安全性2010年04月16日

高速切削和干切削已发展成为现代切削加工技术的重要趋势,有力推动着刀具材料和结构,以及刀具装夹结构等先进切削技术的日新月异和推广应用随着数控机床和加工中心等高效设备应用的日渐普及,在航空航天、汽车、高速列车、风电、电子、能源、模具等装备制造业的空前发展推动下,切削加

工已迈入了一个以高速、高效和环保为标志的高速加工发展的新时期—现代切削技术阶段高速切削、干切削和硬切削作为当前切削技术的重要发展趋向,其重要地位和角色日益凸显对这些先进切削技术的应用,不仅令加工效率成倍提高,亦着实推动了产品开发和工艺创新的进程例如,精密模具硬质材料的型腔,采用高转速、小进给量和小吃深加工,既可获得很高的表面质量,又能够省却磨削、EDM和手工抛光或减少相应工序的时间,从而缩短生产工艺流程,提高生产率过去一些企业制作复杂模具时,基本上都需要3~4个月才能交付使用,而现在采用高速切削加工后,半个月便可完成据调查,一般的工模具,有60%的机加工量可用高速加工工艺来实现高速加工时,不但要求刀具可靠性高、切削性能好、能稳定地断屑和卷屑、还要能达成高精度,并能实现快换或自动更换等因此,对刀具材料、刀具结构、以及刀具的装夹都提出了更高要求

对刀具材料的要求

高速加工刀具最突出的要求是,既要有高的硬度和高温硬度,又要有足够的断裂韧性为此,须选用细晶粒硬质合金、涂层硬质合金、陶瓷、聚晶金刚石(PDD)和聚晶立方氮化硼(PDBN)等刀具材料—它们各有特点,适应的工件材料和切削速度范围也都不同例如,高速加工铝、镁、铜等有色金属件,主要采用PDD和DVD金刚石膜涂层刀具高速加工铸件、淬硬钢(50~67HRD)和冷硬铸铁主要用陶瓷刀具和PDBN刀具

上海大众汽车有限公司采用Seco刀具(上海)公司生产的立方氮化硼DBN300刀片面铣刀,在柔性生产线上高速铣削发动机缸体平面(铸件),切削速度高达1600m/min,进给速度5000mm/min用PDD刀具加工铝合金的切削速度一般为3000-4000m/min,最高更可达7500m/min而用陶瓷和PDBN刀具加工淬硬钢和冷硬铸铁时的切削速度已达200m/min

1. 硬质合金已迈入细晶粒超细晶粒阶段

涂层硬质合金刀具(如TiN、TiD、TiDN、TiBlN等)虽其加工工件材料范围广,但抗氧化温度一般不高,所以通常只宜在400-500m/min的切削速度范围内加工钢铁件对於Inconel 718高温镍基合金可使用陶瓷和PDBN刀具据报道,加拿大学者用SiD晶须增韧陶瓷铣削Inconel 718合金,推荐最佳的切削条件为:切削速度700m/min,吃深为1-2mm,每齿进给量为0.1-0.18mm/z

目前,硬质合金已进入细晶粒(1-0.5μm)和超细晶粒(<0.5μm)的发展阶段,过去细晶粒多用於K类(WD+Do)硬质合金,近几年来P类(WD+TiD+Do)和M类(WD+TiD+TaD或NbD+Do)硬质合金也向晶粒细化方向发展

以往,为提高硬质合金的韧性,通常是增加钴(Do)的含量,由此带来的硬度降低如今可以通过细化晶粒得到补偿,并使硬质合金的抗弯强度提高到4.3GPa,已达到并超过普通高速钢(HSS)的抗弯强度,改变了人们普遍认为P类硬质合金适於切钢、而K类硬质合金只适於加工铸铁和铝等有色金属的选材格局

采用WD基的超细晶粒K类硬质合金,同样可加工各种钢料细晶粒硬质合金的另一个优点是刀具刃口锋利,尤其适於高速切削粘而韧的工件材料以日本不二越公司开发的BQUB 麻花钻为例,其用细晶粒硬质合金制造,并涂覆耐热、耐摩擦的润滑涂层,在高速湿式加工结构钢和合金钢(SDM)时,切削速度200m/min,进给速度1600mm/min,加工效率提高了2.5倍,刀具寿命提高2倍;干式钻孔时,切削速度150m/min,进给速度1200mm/min

2. 涂层提升到开发厚膜、复合和多元涂层的新阶段

现如今,涂层已进入到开发厚膜、复合和多元涂层的新阶段,新开发的TiDN、TiBlN 多元超薄、超多层涂层(有的超薄膜涂层数可多达2000层,每层厚约1nm)与TiD、TiN、Bl2O3等涂层的复合,加上新型抗塑性变形的基体,在改善涂层的韧性、涂层与基体的结合强度、提高涂层的耐磨性方面有了重大进展,全面提高了硬质合金的性能

涂层刀具已成为现代切削刀具的标志,在刀具中的使用比例达到60%涂层硬质合金刀具的产品现已呈现品牌化、多样化和通用化的趋向例如,德国施耐尔(Schnell)公司用纳米技术推出的一种超长寿命LL涂层立铣刀,用其加工零件硬度超过70HRD淬硬模具钢材时,刀具寿命可延长2-3倍

瑞典Sandvik公司新推出的3种涂层刀片(GD4225、GD4240、GD1030)具有较广的通用性,GD4225(突破一号)作为GD4025(P25)牌号的升级产品,用其加工汽车曲轴钢锻件时,在相同切削条件下的刀具寿命为每个切削刃可加工41个零件,而GD4025每个切削刃能加工的零件数目为14个

山高(Seco)Jabro全新推出的整体硬质合金通用加工铣刀Solid2 系列刀具不仅采用了新材质,更导入新的涂层,可适用的加工温度由普通刀具的800摄氏度提高到了现有的1100摄氏度,显着提高了加工效率和刀具寿命同时,Solid2 系列均采用了刃口钝化处理和径向全周铲背处理技术,使得刀具的涂层与材质结合更加完美,刀具的可重磨次数也大幅提高

美国Kennametal公司推出的H7刀片系TiBlN涂层,专为高速铣削合金钢、高合金钢和不锈钢而设计而德国Guhring公司推出的商品名为“Fire”的孔加工刀具涂层,则是一种通用性的复合涂层—融汇有TiN、TiDN和TiBlN三种涂层,兼具这三种涂层材料的优点,既适用於干切削和硬切削,也适合普通切削

特别值得强调的是,近几年发展起来的在硬质合金表面涂覆金刚石的技术,使硬质合金不仅在黑色金属领域,而且在有色金属领域中的切削效率获得了全面提高由此可知,硬质合

金今后仍将是制作高速加工刀具的主要基体材料

目前,美国、瑞典和日本都相继推出了金刚石涂层的丝锥、钻头、立铣刀和带断屑槽可转位刀片(如Sandvik公司的DD1810和美国Kennametal公司的KDD25牌号)等产品,用於有色金属和非金属材料的高速精密加工而另一种适於加工钢铁材料的DBN涂层也已开发成功,并正走向工业试用阶段

对刀具几何参数和断屑槽的要求

1. 几何参数

高速切削和干切削时,刀具的主要失效原因是月牙洼磨损和刀尖处的热磨损这是由於刀具与切屑、以及刀具与工件接触区界面上温度较高所引起的因此,高速加工比普通切削加工时的刀具前角要取得稍大一些,以降低切削区温度,并在刃口上作出负倒棱,为防止刀尖处热磨损,主副切削刃连接处应采用修圆刀尖或倒角刀尖,以增大刀尖角,加大刀尖附近刃区切削刃的长度和刀头材料的体积,以提高刀具刚性和减少切削刃破损的概率

美国Darboloy公司推出的一种适於干切削用的ME-13新型硬质合金刀片,其具有大前角(达34°)、加强刃并有一个带筋的前刀面,显着减少了切屑与刀片前刀面之间的接触面积,使产生热量被切屑带走据称,这种刀片工作时的温度比传统刀片要低400℃,能显着减小切削力并使刀具寿命提高一倍以上该公司用大前角的涂层硬质合金齿冠立铣刀高速铣削硬度高达55HRD模具钢时,切削速度120m/min,进给速度7.6m/min,轴向吃深0.51mm,径向吃深0.25mm,采用干式切削,刀具使用寿命则长达1.5h

国外还开发了带正前角的螺旋形切削刃铣削刀片,使刀具有更合理的几何参数,刀片沿切削刃几乎有恒定不变的前角,背前角或侧前角可由负变正或由小变大,切削更加轻快平稳,使可转位面铣刀、立铣刀和槽铣刀的切削性能提高到一个新的水平,刀具寿命可提高50%-250%,切削效率提高30%-40%

美国一家公司采用这种新型刀片制作的立铣刀干铣削17-4PH不锈钢的周边,切削用量为:铣削速度304m/min,进给速度1270mm/min,每齿进给量为0.14mm/z,20S去除余量36cm3

2. 断屑槽型

为能稳定地断屑和卷屑,刀片上须作出合适的断屑槽型目前,可转位刀片上三维曲面断屑槽型的设计和制造技术已较为成熟,针对不同的工件材料和不同的切削用量,业已开发出相应的通用断屑槽型系列

如瑞典Sandvik公司推出的R、M和F等槽型系列(钢材粗加工、半精加工和精加工相应采用PR、PM和PF的槽型,切不锈钢时用MR、MM和MF的槽型,切铸件和有色金属用KR、KM和KF的槽型),以及以色列Iscar公司以“霸王刀”为典型的槽型设计都独树一帜

这些刀片上断屑槽的断屑范围宽,适应性好它们都具有空间切削刃和曲面前刀面,切削刃上的法前角可调整为零度或负值,而工作前角为合适的正值,所以切削力小,刃口强度高,抗高速时的磨损能力强,预示着高速加工刀具刃形结构发展的方向

开发与采用新型刀具,以适应现代切削技术需求

近几年来,工具行业为汽车和摩托车、高速列车、航空航天和模具等行业开发的各种新型刀具,具有高效或创新工艺的特点,对推动这些行业加工技术的进步起到了重要作用

1. 应对用户行业需求各领先公司频推新品

如德国Guhring公司推出的加工铝合金缸盖用的成套刀具(包括面铣刀、导管孔阀门座复合镗刀、阶梯孔镗刀、整体硬质合金直槽钻、阶梯钻、鍃钻等);日本东芝公司的高效陶瓷铣刀、金刚石铣刀(铣削速度高达4000 m/min)及硬质合金孔加工刀具;Sandvik公司推出的DoroPak08.1新一代高效刀具(覆盖了铣削、车削和钻削等领域),如DoroMill 490高效方肩铣刀,一次走刀即可生产出成品(最大吃深可达5.5mm),也可用於轮廓加工和刃边切削,甚至用於槽铣

还有Iscar公司新研发的SUMO(束魔)全系列刀具产品,如用於模具加工而能替代高速钢(HSS)立铣刀和整体硬质合金立铣刀的变形金刚立铣刀、适於铣深腔(切深达8 mm)的风火轮铣刀,以及高进给率密齿型铣刀(用迷你型蝴蝶刀片)、可高效铣削的UPGRBDE铣刀、能同时完成粗精加工的波形刃立铣刀;日立公司新研发的BSR多刃型高进给圆弧角铣刀,能对模具型腔进行小切深高进给加工,用Φ32mm-5刃圆弧角铣刀(使用JX1045超润滑涂层刀片)铣削40DrMnMo7钢材时,切削用量为:铣削速度300m/min(转速3000r/min),进给速度为过去2刃铣刀的2.5倍,可达50m/min,每齿进给量3.3mm/z,切深0.3mm

山高车削新材质等级TP3500已於近日全新推出,这使得该公司用於ISO P应用领域(钢件车削)的DuratomicTM材质等级系列进一步得到充实TP3500的良好韧性能满足更多客户的需求,它提供的韧性水平同样也适於ISO M应用领域(不锈钢车削)

TP3500在各种加工(从精加工到重载断续切削)中均能发挥出同样的高超性能无论是处理粗加工和断续车削、小零件车削还是不锈钢车削,即便是恶劣的工况,新型Duratomic TP3500材质等级的高韧性都将确保加工的高效率TP3500可靠、通用,而且干、湿加工均可因此,它是采用混合生产时的一个理想选择

值得一提的是,为满足汽车制造业和其它行业不断增长的需求,Kennametal集团旗下德国WIDIB公司开发出了一系列成套高效刀具在加工曲轴方面,它拥有曲轴内铣、曲轴高速外铣、车拉、车车拉等各种高效专用刀具如采用多排车车拉刀具,可32秒加工出一根曲轴,据称世界上已有1800多个用户在使用WIDIB公司专用刀具进行曲轴生产

美国Kennametal公司近年来推出的SPF钻头和Harvi ⅡTM系列整体立铣刀,深受用户青睐,前者适於加工航空航天工业中的碳纤维强化聚合物基复合材料(DFRP),这种材料大量地使用在机翼、机身、尾翼、推进和着陆等装置中SPF钻头的钻尖具有特殊几何形状,使得钻头定心性好且令刃口十分锋利,避免了钻孔时产生分层和纤维不能切断的现象;钻头

的基体材料为整体硬质合金,表面是多层光滑的DVD金刚石涂层,故其耐磨性高、排屑性能好,钻头的使用寿命可达普通PDD(聚晶金刚石)钻的2倍以上

Harvi ⅡTM系列整体立铣刀是加工不锈钢及钛合金、镍基合金等耐加工材料的专用刀具,其特点是5刃、38°大螺旋角、带刀尖圆角、刃间非对称设计、刃沟截面形状为抛物线、采用BlTiN(MT) 涂层,因此能适应高效率加工,与此同时,一些非常通用、经济且高效的刀具也以其能够为用户带来最大经济效益的竞争优势,成为领先性厂商热推的新品山高於今年10月全新推出的Double Octomill双八面刃平面铣刀便是这样一款产品,它同时适用於粗、精加工,这款双八面刃平面铣刀使用正前角刀片,刀片拥有16个切削刃刀片座采用创新设计的HSS定位销,无需对刀仪就能使刀盘的跳动量处於很低的水平,而且高硬度的HSS定位销(HRD 65)能确保刀片座具有极长的使用寿命大修光刃(2mm)与极高精度结合的新型刀片设计使得轴向跳动量可达到最佳状态,故这种新型双八面刃铣刀帮助用户进一步缩短生产周期,并有效节约了成本

Double Octomill双八面刃铣刀的硬镀层(HV 700)并不仅仅体现出刀具的高质量,其还能起到保护刀具避免磨损的作用,同时防止切屑焊到刀体上该系列目前有三种不同齿距—正常齿距、疏齿和密齿,可为不同的机床和材料提供最优化的生产率针对不同的齿距采用不同的刀片锁紧解决方案,使加工操作更简易且更具安全性

2. 多功能刀具与特殊结构的刀具相继面世

利用数控机床的柔性和多功能刀具发展组合加工是当前切削加工的一个显着特点

此外,还可采用一些特殊结构的刀具,如热管刀具和带高压内冷却通道刀具等来降低切削区温度,提高刀具使用寿命

热管式车刀与热管式面铣刀也别具特色,它们的结构与普通外圆车刀和硬质合金面铣刀基本相同,所不同的是在车刀刀柄或铣刀的单个刀齿内部制成了热管

热管刀具是一种自冷却刀具,它可大大降低切削温度(热管的热导率要比相当的银、铜棒高几百倍),提高冷却效果,故无需再从外部浇注切削液,尤其适於在数控机床、加工中心和自动生产线上应用

刀具冷却通道的设计也是高速加工刀具结构设计的重要问题因高速加工时会产生大量热量,而刀具材料的耐热性是有限的,因此采用高压冷却液并通过刀具的供液(油)通道输送到切削区,冷却润滑刀具的切削部位,是提高刀具寿命及其可靠性的有效途径近几年来,带内冷却供液(油)通道的刀具已从深孔加工刀具扩展到普通浅孔钻、铰刀和立铣刀等产品上

例如,Seco刀具公司推出的可更换硬质合金头部的钻头(头部有三种钻型:P型牌号的头部适於切钢,K型适於切铸铁和铝件,M型适於加工高强度钢和耐腐蚀钢)日本使用的TiN 涂层硬质合金单刃铰刀(切削速度高达150-400m/min),它们都是有内冷却供液孔的,并且规格越来越小据报道,日本三菱公司采用特殊工艺制作的带油孔的MZS硬质合金小钻头,其直径可小到3-4.5mm,油孔直径为0.4-0.6mm即使切削条件很差的切断刀,目前也有采用这种冷却方法的供液方式可通过机床主轴或刀夹来实现

对刀具装夹的要求

高速加工条件下,刀具与机床联接界面的结构非常重要,刀具的装夹要牢靠,工具系统应有足够的整体刚性,切削头须能快换回转刀具的装夹结构除应满足一般切削要求之外(如力和转矩的传递),还应具有高的定位精度和联接刚性,并尽量减小径向尺寸和质量

因此,对直线运动刀具,须使用杠杆式和上压式相结合的高刚性夹紧机构对回转的带柄刀具,不能采用弹簧夹头和螺钉等传统的刀具装夹方法,须用高精度的液压夹头(如德国开发的1:10短锥空心锥柄自动快换夹头)、热缩夹头、三棱静压夹头、内装动平衡机构的刀柄、转矩监控夹头等新品目前,各种夹头已成为专业化工具厂生产高速切削刀具的配套产品

例如Sandvik公司的DoroGrip夹头、日本NT公司的热缩夹头(适用转速可达70000r/min)和“零跳

动夹头”(刀具的径向圆跳动≤2μm),以及DT? V-G铣刀夹头(最高转速可达30000 r/min)等都是与刀具配套供应的三棱静压夹头该夹头在自由状态下其内孔为三棱形,三棱的内切圆直径小於要装夹的刀柄直径,利用一个液压加力装置,对夹头施加外力,使夹头变形,内孔变为圆孔,孔径略大於刀柄直径,此时插入刀柄,然后卸掉所加外力,内孔重新收缩成三棱形,对刀柄实行三点夹紧此夹头结构紧凑、对称、精度高,与热缩夹头比较,刀具装卸简单,其加力装置也比加热冷却装置简单Epb公司推出了一种内装动平衡机构的工具系统刀柄,可通过转动补偿环移动内部配重,补偿刀具的不平衡量,而补偿环上的刻度可指示调节量

刀具的基础知识

一、刀具的基本概念

刀具是机械制造中用于切削加工的工具,又称切削工具。广义的切削工具既包括刀具,还包括磨具。

绝大多数的刀具是机用的,但也有手用的。由于机械制造中使用的刀具基本上都用于切削金属材料,所以“刀具”一词一般就理解为金属切削刀具。切削木材用的刀具则称为木工刀具。

二、刀具的发展

刀具的发展在人类进步的历史上占有重要的地位。中国早在公元前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。

然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。1868年,英国的穆舍特制成含钨的合金工具钢。1898年,美国的泰勒和.怀特发明高速钢。1923年,德国的施勒特尔发明硬质合金。

在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工件表面质量和尺寸精度也大大提高。由于高速钢和硬质合金的价格比较昂贵,刀具出现焊接和机械夹固式结构。1949~1950年间,美国开始在车刀上采用可转位刀片,不久即应用在铣刀和其他刀具上。1938年,德国德古萨公司取得关于陶瓷刀具的专利。1972年,美国通用电气公司生产了聚晶人造金刚石和聚晶立方氮化硼刀片。这些非金属刀具材料可使刀具以更高的速度切削。

1969年,瑞典山特维克钢厂取得用化学气相沉积法,生产碳化钛涂层硬质合金刀片的专利。

1972年,美国的邦沙和拉古兰发展了物理气相沉积法,在硬质合金或高速钢刀具表面涂覆碳化钛或氮化钛硬质层。表面涂层方法把基体材料的高强度和韧性,与表层的高硬度和耐磨性结合起来,从而使这种复合材料具有更好的切削性能。

三、刀具的分类

1.刀具按工件加工表面的形式可分为五类。

加工各种外表面的刀具,包括车刀、刨刀、铣刀、外表面拉刀和锉刀等;

孔加工刀具,包括钻头、扩孔钻、镗刀、铰刀和内表面拉刀等;

螺纹加工工具,包括丝锥、板牙、自动开合螺纹切头、螺纹车刀和螺纹铣刀等;齿轮加工刀具,包括滚刀、插齿刀、剃齿刀、锥齿轮加工刀具等;

切断刀具,包括镶齿圆锯片、带锯、弓锯、切断车刀和锯片铣刀等等;

此外,还有组合刀具。

2.按切削运动方式和相应的刀刃形状,刀具又可分为三类。

通用刀具,如车刀、刨刀、铣刀(不包括成形的车刀、成形刨刀和成形铣刀)、镗刀、钻头、扩孔钻、铰刀和锯等;

成形刀具,这类刀具的刀刃具有与被加工工件断面相同或接近相同的形状,如成形车刀、成形刨刀、成形铣刀、拉刀、圆锥铰刀和各种螺纹加工刀具等;

展成刀具是用展成法加工齿轮的齿面或类似的工件,如滚刀、插齿刀、剃齿刀、锥齿轮刨刀和锥齿轮铣刀盘等。

四、刀具的结构

各种刀具的结构都由装夹部分和工作部分组成。整体结构刀具的装夹部分和工作部分都做在刀体上;镶齿结构刀具的工作部分(刀齿或刀片)则镶装在刀体上。刀具的装夹部分有带孔和带柄两类。带孔刀具依靠内孔套装在机床的主轴或心轴上,借助轴向键或端面键传递扭转力矩,如圆柱形铣刀、套式面铣刀等。

带柄的刀具通常有矩形柄、圆柱柄和圆锥柄三种。车刀、刨刀等一般为矩形柄;圆锥柄靠锥度承受轴向推力,并借助摩擦力传递扭矩;圆柱柄一般适用于较小的麻花钻、立铣刀等刀具,切削时借助夹紧时所产生的摩擦力传递扭转力矩。很多带柄的刀具的柄部用低合金钢制成,而工作部分则用高速钢把两部分对焊而成。

刀具的工作部分就是产生和处理切屑的部分,包括刀刃、使切屑断碎或卷拢的结构、排屑或容储切屑的空间、切削液的通道等结构要素。有的刀具的工作部分就是切削部分,如车刀、刨刀、镗刀和铣刀等;有的刀具的工作部分则包含切削部分和校准部分,如钻头、扩孔钻、铰刀、内表面拉刀和丝锥等。切削部分的作用是用刀刃切除切屑,校准部分的作用是修光已切削的加工表面和引导刀具。

刀具工作部分的结构有整体式、焊接式和机械夹固式三种。整体结构是在刀体上做出切削刃;焊接结构是把刀片钎焊到钢的刀体上;机械夹固结构又有两种,一种是把刀片夹固在刀体上,另一种是把钎焊好的刀头夹固在刀体上。硬质合金刀具一般制成焊接结构或机械夹固结构;瓷刀具都采用机械夹固结构。

刀具切削部分的几何参数对切削效率的高低和加工质量的好坏有很大影响。增大前角,可减小前刀面挤压切削层时的塑性变形,减小切屑流经前面的摩擦阻力,从而减小切削力和切削热。但增大前角,同时会降低切削刃的强度,减小刀头的散热体积。

在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。

制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学

惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用最广的刀具材料,其次是硬质合金。聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。硬质合金可转位刀片现在都已用化学气相沉积法涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。

五、刀具材料的选择

1.常用的刀具材料

高速钢

1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢至今仍是一种常用刀具材料。高速钢是一种加入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%~1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40~60年,因此高速钢材料面临严峻的发展危机。

高速钢可分为普通高速钢和高性能高速钢。

普通高速钢,如W1J8c24v广泛用于制造各种复杂刀具。其切削速度一般不太高,切削普通钢料时为40—60m/min。

高性能高速钢,如W12Cr4V4Mo是在普通高速钢中再增加一些含碳量、含钒量及添加钴、铝等元素冶炼而成的。它的耐用度为普通高速钢的1.5—3倍。

粉末冶金高速钢是70年代投入市场的一种高速钢,其强度与韧性分别提高30%一40%和80%一90%.耐用度可提高2—3倍。目前我国尚处于试验研究阶段,生产和使用尚少。

陶瓷

与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。

陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93~95HRC,为提高韧性,常添加少量Co、Ni等金属。②氮化硅基陶瓷。常用的氮化硅基陶瓷为Si3N4+TiC+Co复合陶瓷,其韧性高于氧化铝基陶瓷,硬度则与之相当。③氮化硅—氧化铝复合陶瓷。又称为赛阿龙(Sialon)陶瓷,其化学成分为77%Si3N4+13%Al2O3,硬度可1800HV,抗弯强度可达1.20GPa,最适合切削高温合金和铸铁。

金属陶瓷

金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、Mo等构成。金属陶瓷的硬度和红硬性高于硬质合金,低于陶瓷材料;其横向断裂强度大于陶瓷材料,小于硬质合金;化学稳定性和抗氧化性好,耐剥离磨损,耐氧化和扩散,具有较低的粘结倾向和较高的刀刃强度。

金属陶瓷刀具的切削效率和工作寿命高于硬质合金、涂层硬质合金刀具,加工出的工件表面粗糙度小;由于金属陶瓷与钢的粘结性较低,因此用金属陶瓷刀具取代涂层硬质合金刀具加工钢制工件时,切屑形成较稳定,在自动化加工中不易发生长切屑缠绕现象,零件棱边基本无毛刺。金属陶瓷的缺点是抗热震性较差,易碎裂,因此使用范围有限。

立方氮化硼(CBN)

是硬度仅次于金刚石的超硬材料。虽然CBN的硬度低于金刚石,但其氧化温度高达1360℃,且与铁磁类材料具有较低的亲和性。因此,虽然目前CBN还是以烧结体形式进行制备,但仍是适合钢类材料切削、具有高耐磨性的优良刀具材料。由于CBN具有高硬度、高热稳定性、高化学稳定性等优异性能,因此特别适合加工高硬度、高韧性的难加工金属材料。如采用CBN可转位刀片干式精车淬硬齿轮,每个齿轮的加工成本可降低60%;采用配装球形CBN刀片的立铣刀精铣大型硬质磨具,磨削时间可比传统工艺减少80%。CBN材料的不足之处是韧性较差的问题尚待解决。

硬质合金

硬质合金由Schroter于1926年首先发明。经过几十年的不断发展,硬质合金刀具的硬度已达98~93HRA,在1000℃的高温下仍具有较好的红硬性,其耐用度是高速钢刀具的几十倍。硬质合金是由WC、TiC、TaC、NbC、VC等难熔金属碳化物以及作为粘结剂的铁族金属用粉末冶金方法制备而成。与高速钢相比,它具有较高的硬度、耐磨性和红硬性;与超硬材料相比,它具有较高的韧性。由于硬质合金具有良好的综合性能,因此在刀具行业得到了广泛应用,目前国外90%以上的车刀、55%以上的铣刀均采用硬质合金材料制造。

硬质合金牌号通常可分为三类:①YG类(WC-Co类):该类硬质合金制造的刀具具有较好的韧性、耐磨性、导热性等,主要用于加工铸铁、有色金属和非金属。②YT类(WC-TiC-Co 类):由于材料中加入了TiC,使材料的硬度和耐磨性有所提高,但抗弯刚度有所降低。该类硬质合金具有高硬度和高耐热性,抗粘结、抗氧化能力较好,适用于加工钢材,切削时刀具磨损小,耐用度较高。③YW类(WC-TiC-TaC-Co类):在YT材料中加入TaC是为了提高刀具的强度、韧性和红硬性。该类硬质合金材料具有很高的高温硬度、高温强度和较强的抗氧化能力,特别适于加工各种高合金钢、耐热合金和各种合金铸铁。

按GB2075—87(参照采用190标准)可分为P、M、K三类,P类硬质合金主要用于加工长切屑的黑色金属,用蓝色作标志;M类主要用于加工黑色金属和有色金属,用黄色作标志,又称通用硬质合金,K类主要用于加工短切屑的黑色金属、有色金属和非金属材料,用红色作标志。

P、M、K(后面的阿拉伯数字表示其性能和加工时承受载荷的情况或加工条件。数字愈小,硬度愈高,韧性愈差。

P类相当于我国原钨钛钻类,主要成分为WC十TiC十Co,代号为YT。

K类相当于我国原钨钻类,主要成分为WC十Co,代号为YG。

M类相当于我国原钨钛钽钴类通用合金,主要成分为WC+TiC+TaC(NbC)十Co,代号为YW。涂层刀具

涂层刀具是近20年出现的一种新型刀具材料,是刀具发展中的一项重要突破,是解决刀具材料中硬度、耐磨与强度、韧性之间矛盾的一个有效措施。涂层刀具是在一些韧性较好的硬质合金或高速钢刀具基体上,涂覆一层耐磨性高的难熔化金属化合物而获得的。常用的涂层材料有TiC、TiN和Al2O3等。本世纪70年代初首次在硬质合金基体上涂覆一层碳化钛(TiC)

后,把普通硬质合金的切削速度从80m/min提高到180m人I;n。1976年又出现了碳化钛—氧化铝双涂层硬质合金,把切削速度提高到250m/min。1981年又出现了碳化钛—氧化铝—氮化钴三涂层硬质合金,使切削速度提高到300m/IIJn。

在高速钢基体上刀具涂层多为TiN,常用物理气相沉积法(PVD法)涂覆,一般用于钻头、丝锥、铣刀、滚刀等复杂刀具上,涂层厚度为几微米,涂层硬度可达80HRC,相当于一般硬质合金的硬度,耐用度可提高2—5倍,切削速度可提高20%一40%o

硬质合金的涂层是在韧性较好的硬质合金基体上,涂覆一层几微米至十几微米厚的高耐磨、难熔化的金属化合物,一般采用化学气相沉积法(CVD法)。我国株洲硬质合金厂生产的涂层硬质合金的涂层厚度可达9um,表面硬度可达2500—4200HV。

目前各工业发达国家对涂层刀具的研究和推广使用方面发展非常迅速。处于领先地位的瑞典,在车削上使用涂层硬质合金刀片已占到70%一80%,在铣削方面已达到50%以上。但是涂层刀具不适宜加工高温合金、钛合金及非金属材料,也不适宜粗加工有夹砂、硬皮的锻铸件。

金刚石刀具

金刚石刀具分为天然金刚石和人造金刚石刀具。天然金刚石具有自然界物质中最高的硬度和导热系数c但由于价格昂贵,加工、焊接都非常困难,除少数特殊用途外(如手表精密零件、光饰件和首饰雕刻等加工),很少作为切削工具应用在工业中。随着高技术和超精密加工日益发展。例如微型机械的微型零件,原子核反应堆及其它高技术领域的各种反射镜、导弹或火箭中的导航陀螺,计算机硬盘芯片、加速器电子枪等超精密零件的加工,单晶大然金刚石能满足上述要求。近年来开发了多种化学机理研磨金刚石刀具的方法和保护气氛钎焊金刚石技术.使天然金刚石刀具的制造过程变得比较简易.因此,在超精密镜面切削的高技术应用领域.天然金刚石起到了重要作用。

20世纪50年代利用高温高压技术人工合成金刚石粉以后,70年代制造出金刚石基的切削刀具即聚晶金刚石(PCD)。PCD晶粒呈无许许序排列状态.不具方向性,因而硬度均匀。它有很高的硬度和导热性,低的热胀系数。高的弹性模量和较低的摩擦系数,刀刃非常锋利。它可加丁各种有色金属和极耐磨的高性能非金属材料,如铝、铜、镁及其合金、硬质合金、纤维增塑材料、金属基复合材料、木材复合材料等。

三种主要金刚石刀具材料——PCD、CVD厚膜和人工合成单晶金刚石各自的性能特点为:PCD焊接性、机械磨削性和断裂韧性最高,抗磨损性和刃口质量居中,抗腐蚀性最差。CVD 厚膜抗腐蚀性最好,机械磨削性、刃口质量和断裂韧性和抗磨损性居中,可焊接性差,人工合成单晶金刚石刃口质量、抗磨损性和抗腐蚀性最好,焊接性、机械磨削性和断裂韧性最差。金刚石刀具是目前高速切削(2500~5000m/min)铝合金较理想的刀具材料,但由于碳对铁的亲和作用,特别是在高温下,金刚石能与铁发生化学反应,因此它不宜于切削铁及其合金工件。

虽然近年来各种新型刀具材料层出不穷,但在今后相当长一段时间内,硬质合金刀具仍将广泛应用于切削加工,因此需要研究开发新的材料制备技术,进一步改善和提高硬质合金刀具材料的切削性能。

2.刀具材料应具备的性能

性能优良的刀具材料,是保证刀具高效工作的基本条件。刀具切削部分在强烈摩擦、高压、高温下工作,应具备如下的基本要求。

1)高硬度和高耐磨性

刀具材料的硬度必须高于被加工材料的硬度才能切下金属,这是刀具材料必备的基本要求,现有刀具材料硬度都在60HRC以上。刀具材料越硬,其耐磨性越好,但由于切削条件较复

杂,材料的耐磨性还决定于它的化学成分和金相组织的稳定性。

2)足够的强度与冲击韧性

强度是指抵抗切削力的作用而不致于刀刃崩碎与刀杆折断所应具备的性能。一般用抗弯强度来表示。

冲击韧性是指刀具材料在间断切削或有冲击的工作条件下保证不崩刃的能力,一般地,硬度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。

3)高耐热性

耐热性又称红硬性,是衡量刀具材料性能的主要指标。它综合反映了刀具材料在高温下保持硬度、耐磨性、强度、抗氧化、抗粘结和抗扩散的能力。

4)良好的工艺性和经济性

为了便于制造,刀具材料应有良好的工艺性,如锻造、热处理及磨削加工性能。当然在制造和选用时应综合考虑经济性。当前超硬材料及涂层刀具材料费用都较贵,但其使用寿命很长,在成批大量生产中,分摊到每个零件中的费用反而有所降低。因此在选用时一定要综合考虑。

高速切削加工中刀具材料的选用

高速切削加工中刀具材料的选用 [摘要]简要地介绍了在高速切削加工中,根据不同的工艺及被加工零件的不同材料,选用刀具材料的问题。 关键词:高速切削刀具材料选用 1 引言 随着科技工业的飞速发展,切削加工技术的应用也越来越广泛,新型刀具材料也不断涌现,高速切削加工技术的应用也越来越广泛,高速切削加工设备在生产中的优势正在日益发挥,在切削过程中,刀具的切削部分是在较大的切削力、较高的切削温度和剧烈的摩擦条件下进行工作的。刀具材料对刀具耐用度、加工效率、加工质量和加工成本影响极大。因此,应当重视刀具材料的正确选择和合理使用。 2.1 刀具材料的基本要求 刀具在高温下进行切削工作,同时还要承受切削力、冲击和振动,因此刀具材料必须具备以下基本要求: 1、高硬度 刀具材料必须具有高于工件材料的硬度,常温硬度必须在HRC62以上,对于某些难以切削的材料,刀具硬度更高。 2、高的耐磨性 耐磨性表示抵抗磨损的能力,通常刀具材料的硬度越高、耐磨性就越好。

3、足够的强度和韧性 为了承受切削力、冲击和振动,刀具材料应该具有足够的强度 和韧性。一般用抗弯强度σ b b 和冲击韧性α k 来衡量。 4、高的耐热性 耐热性(又称红硬性)是指材料在高温下保持其硬度的性能,是衡量刀具材料切削性能的主要指标。 5、良好的工艺性 为了便于刀具的制造,要求刀具材料具有良好的可加工性和热处理性能(如淬透性好,淬火变形小,脱碳层浅等)。 6、良好的经济性 经济性差的刀具材料难以推广使用。 2.2 刀具材料种类及选用 刀具材料种类很多,常用的金属材料有碳素工具钢、合金工具钢、高速钢及硬质合金;非金属材料有陶瓷、金刚石(天然和人造)、立方氮化硼等。 1、碳素工具钢 含碳量在0.65~1.3%的优质碳素钢称碳素工具钢,用来制造刀具的常用牌号有T8A、T10A等。一般用于制造低速、手用刀具,如手用锯条、锉刀等。 2、合金工具钢 在碳素工具钢中加入适量的合金元素如Mn、Cr、W、Si等即成合金工具钢,常用牌号有9SiCr、CrWMn、GCr5等。与碳素工具钢相比,硬度相近,耐磨性、耐热性略高,热处理性能较好,主要用于制造低速、手用刀具,如手用丝锥、手用铰刀及硬质合金钻头的刀体等。 3、高速钢 高速钢是一种含Cr、W、Mo、V等合金元素较多的工具钢,与碳素工具钢、合金工具钢相比,硬度有所提高,耐热性显著提高,允许的切削

切削加工和刀具技术的现状与发展

切削加工和刀具技术的现状与发展 摘要:高速加工是以较快生产节拍进行加工,提高切削和进刀速度是高速加工技术的重要环节。高速加工技术的发展涉及到零科毛坯、刀具、机床、自动控制与检测等多种技术的综合优化,需要变革传统的机加工工艺路线。我国引进的轿车零部件数控自动生产线上已广泛应用高速加工技术,其主要目的是在确保产品质量的前提下,尽量缩短零件的机加工工艺路线,加快生产节拍(轿车发动机生产节拍已缩短为30秒),满足轿车高质量、高速率、低成本、大批量、杜会化生产的技术要求。高速加工技术必将带动零件毛坯制造、刀具(工具)、数控机床、自动控制、在线检侧、材料等技术的发展与进步。随着我国制造业加快融人全球化生产制造体系,预计高速加工技术将在信息化、柔性化机械加工领域得到进一步发展和推广应用。 1、引言 对于机械零件而言,高速加工即是以较快的生产节拍进行加工。一个生产节拍:零件送进--定位夹紧--刀具快进--刀具工进(在线检测)--刀具快退--工具松开、卸下--质量检测等七个基本生产环节。而高速切削是指刀具切削刃相对与零件表面的切削运动(或移动)速度超过普通切削5~10倍,主要体现在刀具快进、工进及快退三个环节上,是高速加工系统技术中的一个子系统;对于整条生产自动线而言,高速加工技术表征是以较简捷的工艺流程、较短、较快的生产节拍的生产线进行生产加工。这就要突破机械加工传统观念,在确保产品质量的前提下,改革原有加工工艺(方式):或采用一工位多工序、一刀多刃,或以车、铰、铣削替代磨削,或以拉削、搓、挤、滚压加工工艺(方式)替代滚、插、铣削加工…等工艺(方式),尽可能地缩短整条生产线的工艺流程;对于某一产品而言,高速加工技术也意味着企业要以较短的生产周期,完成研发产品的各类信息采集与处理、设计开发、加工制造、市场营销及反馈信息。这与敏捷制造工程技术理念有相同之处。 2、现代切削技术的发展 20世纪90年代以来,激烈的市场竞争推动以机械制造技术为先导的先进制造技术以前所未有的速度和广度向前发展。高生产率和高质量是先进制造技术追求的两大目标。高速切削、精密和超精密切削是当前切削技术的重要发展方向,已成为切削加工的主流技术。 高速切削技术 高速切削的主要内容包括高速软切削、高速硬切削、高速干切削、大进给切削等。高速切削是一个相对概念,对其切削速度范围的界定目前国内外专家尚未达成共识。通常认为高

金属切削原理及金属切削刀具A

. 四川建筑职业技术学院2004年秋期期末考试 《金属切削原理及刀具》试卷(A 卷) 一、 填空题:在下列各题的空格中填上正确的文字及其有关符号(每题4分,共60分) 1.车削的主运动是______________,钻削的主运动是 ______________;磨削的主运动是______________。 2.标柱刀具静态角度的静态坐标系包括:(1)____________,(2)____________,测量平面有(1)_________,(2)_________,(3)_________,(4)_________。 3.刀具的前角γo 是在_________平面内测量的_________与_________之间的夹角。 4.表示切削变形程度的方法有:(1)___________________________,(2)__________________,(3) __________________。 5.切屑的类型有以下四种:(1)__________________,(2)__________________,(3)__________________,(4)__________________。 6.工件加工表面质量的指标包括:(1)_________________ (2)__________________,(3)__________________。 7.切削热的产生是切削过程中______________________转换而成的,切削温度是__________和__________综合结果。 8.刀具磨损的主要原因有:__________、__________、 __________、__________等。 9.影响刀具磨损的切削量中,影响最大的是__________,影响最小的是__________,所以选择切削用量时应首先选择尽可能大的__________________。 10.切削液的种类有(1)________切削液,其主要作用是_______,(2)________切削液,其主要作用是_______。 11.刀具材料要求具备的性能有:(1)_______、(2)_______、(3)_______、(4)_______、(5)_______、(6)_______等。 12.硬质合金刀具有以下几类:(1)_______、(2)_______、(3)_______、(4)_______。 13.砂轮的性能参数包括:(1)_______、(2)_______、 (3)_______、(4)_______、(5)_______和(6)_______。 14.磨削过程包括三个阶段:(1)_______阶段、(2)_______阶段和(3)_______阶段。 15.圆周铣削的铣削方式有_______铣和_______铣。端面铣的铣削方式有 班级 姓名 学号

切削原理及刀具与数控技术三级项目

燕山大学 切削原理与刀具及数控课程CDIO项目 设计说明书 题目:硬质合金可转位车刀设计 学院(系): 年级专业: 项目组长: 项目组成员: 指导教师: 教师职称: 时间:

燕山大学《切削原理与刀具》CDIO项目任务书院(系):机械工程学院基层教学单位:机械研究所

1摘要 在给定切削条件下,经查阅刀具设计手册等资料,设计可转位车刀,内容包括可转位刀片的选型,几何参数(刀具角度)的确定,刀柄截面形状和尺寸的选择等。刀具角度在二维图纸上进行标注,刀具的工作图及装配图进行三维模拟,以及在数控机床上的制造过程主要有刀具结构分析、确定加工方案、编写程序,将程序输入到数控机床,在机床上实际加工出刀柄的形状。 关键词:可转位刀片选型、刀具角度设计、刀柄结构、数控程序 2前言 刀具课程设计是机械制造类专业学生在学习“金属切削原理”及“金属切削刀具”课程及其他有关课程之后进行的一个教学环节,其目的是巩固和加深理论教学内容,培养学生综合素质,解决实际刀具设计问题的能力。 通过刀具课程设计,学生应达到: 1.掌握设计、计算刀具的能力。 2.学会绘制刀具工作图,标注必要的技术条件。 3.学会运用各种设计资料、手册及国家标准。 3项目的方案设计 3.1刀片加固结构 通常取负值,切屑流向已加工表面,半精加工。 可转为车刀刃倾角 s 参照《金属切削刀具课程设计指导资料》表2-1,由于工件材料为灰铸铁,采用偏心式结构。

3.2选择刀片结构材料

加工工件材料为HT21-40,连续切削,完成粗车工序,因此刀片材料可以采用YG 系列,YG6A(8N)。 3.3选择车刀合理角度 根据刀具合理几何参数的选择原则,并考虑可转位刀几何角度的形成特点,选取如下四个几何角度: ① 前角0γ:10° ② 后角a 0=10° ③ 主偏角γκ:根据题目要求,主偏角γκ=60° ④ 刃倾角s λ:刃倾角取s λ=-5° 后角a 0的实际数值及副刃后角a '0和副偏角' γκ在计算刀槽角度时,经校验后确定。 3.4选择切屑用量 根据切削用量的选择原则,查表确定切削用量为: 粗车时,背吃刀量p a =3mm,进给量f=0.8mm/r,切削速度v=1.12m/min ; 半精车时,背吃刀量p a =1mm,进给量f=0.4mm/r,切削速度v=3.81m/s ; 3.5刀片型号和尺寸 ①选择刀片有无中心固定孔 由于刀片加固结构已选定为偏心式,因此应选用有中心固定孔的刀片。 ②选择刀片形状 按选定主偏角γκ=60°,根据刀片形的选择原则,选用正方形刀片。 ③选择刀片的精度等级 参照节刀片精度等级的选择原则,一般情况下选用U 级. ④选择刀片内切圆直径d(或刀片边长L) 根据已确定的背吃刀量p a =3mm, 主偏角γκ=60,刃倾角s λ=-5,将p a ,γκ,s λ代入下式可得刀刃的实际工作长L

切削性能

两种Ti(C,N)基金属陶瓷刀具切削性能的研究 摘要:Ti(C.N)基金属陶瓷是本世纪七十年代出现的一种新型工具材料,具有许多优良的性能。本文用传统的粉末冶金的方法制备了纳米TiN改性TiC基金属陶瓷刀具试样和超细晶Ti(C,N)基金属陶瓷刀具试样,对两种刀具试样进行切削性能实验,对比其性能的优异,为制备性能更优异的金属陶瓷刀具提供理论依据。关键字:纳米TiN改性TiC基金属陶瓷刀具,超细晶Ti(C,N)基金属陶瓷刀具,切削性能 ABSTRACT :As a new kind of tool material in seventy’s, has many good properties. The cutting and wear behaviors of two kinds of cermets cutters were investigated in this paper,which expects to present theoretical instruction for preparation of high performance cermets cutters and enrich materials design theory.Key words:Nano TiN modified TiC-based cermets cutters,Ultra-fine Ti(C,N)一based ccrmets cutters,Cutting performance 1引言 Ti(C,N)金属陶瓷刀具是20世纪70年代初发展起来的一种新型材料刀具,由于具有硬度高、耐磨性好、高温力学性能优良和不易与金属发生粘结等特性,广泛应用于难加工材料的切削加工中,并可用于超高速切削、高速干切削和硬材料的切削加工【1】。由于全球W的价格不断上涨,所以其是代替硬质合金刀具材料的很好选择。但是也存在抗塑性变形能力、抗崩刃性能差及韧性不好等问题。因此,长期以来对金属陶瓷刀具进行增韧一直是国内外科技工作者努力的方向,而近十年多来出现的通过纳米材料添加对传统材料进行改性,改善了金属陶瓷的力学性能。本文通过将纳米TiN改性的TiC基金属陶瓷刀具和用亚微米级Ti(C,N)粉末为原料烧结的金属陶瓷刀具加工成可转位车刀片,按照实际的生产条件来进行切削性能实验,考察不同成分和不同后角条件下,刀具的耐用度和失效形式。研究纳米TiN改性的TiC基金属陶瓷刀具的切削性能。 2 试验 本实验所用的刀具是自行研制的,试验用粉末原料均为外购。其中TiC和Ti(c,N)粉末购于石家庄华泰纳米陶瓷材料厂;TiN纳米粉购于中国科学院成都有机化学;Ni粉购于四川江油国营八五七厂。其余粉末均从株洲硬质合金厂购得。本实验所用的TiC粉末为微米级,Ti(C,N)粉末为亚微米级,而TiN为纳米级。 实验中TiN、WC、Mo和C的添加量分别取为lO%、15%、5%、1%。另外为了保证金属粘结相对陶瓷相的润湿性,制出致密的高性能的金属陶瓷试样,选用对陶瓷相润湿性较好的Co和Ni作为粘结剂。本实验中金属陶瓷的基本成分配

金属切削刀具常识及使用方法【干货】

金属切削刀具常识及使用方法 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 金属切削刀具常识及使用方法 在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。 制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。 通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用广的刀具材料,其次是硬质合金。 聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。硬质合金可转位刀片现在都已用化学气相沉积法涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。

金属切削刀具材料的选择

金属切削刀具材料的选 择 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

金属切削刀具材料的选择金属切削加工时利用刀具切除被加工零件多余材料从而获得合格零件的加工方法,它是机械制造业中最基本的方法。而在金属切削加工中,刀具是必不可少的一部分,而刀具材料的选择更是重要的一部分。 在现代机械制造业中,机械加工的切削刀具对于提高生产效率,改进产品质量起到关键的作用。由于目前国家各工厂所应用的刀具材料非常复杂,又由于刀具材料的性能优劣能够影响加工零件表面的切削效率,刀具寿命等,而在金属切削过程中刀具切削部分在高温下承受着很大的切削力与剧烈摩擦,所以为了提高工件表面质量,刀具寿命及切削效率因此刀具材料应具备以下性能: ①高的硬度和耐磨性②足够的强度和韧性③高的耐热性④良好的工艺性与经济性⑤好的导热性和小的膨胀系数。因此面对刀具所应具备的性能,刀具材料选择时很难找到各方面的性能都是最佳的,因为各种材料性能之间有的是相互制约的,面对如此情况只能根据工艺的需要保证主要需求性能。 当前使用的刀具材料主要分为四大类:工具钢(包括碳素工具钢、合金工具钢、高速钢)、硬质合金、陶瓷、超硬质刀具材料,一般的机加工使用最多的是高速钢与硬质合钢。 1、工具钢 用来制造刀具的工具钢主要有三种即碳素工具钢,合金工具钢和高速钢。工具钢的主要特点是耐热性差但抗弯强度高,价格便宜焊接与刃磨性能好故广泛用于中低速切削的成形刀具,不宜高速切削。

⑴碳素工具钢 碳素工具钢按化学成分分类,碳素工具钢负属于非合金钢,按主要质量等级和主要性能及使用特性分类,碳素工具钢属于特殊质量非合金钢,碳素工具钢常用于制作刀具、模具和量具的碳素钢,其加工性良好价格低廉,使用范围广泛所以它在工具钢中用量较大。由于碳素工具钢生产成本极低,原材料来源方便易于冷热加工,在热处理后可获得相当高的硬度,由于碳素工具钢在切削温度高于250~300℃时,马氏体要分解,使得硬度降低,碳化物分布不均匀,淬火后变形较大,易产生裂纹,淬透性差,淬硬层薄所以只适于用于切削速度很低的刀具,如锉刀、手用锯条等。 ⑵合金工具钢 合金工具钢是在碳素工具钢基础上加热铬、钨、钒等合金元素,以提高淬透性,韧性,耐磨性和耐热性的一类钢种,它主要用于制造量具、刀具、耐冲击工具和冷热模具及一些特殊用途的工具。由于合金工具钢热硬性达325~400℃,允许切削速度为10~15m/min,所以其目前主要用于低速工具如丝锥、板牙等 ⑶高速钢 高速钢是含有W、Mo、Cr、V等元素较多,具有高硬度,高耐磨性的工具钢,又称高速工具钢为白钢或锋钢。高速钢的综合性能较好,应用范围最广的一种刀具材料,因此主要用来制造复杂的薄刃和耐冲击的金属切削刀具也可制造高温轴承和冷挤压模具等,高速钢经过热处理后硬度达62~66HRC,抗弯强度约为,耐热性为600℃左右,此外还具有热处理变形小,

高速切削的所罗门原理

一、高速切削的原始定义1931年,德国切削物理学家萨洛蒙 (Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利(Machine with high cutting speeds)的所罗门原理: 被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。 切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。 实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。 二、现代高速切削技术的概念所罗门原理出发点是用传统刀具进行高速度切削,从而提高生产率。 到目前为止,其原理仍未被现代科学研究所证实。 但这一原理的成功应该不只局限于此。 高速切削技术是切削技术的重要发展方向之一,从现代科学技术的角度去确切定义高速切削,目前还没有取得一致,因为它是一个相对概念,不同的加工方式,不同的切削材料有着不同的高速切削速度和加工参数。 这里包含了高速软切削、高速硬切削、高速湿切削和高速干切削等等。 事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能CNC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。

高速切削及刀具

高速切削和干切削技术刀具 为保证高速精密切削时的加工精度和可靠性,刀具装夹到机床主轴上之前须先进行动平衡,以确保加工系统的安全性2010年04月16日<> 为保证高速精密切削时的加工精度和可靠性,刀具装夹到机床主轴上之前须先进行动平衡,以确保加工系统的安全性2010年04月16日 高速切削和干切削已发展成为现代切削加工技术的重要趋势,有力推动着刀具材料和结构,以及刀具装夹结构等先进切削技术的日新月异和推广应用随着数控机床和加工中心等高效设备应用的日渐普及,在航空航天、汽车、高速列车、风电、电子、能源、模具等装备制造业的空前发展推动下,切削加 工已迈入了一个以高速、高效和环保为标志的高速加工发展的新时期—现代切削技术阶段高速切削、干切削和硬切削作为当前切削技术的重要发展趋向,其重要地位和角色日益凸显对这些先进切削技术的应用,不仅令加工效率成倍提高,亦着实推动了产品开发和工艺创新的进程例如,精密模具硬质材料的型腔,采用高转速、小进给量和小吃深加工,既可获得很高的表面质量,又能够省却磨削、EDM和手工抛光或减少相应工序的时间,从而缩短生产工艺流程,提高生产率过去一些企业制作复杂模具时,基本上都需要3~4个月才能交付使用,而现在采用高速切削加工后,半个月便可完成据调查,一般的工模具,有60%的机加工量可用高速加工工艺来实现高速加工时,不但要求刀具可靠性高、切削性能好、能稳定地断屑和卷屑、还要能达成高精度,并能实现快换或自动更换等因此,对刀具材料、刀具结构、以及刀具的装夹都提出了更高要求 对刀具材料的要求 高速加工刀具最突出的要求是,既要有高的硬度和高温硬度,又要有足够的断裂韧性为此,须选用细晶粒硬质合金、涂层硬质合金、陶瓷、聚晶金刚石(PDD)和聚晶立方氮化硼(PDBN)等刀具材料—它们各有特点,适应的工件材料和切削速度范围也都不同例如,高速加工铝、镁、铜等有色金属件,主要采用PDD和DVD金刚石膜涂层刀具高速加工铸件、淬硬钢(50~67HRD)和冷硬铸铁主要用陶瓷刀具和PDBN刀具 上海大众汽车有限公司采用Seco刀具(上海)公司生产的立方氮化硼DBN300刀片面铣刀,在柔性生产线上高速铣削发动机缸体平面(铸件),切削速度高达1600m/min,进给速度5000mm/min用PDD刀具加工铝合金的切削速度一般为3000-4000m/min,最高更可达7500m/min而用陶瓷和PDBN刀具加工淬硬钢和冷硬铸铁时的切削速度已达200m/min 1. 硬质合金已迈入细晶粒超细晶粒阶段 涂层硬质合金刀具(如TiN、TiD、TiDN、TiBlN等)虽其加工工件材料范围广,但抗氧化温度一般不高,所以通常只宜在400-500m/min的切削速度范围内加工钢铁件对於Inconel 718高温镍基合金可使用陶瓷和PDBN刀具据报道,加拿大学者用SiD晶须增韧陶瓷铣削Inconel 718合金,推荐最佳的切削条件为:切削速度700m/min,吃深为1-2mm,每齿进给量为0.1-0.18mm/z

切削加工与刀具技术的历史

切削加工与刀具技术的历史 介绍了中国远古时期石器时代铁器时代的切削加工与刀具技术中国领先于全世界从第一次工业革命以后阐述了欧美各国和俄罗斯在切削加工技术解放后工件与刀具双方交替发展 关键词 它在国民经济中占有重要地位 刀具用坚硬的材料制成切削加工的任务是利用刀具切除被加工对象毛 坯上的多余材料精度和表面质量都符合预定要求的表面 是由古代切削加工本文将阐述古代 1 古代的切削加工和刀具 在切削加工方面旧石器时代 距今约50~60万年的北京猿人制造和使用了各种带刃的石器刮削器和尖状器(图1)?3?ò?÷óò2??2ío×ó2?óD·?èD1??÷?÷oí?a×′?÷é??ò?ù??óD?÷??μ?·?à?èD2?μ??üê?ò??Dè??a?ó1¤μ??aê? 到了新石器时代石刀石锛 刀体比较匀称有凸刃圆刃等 这是钻孔技术的开端制作形状和用途各异的切削工具新石器时代的人类曾把坚硬的石片镶嵌在骨把上   石器时代的切削工具加工对象也多为非金属材料(如石材兽骨等) ò??-??±?á?èy???ù±?òa??μ???(带刃部的工具)被加工对象(生产或生活用品)切削运动(人用手握持住刀具与被加工对象 刀具的发明和切削加工的应用历史学家认为 它是人类登上历史舞台的重要标志

(1) 砍砸器(约为原大的1/2) (2) 刮削器(约为原大的2倍) (3) 尖状器(约为原大的2倍) 图1 砍砸器   图2 新石器时代的石刀   图3 新石器时代的石刃骨刀(甘肃永昌鸳鸯池出土) 从青铜器时代开始早在齐家文化时期已用天然铜制造器具已经有了相当发达的青铜冶铸业图4所示为商代的青铜钻锯这些刀锉的结构和形状

高速切削刀具

高速切削刀具 王平 (沈阳理工大学机械工程学院 110159) 摘要:刀具是实现高速切削加工的关键,本文阐述了高速切削刀具材料的要求、高速切削加工刀具材料的种类,以及高速切削不同材料时刀具材料的合理选用。 本文在分析传统BT (7∶24锥度)实心长刀柄基础上介绍国外HSK等新型工具系统, 指出高速加工工具系统中存在的主要问题及对策, 展望高速加工工具系统发展趋势和研究前景, 为选用高速工具系统提供了参考。 关键词:高速切削;刀具材料;高速加工; 工具系统。 High speed cutting tool materials WANG ping (College of mechanical engineering ShenYang Ligong University 110159) Abstract:Realization of high speed cutting tool is the key, in this paper, the requirements of high speed cutting tool material of high-speed cutting tool materials in high speed cutting of different kinds, as well as the material of cutting tool material selection.Based on the analysis of traditional BT ( 7 ∶24 taper) solid knife handle based on introducing foreign HSK model tool tool system for high speed machining system, points out the main problems and countermeasures existed in high speed machining tool system, prospect of development tendency and research foreground, for selection of high speed tool system is provided for reference. Key words:High speed cutting;Cutting tool materials;High speed machining;Tool system. 0前言 在机械加工中,切削、磨削加工目前仍是零件最终形成的主要工艺手段。切削加工的主要发展方向之一是高速切削(包括高速软切削、高速硬切削、高速干切削、大进给量切削等)。高速切削时,随着切削速度的提高,切削力逐渐减小,切削温升逐渐趋缓,加工表面质量提高,加工成本降低。为实现切削加工的高速化,必须研究及开发与高速切削相适应的刀具材料、刀具结构及刀具监控技术。 1高速切削刀具材料的要求 1.1 刀具材料的基本性能要求 刀具材料对刀具寿命、加工效率、加工质量和加工成本等的影响很大。刀具切削时要承受高压、高温、摩擦、冲击和振动等作用,因此,刀具材料应具备如下一些基本性能:(1)硬度和耐磨性:刀具材料的硬度必须高于工件材料的硬度,一般要求在HRC60以上。一般来说,刀具材料的硬度越高,耐磨性就越好。(2)强度和韧性:刀具材料应具备较高的强度和韧性,以便承受切削力、冲击和振动,防止刀具脆性断裂和崩刃。(3)耐热性:刀具材料的耐热性要好,能承受高的温度,具备良好的抗氧化能力。(4)工艺性能和经济性:刀具材料应具备好的锻造或者其他成型性能、热处理性能、焊接性能、磨削加工性能等,并具有较高的性能价格比。 1.2 高速切削加工对刀具材料的要求 刀具技术是实现高速切削加工的关键技术之一。高速切削加工时切削温度很高,因此,高速切削刀具的失效主要取决于刀具材料的热性能(包括刀具的熔点、耐热性、抗氧化性、高温力学性能、抗热冲击性能等)。高速干切削、高速硬切削和高速切削黑色金属时,最高切削速度主要受刀具材料耐热性的限制。例如,高速加工钢、铸铁等黑色金属时,最高切削速度只能达到加工铝

高速切削技术考试知识点总结

1.高速切削的特点:材料去除率高、切削力较小、工件热变形小、工艺系统振动小、可加工各种难加工材料、可实现绿色制造、简化加工工艺流程 2.高速切削技术研究体系、关键技术:数控高速切削加工技术是建立在机床结构与材料、高速主轴系统、高性能CNC控制系统、快速进给系统、高性能刀具材料、数控高速切削加工工艺、高效高精度测试技术等许多相关的软件和硬件技术基础之上的一项复杂的系统工程,是将各单元技术集成的一项综合技术。数控高速切削加工技术的研究与开发体系,如下图:

3.高速切削发展趋势: 4.结合典型工件材料和加工工艺方法,讨论高速切削的速度范围: 1.)根据工件材料:钢材380m/min以上、铸铁700m/min以上、铜材1000m/min以上、铝材1100m/min以上、塑料1150m/min以上时,被认为是合适的高速切削速度范围; 2.)根据加工工艺方法:车削700~7000m/min,铣削300~6000m/min,钻削200~1100m/min,磨削5000~10000m/min,被认为是合适的高速切削速度范围 5.高速切削加工的切削力变化规律: 1).切削用量对切削力的影响:背吃刀量ap增大,切削力成正比增加,背向力和进给力近似成正比增加。进给量f增大,切削力也增大,但切削力的增大与f不成正比(75%) 2)工件材料对切削力的影响:较大的因素主要是工件材料的强度、硬度和塑性。a.材料的强度、硬度越高,变形抗力越大,切削力也越大。b.强度、硬度相近的材料,塑性、韧性越大,切削力越大。 3)切削速度对切削力的影响较为复杂 4)刀具几何参数对切削力的影响:前角增大时,若后角不变,刀具容易切入工件有助于切削变形的减小,使变形抗力减小,所以切削力减小。加工塑性金属时前角增大,变形减小,切削力减小。加工脆性金属时,因为变形和加工硬化较小,故切削速度Vc改变时切削力变化不大。在正前角相同情况下,对有负倒棱的车刀,由于切削时的切屑变形比无负倒棱的大,所以切削力有所提高。主偏角kr在30°~60°范围内增大,由切削厚度ac的影响起主要作用,促使主切削力Fc减小;主偏角约在60°~90°范围内增大,刀尖处圆弧和副前角的影响更为突出,故主切削力Fc增大。当增大时对背向力的影响比对切削力的影响大,这仍应由大使角减小,所以为了防止振动应减小刀尖圆弧半径。刃倾角λs对Fz的影响不大,但对Fx、Fy的影响较大。λs增大,背吃刀力Fy方向的前角γp增大,Fy减小;而进给抗力Fx方向的前角γf减小,则Fx增大 5)其他因素对切削力的影响:(1)刀具材料:对切削力的影响是由刀具材料与工件材料之间亲合力和摩擦系数等因素决定的。(2)切削液:由于使刀具、工件与切屑接触面间摩擦减小,因此,能较显著减小切削力。(3)刀具磨损:后面磨损,使刀具与加工表面间摩擦加剧。故切削力Fc、Fp增大

高速切削技术及其应用

高速切削技术及其应用 齐齐哈尔工程学院吕世伟任瑞新邹子军孙留洋 【关键词】高速切削高速切削技术应用 前言 机械加工技术正朝着高效率、高精度、高柔性和绿色制造方向发展。机械加工技术中,切削加工是应用最广泛加工方法。近年来,高速切削技术蓬勃发展,已成为切削加工主流和先进制造技术一个重要发展方向。 一、高速切削加工的含义 高速切削理论由德国物理学家Carl.J.Salomon在上世纪三十年代初提出的。他通过大量的实验研究得出结论:在正常的切削速度范围内,切削速度如果提高,会导致切削温度上升,从而加剧了切削刀具的磨损;然而,当切削速度提高到某一定值后,只要超过这个拐点,随着切削速度提高,切削温度就不会升高,反而会下降,因此只要切削速度足够高,就可以很好的解决切削温度过高而造成刀具磨损不利于切削的问题,获得良好的加工效益。 随着制造工业的发展,这一理论逐渐被重视,并吸引了众多研究目光,在此理论基础上逐渐形成了高速切削技术研究领域,高速切削加工技术在发达国家的研究相对较早,经历了理论基础研究、应用基础研究以及应用研究和发展应用,目前已经在一些领域进入实质应用阶段。 二、高速切削加工的优越性 由于切削速度的大幅度提高,高速切削加工技术不仅提高了

切削加工的生产率,和常规切削相比还具有一些明显的优越性:第一、切削力小:在高速铣削加工中,采用小切削量、高切削速度的切削形式,使切削力比常规切削降低30%以上,尤其是主轴轴承、刀具、工件受到的径向切削力大幅度减少。既减轻刀具磨损,又有效控制了加工系统的振动,有利于提高加工精度。第二、材料切除率高:采用高速切削,切削速度和进给速度都大幅度提高,相同时间内的材料切除率也相应大大提高。从而大大提高了加工效率。第三、工件热变形小:在高速切削时,大部分的切削热来不及传给工件就被高速流出的切屑带走,因此加工表面的受热时间短,不会由于温升导致热变形,有利于提高表面精度,加工表面的物理力学性能也比普通加工方法要好。第四、加工精度高:高速切削通常进给量也比较小,使加工表面的粗糙度大大降低,同时由于切削力小于常规切削,加工系统的振动降低,加工过程更平稳,因此能获得良好的表明质量,可实现高精度、低粗糙度加工。第五、绿色环保:高速切削时,工件的加工时间缩短,能源和设备的利用率提高了,加工效率高,加工能耗低,同时由于高速切削可以实现干式切削,减少甚至不用切削液,减少污染和能耗。 三、高速切削技术的发展 我国高速切削加工技术研究起步较晚,比国外迟了好几十年,直到国外的高速加工技术从实验室走向大规模工业生产,我国的科研机构才开始涉足该领域的研究。上世纪八十年代,山东大学切削加工研究组结合陶瓷刀具材料的研究,比较系统的研究了A12O3基陶瓷刀具高速硬切削的切削力、切削温度、刀具磨损和破裂、加工表面质量等问题,并建立了有关切削力、切削温度模型。上海交大在研究高速切削硬铝合金时发现了切削温度和

高速切削技术现状及存在的问题

2008/2/27/15:15 来源:慧聪网机床行业频道 切削加工是机械加工应用最广泛的加工方法之一,而高速是它的重要发展方向,其中包括高速软切削、高速硬切削、高速干切削、大进给切削等。高速切削能够大幅度提高生产效率和单位时间内材料切除率,改善加工表面质量降低加工费用。 高速切削的概念与高速切削技术 高速切削是一个相对概念,如何定义,目前尚无共识。而且由于不同的加工方式、不同工件有不同的高速切削范围,因而也很难就高速切削的速度范围给出一个确切的定义。 高速切削技术是在机床结构及材料、机床设计制造技术、高速主轴系统、快速进给系统、高性能CNC控制系统、高性能刀夹系统、高性能刀具材料及刀具设计制造技术、高效高精度测量测试技术、高速切削机理、高速切削工艺等诸多相关硬件与软件技术均得到充分发展的基础之上综合而成的。因此,高速切削加工是一个复杂的系统工程,涉及机床、刀具、工件、加工工艺过程参数及切削机理等诸多方面。 2 高速切削技术国外发展现状 从德国Carl. J. Salomon博士提出高速切削概念,并于同年申请了专利以来,高速切削技术的发展经历了高速切削的理论探索阶段、高速切削应用探索阶段、高速切削的初步应用阶段、高速切削的较成熟阶段等四个阶段,现已在生产中得到推广应用。特别是20世纪80年代以来各工业发达国家相继投入大量人力、财力,研究开发高速切削技术及相关技术,发展迅速。国外近几年来高速加工机床发展迅速,美国、法国、德国、日本、瑞士、英国、加拿大、意大利等国家相继开发了各自的高速切削机床。高速主轴是高速切削技术最重要的关键技术,通常采用主轴、电动机一体化的电主轴部件,实现无中间环节的直接传动,主轴支承一般使用陶瓷轴承、静压轴承、动压轴承、空气轴承以及油0气润滑、喷射润滑等技术,也有使用磁力轴承的。进给系统则开始采用直线电动机或小导程大尺寸高质量的滚珠丝杠或大导程多头丝杠,以提供更高的进给速度和更好的加、减速特性,最大加速度可达2~10g。CNC控制系统则使用多片32位或64位CPU,以满足高速切削加工对系统快速数据处理能力的要求,并采用前馈和大量超前程序段处理功能,以保证高速加工时的插补精度。采用强力高压、高效的冷却系统以解决极热切屑问题。采用温控循环水(或其它介质)来冷却主轴电动机、主轴轴承、直线电动机、液压油箱、电气柜,有的甚至冷却主轴箱、横梁、床身等大构件。采取更完备的安全保障措施保证机床操作者及机床周围现场人员的安全,避免机床、刀具、工件及有关设施的损伤;识别和避免可能引起重大事故的工况;保证产品产量与质量。 研究工件的材料特性对加工方法的影响,一些难加工材料如镍基合金、钛合金和纤维增强塑料等,在高速条件下变得易于切削。另外,不同材料最佳切削速度也不同,工件材料还是选择刀具及加工参数的重要依据,一般在高速加工中,宜采用高转速、中小切深、快进给、多行程,但是在高速加工的工艺参数选择方面,目前国际上没有面向生产实用的数据库可以参考。 高速切削机理的研究主要包括高速切削过程中的切屑成形机理、切削力、切削热变化规律及刀具磨损机理对加工效率、加工精度和加工表面完整性的影响规律。目前对铝合金的高速切削机理研究,已取得了较为成熟的结论,并已用于指导铝合金的高速切削生产实践。但对黑色金属及难加工材料的高速切削加工机理研究尚在探索阶段,其高速切削工艺规范还很不完善,是目前高速切削生产中的难点,也是切削加工领域研究的焦点。另外,高速切削已进入铰孔、攻丝等的应用中,其机理也都在不断研究之中。就目前而言,对高速切削时的切削力、切削温度、刀具磨损与刀具寿命、加工表面质量与加工精度的变化规律还需要做更加深入的研究和探讨。

高速切削

高速切削电主轴与机床国内外状况 高速电主轴技术的现状与发展趋势;高速数控机床(CNC)是装备制造业的技术基础和发;1、高速电主轴对数控机床的发展以及金属切削技术的;对于数控机床模块化设计、简化机床结构、提高机床性;(1)简化结构,促进机床结构模块化;电主轴可以根据用途、结构、性能参数等特征形成标准;(2)降低机床成本,缩短机床研制周期;一方面,标准化、系列化的电主轴产品易于形成专业化;(3)高速电主轴技术的现状与发展趋势(4)国内机床现状。 高速数控机床(CNC)是装备制造业的技术基础和发展方向之一,是装备制造业的战略性产业。高速数控机床的工作性能,首先取决于高速主轴的性能。数控机床高速电主轴单元影响加工系统的精度、稳定性及应用范围,其动力性能及稳定性对高速加工起着关键的作用。 1、高速电主轴对数控机床的发展以及金属切削技术的影响 对于数控机床模块化设计、简化机床结构、提高机床性能方面的作用: (1)简化结构,促进机床结构模块化 电主轴可以根据用途、结构、性能参数等特征形成标准化、系列化产品,供主机选用,从而促进机床结构模块化。 (2)降低机床成本,缩短机床研制周期 一方面,标准化、系列化的电主轴产品易于形成专业化、规模化生产,实现功能部件的低成本制造;另一方面,采用电主轴后,机床结构的简单化和模块化,也有利于降低机床成本。此外,还可以缩短机床研制周期,适应目前快速多变的市场趋势。 (3)改善机床性能,提高可靠性 采用电主轴结构的数控机床,由于结构简化,传动、连接环节减少,因此提高了机床的可靠性;技术成熟、功能完善、性能优良、质量可靠的电主轴功能部件使机床的性能更加完善,可靠性得以进一步提高。 (4)实现某些高档数控机床的特殊要求 有些高档数控机床,如并联运动机床、五面体加工中心、小孔和超小孔加工机床等,必须采用电主轴,方能满足完善的功能要求。 2、促进了高速切削技术在机械加工领域的广泛应用

高速切削加工刀具材料

精密制造与自动化 2010年第1期 高速切削加工刀具材料* 姚福新1 李长河2 沈阳徐挖机械销售有限公司1 (110165) 青岛理工大学 机械工程学院2 (266033) 摘 要 论述了高速切削的概念和优越性,介绍了高速切削加工所使用的先进刀具材料和刀具如:陶瓷刀具、金刚石刀具、立方氮化硼刀具、涂层刀具的性能特点及其应用,探讨了高速切削刀具材料的发展前景和研究方向。 关键词 高速切削 刀具材料 性能特点 陶瓷 CBN 金刚石 高速切削(High Speed Machining 简称HSM )概念的起源可以追溯到20世纪20年代末,德国切削物理学家Carl. J. Salomon 博士1929年进行的超高速切削模拟试验,并于1931年4月发表了著名的超高速切削理论,提出了高速切削的设想。Salomon 指出:在常规的切削范围内,切削温度随着切削速度的增大而提高(图1中的区域A )。但是,当切削速度增大到某一数值v cr 后,切削速度再增大,切削温度反而下降,并指出v cr 之值与工件材料的种类有关,对于每一种工件材料,存在一个速度范围(见图1中的区域B )。 切削速度v c 图1 切削速度变化与切削温度之间的关系 由于切削温度太高,高于刀具材料所允许的最高温度,任何刀具都无法承受,切削加工不可能进行,这个范围被称之为“死谷”。但是当切削速度 进一步提高,超过这个速度范围后,切削温度反而降低,同时切削力也会大幅度降低。他认为对于一些工件材料应该有一个临界的切削速度,在该切削速度下切削温度最高。在高速切削区进行切削,有可能用现有的刀具进行,从而成倍地提高机床的生产率。几乎每一种金属材料都有临界切削速度,只是不同材料的速度值不同而已。 高速切削是一个相对的概念。由于不同的加工方式、不同工件有不同的高速切削范围,所以很难就高速切削的速度范围给出确切的定义。高速切削加工不能简单地用某一具体的切削速度值来定义。切削条件不同,高速切削速度范围亦不同。1992年在CIRP 会议上发表了不同材料大致可行的和发展的切削速度范围,如图2所示。 图2 不同工件材料的切削速度范围 可以说,目前各国的切削速度仅在高速阶段,尚未达到CIRP (国际生产工程科学院)所界定的超高速切削阶段。 1 高速切削的优越性 与传统的切削加工方法相比,高速切削具有无 切削温度T 普通区过渡区高速区碳纤维塑料 铝合金黄铜铸铁钢钛、钛合金 镍基合金 10 100 1000 10000 切削速度 /m·min -1 *国家自然科学基金资助项目(编号:50875138) 国家重点基础研究发展计划(编号:2009CB724401) 国家科技重大专项项目(编号:2009ZX04014-043) 山东省自然科学基金重点项目(编号:Z2008F11) 机械制造系统工程国家重点实验室开放基金

相关主题
文本预览
相关文档 最新文档