当前位置:文档之家› 智能PID控制综述

智能PID控制综述

智能PID控制综述
智能PID控制综述

密 封 线

智能PID 控制综述

摘要 传统的PID 控制应用于复杂的实际系统时存在一定的局限性,因而智能PID 控制器是

当今研究的热点。融合了先进智能控制思想和传统PID 构成的智能PID 控制器则具有更加良

好的特性。文中对几种常见的智能PID 控制器,包括模糊PID 、神经网络PID 、专家PID 控制

器及基于遗传算法的PID 控制器等进行了综述。

关键词 PID 控制器 智能控制 智能PID

一、引言

PID 控制[1-10,51-52]作为经典控制算法中的典型代表,是一种传统的控制方式。1922年 N.Minorsky 提出PID 控制方法,1942年美国Taylor 仪器公司的 J.g.ziegler 和 N.B.Nichols 提出PID 参数[1]的最佳调整法至今,其在工业控制中的应用已十分广泛

[2-4]。PID 控制具有结构简单、参数物理意义明确和鲁棒性强等特点。PID 控制器[5-9]对系统给定值()r t 同系统输出值

()y t 的偏差()e t 分别进行比例、积分、微分运算,并由此得到其输出值()u t ,计算公式为:

0()()()()()t P L D de t u t K e t K e t d t K dt =++?

式中P K 为比例系数;L K 为积分系数;D K 为微分系数。P K 、L K 、D K 可对系统的稳定性、稳态精度、响应速度和超调量等性能产生影响,它们的作用分别为:(1)比例系数P K 可以加快系统的响应速度,提高系统的调节精度。系统的响应速度和调节精度同P K 呈正相关,但P K 过大则会产生超调,使系统不稳定,P K 过小则会使响应速度变慢,使系统静、动态特性变坏。

(2)积分作用系数L K 可以消除系统的稳态误差。L K 越大,系统静差就会越快消除。但L K 过大会在响应过程产生较大超调,产生积分饱和现象。L K 过小则会使系统稳态误差不易消除,影响调节精度。(3)微分作用系数D K 可以改善系统的动态性能。但D K 过大会使系统的调节时间延长,抗干扰性能降低。

PID 控制具有结构简单、稳定性能好、可靠性高等优点,尤其适用于可建立精确数学模型的确定性控制系统。在控制理论和技术飞速发展的今天,工业过程控制领域仍有近90%的回路在应用PID 控制策略。PID 控制中一个关键的问题便是PID 参数的整定。但是在实际的应用中,许多被控过程机理复杂,具有高度非线性、时变不确定性和纯滞后等特点。在噪声、负载扰

在PID控制中,不仅PID参数的整定不依赖于对象数学模型,并且PID参数能够在线调整,以满足实时控制的要求。智能控制是一门新兴的理论和技术,它是传统控制发展的高级阶段,主要用来解决那些传统方法难以解决的控制对象参数在大范围变化的问题,其思想是解决PID 参数在线调整问题的有效途径[1][4][8]。

近年来,智能控制[11-16,53]无论是理论上还是应用技术上均得到了长足的发展,随之不断涌现将智能控制方法和常规PID控制方法融合在一起的新方法,形成了许多形式的智能PID控制器。它吸收了智能控制与常规PID控制两者的优点。首先,它具备自学习、自适应、自组织的能力,能够自动辨识被控过程参数、自动整定控制参数、能够适应被控过程参数的变化;其次,它又具有常规PID控制器结构简单、鲁棒性强、可靠性高、为现场工程设计人员所熟悉等特点。正是这两大优势,使得智能PID控制成为众多过程控制的一种较理想的控制装置。文中主要介绍几种智能PID 控制器的常见构成形式,并分析各自的特点。

二、智能PID控制器研究现状

智能PID控制的专家控制[17-18]、学习控制[19-20]、仿人控制[21-22]、免疫算法[22-24]等都在发展之中。纵观近年来智能PID控制的发展,可以大致归纳出以下特点:智能复合控制成为提供和改善智能控制性能的有效途径,并成为研究的重点。近几年来,模糊控制[25-29]与神经网络[30-36]的结合代表着控制与智能系统研究的一个新的趋势,另外有一个值得注意的动向是利用遗传算法GA对神经网络的PID控制器的权系数进行寻优,而将遗传算法应用于模糊控制,被证明是调整规则和隶属函数的一种有效方法。文献[9]将遗传算法、模糊控制和免疫反馈机理与传统的PID控制相结合,提出了基于遗传整定的模糊免疫PID控制算法并将它应用在双容液位系统的控制中。

PID控制重新受到广泛重视,并和智能控制等方法结合,形成新一轮的研究热潮。国际著名学术刊物 Control Engineering Practice和IEEE Control Systems Magazine 分别于2001和2006年出版了PID控制特辑。2000年, IFAC 数字控制工作组在西班牙 Terrassa 举行了专题为 Past Present and Future of PID Control 的PID控制学术会议。国际著名控制理论学者AS-TROM 教授指出, PID控制器在未来的控制工程中扔将继续扮演重要的角色,同时将成为各种复杂控制器的基本单元。国内学者吴宏鑫院士提出的特征建模理论[37-38],第一次从理论上论证了PID控制器广泛应用的理论依据并且指出,PID控制器具有独特的优越性,它将成为复杂系统智能控制中最基本、最基础的子控制单元[2,9,14,16,19]。

在理论研究特别在应用方面,国内与国外差距明显。国外如日本、欧美等国家不但在理

论研究方面走在前列,而且已经有成功应用的产品,Yokogawa 电气和Fuji 电气的温度控制器,它们把模糊逻辑与标准的PID 控制集成在一起来抑制超调,取得了成功。 而国内重复研究的多,创造性研究的少,停留于仿真成果的多,能够在工程上应用的少,尤其是运行时间较长的智能PID 控制器可以说微乎其微。这一状况需要广大理论工作者和工程技术人员共同努力,尽快转变这一局面。

三、基于神经网络的PID 控制器

人工神经网络是最近发展起来的十分热门的交叉学科。它涉及生物、电子计算机、数学和物理等学科,有着非常广泛的应用背景,这门学科的发展对目前和未来的科学技术的发展将有着重要的影响。以非线性大规模并处理为主要特征的神经网络,以生物神经网络为模拟基础,试图模拟人的思维以及学习和获取知识的能力。它具有学习、记忆、联想、容错、并行处理等能力,已在控制领域得到广泛应用。

3.1、单神经元PID 控制器[39-40]

用单神经元实现自适应PID 控制的结构框图如图3-1所示。图3-1中转换器的输入为设定值r y 及输出y ,转换器的输出为神经元学习控制所需要的状态量123,,X X X 。神经元PID 控制器的输出为

3

1()(1)()()i i i u k u k K W k X k ==-+∑

式中,K 为神经元比例系数。

在单神经元控制器中引入输出误差平方的二次型性能指标,通过修改神经元控制器的加权系数i W ,使性能指标趋于最小,从而实现自适应PID 的最优控制。利用具有自学习和自适应能力的单神经元来构成单神经元自适应PID 控制器,不但结构简单、学习算法物理意义明确、计算量小,且能适应环境变化,具有较强的鲁棒性。

3-1单神经元自适应PID 控制器结构

3.2、神经网络PID 控制器

[29,30,33,35]

在常规PID 控制器的基础上,加入一个神经网络控制器,构成如图3-2 所示的神经网络PID 控制器[4]。此时神经网络控制器实际是一个前馈控制器,它建立的是被控对象的逆向模型。由图3-2容易看出,神经网络控制器通过向传统控制器的输出进行学习,在线调整自己,目标是使反馈误差()e t 或()u t 趋近于零,从而使自己逐渐在控制作用中占据主导地位,以便最终取消反馈控制器的作用。但是以PID 构成的反馈控制器一直存在,一旦系统出现干扰等,反馈控制器马上可以重新起作用。因此 采用这种前馈加反馈的智能控制方法,不仅可确保控制系统的稳定性和鲁棒性,而且可有效地提高系统的精度和自适应能力。

图3-2 神经网络+PID 控制器

四、模糊PID 控制器

将模糊控制技术和PID 控制相结合,既可克服常规PID 控制器的不足,又能使PID 控制器具有参数自适应能力。模糊PID 控制器以数字PID 控制器为基础,引入模糊集合论,将PID 参数根据偏差和偏差变化值的大小而动态变化, 这样显然更符合被控对象真实的控制规律。在此着重简述模糊自适应PID 控制器以及基于神经网络的模糊PID 控制器。

4.1、模糊自适应PID 控制器[41-43,54]

模糊自适应PID(FAPID)控制系统如图4-1 所示。FAC 为模糊自适应控制器,与常规PID 控制器一起组成FAPID 控制器。FAPID 控制器的设计分为独立的两步进行,简单方便。FAC 的输出即为PID 控制器的输入。PID 参数若采用工程方法整定,可不需要被控对象模型。整定PID 参数时,去掉FAC 的作用。当在每个采样时刻获得了系统响应后,就可以根据此时刻系统响应偏离给定的情况及变化趋势, 依据已有的系统控制知识,运用模糊控制方法,适当加大或减小控制力度,以控制响应朝偏离给定的方向变化,使输出尽快趋于稳定,可基于这种思路来设计FAC 。模型规则表物理意义明确,实时计算工作量小,便于工程应用。事实上,由于模糊控制部分已隐含对误差的PD 成分[6],所以在采用FAPID 控制时,PID 控制器中微分部分没有必要加入。与传统PID 控制比较,FAPID 控制大大提高了系统的鲁棒性,减小了超调量,提高了抗干扰能力,缩短了调节时间。

图4-1 FAPID控制系统框图

4.2、基于神经网络的模糊PID控制[29,30,31]

将模糊控制具有的较强的逻辑推理功能、神经网络的自适应、自学习功能以及传统PID 的优点融为一体,构成基于神经网络的模糊PID系统框图见图4-2所示。它包括4个部分:(1)传统PID控制部分:直接对控制对象形成闭环控制;(2)模糊量化模块:对系统的状态向量进行归档模糊量化和归一化处理;3)辨识网络NNM :用于建立被控系统中的辨识模型;(4)控制网络NNC :根据系统的状态,调节PID 控制的参数以达到某种性能指标最优,具体实现方法是使神经元的输出状态对应PID控制器的被调参数,通过自身权系数的调整,使其稳定状态对应某种最优控制规律下的PID控制参数。这种控制器对模型、环境具有较好的适应能力以及较强的鲁棒性,但是由于系统组成比较复杂,存在运算量大、收敛慢、成本较大的缺点。

图4-2 基于神经网络的模糊PID控制系统框图

五、专家PID控制器[17-18,44-46]

具有专家系统的自适应PID控制器结构如图5-1所示。它由参考模型、可调系统和专家系统组成。从原理上看,它是一种模型参考自适应控制系统。其中,参考模型由模型控制器和参考模型被控对象组成;可调系统由数字式PID 控制器和实际被控对象组成。控制器的PID 参数可以任意加以调整,当被控对象因环境原因而特性有所改变时,在原有控制器参数作用

y t的响应波形将偏离理想的动态特性。这时,利用专家系统以一定的规律下,可调系统输出()

y t的动态特性恢复到理想状态。

调整控制器的PID参数,使()

专家系统由知识库和推理机制两部分组成,它首先检测参考模型和可调系统输出波形特

θ,使θ值逐步趋征参数差值即广义误差e。PID自整定的目标就是调整控制器PID参数矢量

C θ(即e值趋近于0)。

近于

m

图5-1专家自适应PID控制原理图

该系统由于采用闭环输出波形的模式识别方法来辨别被控对象的动态特性,不必加持续的激励信号,因而对系统造成的干扰小。另外,采用参考模型自适应原理,使得自整定过程可以根据参考模型输出波形特征值的差值来调整PID参数,这个过程物理概念清楚,并且避免了被控对象动态特性计算错误而带来的偏差。

六、基于遗传算法的PID控制[47-49]

遗传算法(Genetic Algorithm,以下简称GA)是一种基于自然选择和基因遗传原理的迭代自适应概率性搜索算法。基本思想就是将待求解问题转换成由个体组成的演化群体和对该群体进行操作的一组遗传算子,包括3个基本操作:复制(reproduction)、交叉(crossover)、变异(mutation)。基于遗传算法的PID具有以下特点:(1)把时域指标同频域指标做了紧密结合,鲁棒性和时域性能都得到良好保证;(2)采用了新型自适应遗传算法,收敛速度和全局优化能力大大提高;(3)具有较强的直观性和适应性;(4)较为科学地解决了确定参数搜索空间的问题,克服了人为主观设定的盲目性。

基于遗传算法的自适应PID控制的原理框图如图6-1所示,图中省略了遗传算法的具体操作过程。其思想就是将控制器参数构成基因型,将性能指标构成相应的适应度,便可利用遗传算法来整定控制器的最佳参数,并且不要求系统是否为连续可微的,能否以显式表示。当遗传算法用于PID控制参数寻优时,其操作流程主要包括:(1)参数编码、种群初始化;(2)适应度函数的确定;(3)通过复制、交叉、变异等算子更新种群;(4)结束进化过程。

图6-1 基于遗传算法的自适应PID控制原理图

七、总结与展望

随着人类科技不断发展,受控对象越来越复杂,传统的PID控制已经不能满足人们的需求,因此,智能PID的研究与应用,打开了新的篇章。本文介绍了几种智能PID控制器,并给出了几种常见的构成形式。基于经典PID控制结合智能控制思想的智能PID控制器,由于具有良好的性能在实践中也得到了广泛的应用。

近年来,PID经历了近百年的发展,涌现出许多成就。但是就智能PID控制来讲,有必要将自适应、自整定和增益计划设定有机结合,使其具有自诊断功能;结合专家经验知识、直觉推理逻辑等专家系统思想方法对原有的PID控制器设计思想方法及整定方法进行改进;从生产过程实际出发,设计满足实际过程要求的控制方案,将预测控制、模糊控制、优化控制、神经网络和PID控制有机结合,是智能PID发展的极有前途的方向。

参考文献

[1]王伟,张晶涛,柴天佑. PID参数先进整定方法综述[J]. 自动化学报,2000,26(3)1.

[2]须田信英. PID控制理论与实务[M]. 台北:全华科技图书股份有限公司,1992.

[3]张国忠. 智能控制系统及应用[M]. 北京:中国电力出版社,2007.

[4]陶永华. 新型PID控制及其应用[M]. 北京:机械工业出版社,1998,95-128.

[5]罗安,路甬祥. 专家PID控制器及应用[J]. 信息与控制,1992,21(3),151-155.

[6]张军英,方敏. 智能PID控制及其自学习[J]. 黑龙江自动化技术与应用,1992,11(1),20-23.

[7]闫永跃,李庆周,于树新等. 智能PID综述[J]. 2006,(12):9-13.

[8]沈永福,吴少军,邓方林. 智能PID控制综述[J]. 工业仪表与自动化装置,2002(6):11-13.

[9]赵望达,等. PID控制器及其智能化方法探讨[J]. 化工自动化及仪表,1999,26(6).

[10]郑力新,周凯汀,王永初. PID进化设计法[J]. 仪器仪表学报,2001,22(4).

[11]李士勇. 模糊控制、神经控制和智能控制论[M]. 哈尔滨:哈尔滨工业大学出版社,1998,85-88.

[12]杜海树,等. 神经智能PID控制算法应用[J]. 甘肃工业大学学报,1999,25(3)1.

[13]师黎,陈铁军,李晓媛等. 智能控制理论及应用[M]. 北京:清华大学出版社,2009.

[14]蔡自兴. 智能控制的结构理论[C]. 中国人工智能学会首届计算机视觉与智能控制学术年会论集,1989:29-32.

[15] 宋胜利. 智能控制技术概论[M]. 北京:国防工业出版社,2008.

[16]许力. 智能控制与智能系统[M]. 北京:机械工业出版社,2007.

[17]Astrom K J,Anton J J, Arzen K E. Expert control[J]. Automatica,1986,22(3):277-286.

[18]侯立刚. 专家控制及其在微型反应器中的应用. 自动化与仪表,1996:(3).

[19]王娟,李国宁,刘雨佳. 基于迭代学习控制的列车自动运行研究[J]. 计算机工程与应用,2014(09).

[20]于淼,王佳森,齐冬莲. 具有未知控制方向的输出反馈自适应学习控制[J]. 浙江大学学报(工学版),2013(08).

[21]王培进,宋宜斌,徐丽萍. 仿人智能控制经验与技巧的研究[J]. 计算机工程与应用,2004(22).

[22]朱承,刘咏梅. 基于工程经验的仿人智能控制技术[J]. 科技资讯,2008(19).

[23]余建军,孙树栋,吴秀丽,蔡志强. 四种改进免疫算法及其比较[J]. 系统工程,2006(02).

[24]贾丽媛,李蕾,习胜丰. 免疫算法在基因表达式程序设计中的应用[J]. 计算机仿真,2008(03).

[25]邵鹏鸣.基于对象模型的自适应模糊专家控制系统. 自动化与仪表,2000:(2).

[26]诸静等. 模糊控制原理及应用[M]. 北京:机械工业出版社,1995,338-341.

[27]苏巍. 模糊PID的研究[J]. 工业仪表与自动化装置,2001(2).

[28]张恩勤,施颂椒,翁正新. 模糊控制与PID控制方法的比较[J]. 上海交通大学报,1999,33(4).

[29]莫建林,朱承高. 基于神经网络的模糊自适应PID控制及其实现[J]. 自动化技术与应用,1998,17(2).

[30]莫建林,朱承高. 基于神经网络的模糊自适应PID控制及其实现[J]. 自动化技术与应用,1998,17(2).

[31]赵振宇,徐用懋. 模糊理论和神经网络的基础与应用[M]. 北京:清华大学出版社,南宁:广西科学技术出版社,1996,80-86,116-124.

[32]达飞鹏,宋文忠. 基于模糊神经网络的滑模控制[J]. 控制理论与应用,2000(01).

[33]李鸿儒,边春元,顾树生. 基于神经网络的一类非线性系统的自适应控制[J]. 控制与决策,1999.

[34]王晓晔,李少远. 神经网络自学习模糊控制及其在合成氨生产中的应用[J]. 控制与决策,1999.

[35]叶其革,王晨皓,吴捷. 基于自组织模糊神经网络电力系统稳定器的设计[J]. 控制理论与应用,1999(05).

[36]章兢. 仿人智能控制与模糊控制神经网络融合技术[J]. 控制与决策, 1999(05).

[37]纪志成,沈艳霞,姜建国. 基于Matlab无刷直流电机系统仿真建模的新方法[J]. 系统仿真学报,2003(12).

[38]赵甘露,张文,朱新华. 一种改进传统模糊PID控制器性能的方法[J]. 自动化技术与应用,2002(05).

[39]李迪阳,周明顺,何文雪. 一种基于单神经元的模糊自整定PID控制器[J]. 青岛大学学报(工程技术版),2006(01).

[40]肖冰,王印松,杨光军. 一种基于专家调节增益的单神经元PID控制[J]. 自动化技术与应用,2003(04).

[41]张泾周,杨伟静,张安祥. 模糊自适应PID控制的研究及应用仿真[J]. 计算机仿真,2009(09).

[42]马金祥,余发山,董爱华,王福忠. 一种模糊自适应PID控制器的设计与仿真[J]. 焦作工学院学报(自然科学版),2002(03).

[43]刘利,马劲松,李黎. 基于神经元的模糊自适应PID控制及其应用[J]. 自动化技术与应用,2003(10).

[44]张弘. 专家-模糊自适应PID控制系统的设计[J]. 西安邮电学院学报,2009(01).

[45]李建新,李跃新. PID控制算法专家参数自整定的研究[J]. 新技术新工艺,2007(10).

[46]黄东杰. 专家PID控制算法中参数对控制结果的分析[J]. 仪器仪表用户,2006(05).

[47]陈敏,谭思云,黄玉清. 遗传算法在PID参数整定中的应用[J]. 仪表技术,2010(05)

[48]史振兴. 基于遗传算法的PID控制器参数优化与仿真[J]. 仪器仪表与分析监测,2010(03)

[49]牛芗洁,王玉洁,唐剑. 基于遗传算法的PID控制器参数优化研究[J].计算机仿真,2010(11)

[51]Astrom K J,Hagglund T. PID controllers: theory, design and tuning[J]. Society ofAmerican,1995.

[52]Astrom K J, Hagglund T. The future of PID control[J]. Control engineering practice, 2001, 9(11):1163-1175.

[53]Qin S J, Badgwell T A. An overview of industrial model predictive control technology[C]. AIChE Symposium Series. New York, NY: American Institute of Chemical Engineers, 1971-2002., 1997, 93(316):232-256.

[54]Carvajal J, Chen G, Ogmen H. Fuzzy PID controller:Design, performance evaluation, and stability analysis[J]. Information Sciences,2000,123(3):249-270.

智能控制概论

内蒙古科技大学 智能控制概论结课报告 题目:一级倒立摆板模糊控制 学生姓名: 学号: 专业:测控技术与仪器 班级: 指导教师:刘慧博

目录 第1章概述 (3) 1.1 一阶倒立摆的概述 (3) 1.2 倒立摆系统的组成 (4) 1.3 倒立摆的控制方法 (4) 第二章倒立摆的建模 (5) 2.1 一级倒立摆的物理模型 (5) 2.2 数学模型的建立 (5) 2.3 模糊控制器的设计 (7) 第三章一级倒立摆系统的Simulink模型及系统仿真 (8) 3.1 MATLAB及Simulink (8) 3.2 一级倒立摆系统的Simulink的模型 (8) 3.3 仿真结果 (9) 第四章总结 (10) 参考文献 (11)

第1章概述 1.1 一阶倒立摆的概述 倒立摆系统是典型的自不稳定的非线性系统,由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多抽象的控制概念如控制系统的稳定性、可控性、快速性和抗干扰能力,都可以通过倒立摆系统直观地表示出来。 早在20世纪60年代,人们就开始了对倒立摆系统的研究。1966年Schacfer 和Cannon应用Bang-Bang控制理论,将一个曲轴稳定于倒置位置。到了20世纪60年代后期,倒立摆作为一个典型不稳定、非线性的例证被提出。自此,对于倒立摆系统的研究便成了控制界关注的焦点。 倒立摆的种类很多,有悬挂式倒立摆、平行倒立摆、环形倒立摆、平面倒立摆;倒立摆的级数可以是一级、二级、三级、四级乃至多级;倒立摆的运动轨道可以是水平的,还可以是倾斜的(这对实际机器人的步行稳定控制研究更有意义);控制电机可以是单电机,也可以是多级电机。 目前有关倒立摆的研究主要集中在亚洲,如中国的北京师范大学、北京航空航天大学、中国科技大学;日本的东京工业大学、东京电机大学、东京大学;韩国的釜山大学、忠南大学,此外,俄罗斯的圣彼得堡大学、美国的东佛罗里达大学、俄罗斯科学院、波兰的波兹南技术大学、意大利的佛罗伦萨大学也对这个领域有持续的研究。近年来,虽然各种新型倒立摆不断问世,但是可自主研发并生产倒立摆装置的厂家并不多。目前,国内各高校基本上都采用香港固高公司和加拿大Quanser公司生产的系统;其它一些生产厂家还包括(韩国)奥格斯科技发展有限公司(FT-4820型倒立摆)、保定航空技术实业有限公司;最近,郑州微纳科技有限公司的微纳科技直线电机倒立摆的研制取得了成功。

(完整版)基于单片机的智能鱼缸的设计与实现文献综述

单片机技术、传感器信息采集技术与Android技术简介 李洋 (一)智能鱼缸概述 随着人们生活水平的不断提高,家居环境或是休闲娱乐场所都安装各种各样的观赏型鱼缸,而保持一个适宜水族生活的环境是一件非常耗费精力的工作。针对水族生活环境的净化和改善的设备有很多,目前市场上常用的鱼缸控制系统有:换水器、加氧泵等改善水质的设备,但是它们大多是非智能化的、单独工作的器件。如果仅仅把多个单独的设备组成一套多功能的鱼缸控制系统,需要投入的费用较大,同时多个单一器件机械化的组装之后,也存在一定的资源浪费,并且不便于管理控制,该系统则是从系统集成开发的角度进行设计和开发,根据当前市场上的需求,形成了一套集自动充氧、自动水位控制进排水、灯光照明和自动喂食等功能为一体的控制系统。系统以STC12C5A60S2 单片机为核心,实现对鱼缸的集中控制和管理,并通过手机端APP与人进行信息交互。 (二)嵌入式技术 1.嵌入式技术简介 嵌入式系统被定义为:以应用为中心、以计算机技术为基础、软硬件可裁剪、适应应用系统,对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。嵌入式系统主要由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户的应用程序等4个部分组成,它是集软硬件于一体的可独立工作的“器件”。嵌入式系统是一种面向应用、功能定制、资源受限、响应要求高、性能稳定、无自举开发能力,由硬件和软件两部分构成的专用计算机系统。“嵌入性”、“专用性”与“计算机系统”是嵌入式系统的三个基本要素,应用对象系统指嵌入式系统所嵌入的宿主系统。 2.嵌入式技术发展环境 美国著名未来学家尼葛洛庞帝1999年1月访华时预言,4~5年后嵌入式智能(电脑)工具将是PC和因特网之后最伟大的发明。嵌入式技术已进阶成智能核心的关键性技术,随着云端运算的技术与环境逐渐成熟,各国政府均倾全力推动物联网、泛在网甚至未来网络的发展,牵动信息科技产业的技术发展走向。智能系统已向具备更方便的使用介面,支援各式无线网络传输与容量更大的储存装置。预估智能系统出货量将增加到2015年的33亿部,为处理器市场贡献1,000亿美元营收,而大陆占全球MCU市场比重20%,预料到2015年将成长到50亿美元。物联网给嵌入式智慧系统、特种电脑提供了更广阔的应用。许多公司正在从底层BIOS到嵌入式系统、特殊驱动程式、应用软体中介软体等,提供整体解决方案。 3.嵌入式系统应用领域及特点 嵌入式计算机在应用数量上远远超过了各种通用计算机,一台通用计算机的外部设备中就包含了5~10个嵌入式微处理器,键盘、鼠标、软驱、硬盘、显示卡、显示器、Modem、网卡、声卡、打印机、扫描仪、数字相机、USB集线器等均是由嵌入式处器控制的。在制造工业、过程控制、通讯、仪器、仪表、汽车、船舶、航空、航天、军事装备、消费类产品等方面均是嵌入式计算机的应用领域。嵌入式系统是将先进的计算机技术、半导体技术和电子技术和各个行业的具体应用相结合后的产物。嵌入式系统的特点:1)技术密集;2)资金密集; 3)高度分散;4)不断创新的知识集成系统。 (三)传感器技术 1. 传感器技术简介 传感器技术是现代科学的前沿技术,是新技术革命和信息社会的重要技术基础。在现代生活和科学研究中,各种类型的传感器所提供的大量可靠、准确的信息,不仅能代替人的五

智能控制综述

智能控制综述 摘要:本文首先介绍了智能控制的发展和智能控制系统的结构和特点以及与传统控制的关系。然后,综述几种智能控制研究的主要内容。 关键词:智能控制、自动控制、研究内容 1、智能控制的发展 任何一种科学技术的发展都由当时人们的生产发展需求和知识水平所决定和限制,控制科学也不例外。1948年,美国著名的控制论创始人维纳(N.Wiener)在它的著作《控制论》中首次将动物与机器相联系。1954年钱学森博士在《工程控制论》中系统的阐明了控制论对航空航天和电子通讯等领域的意义及影响,1965年傅京孙(K.S.Fu)教授首先把人工智能的启发式推理规则用于学习控制系统,又于1971论述了人工智能与自动控制的交集关系,成为国际公认的智能控制的先行者和奠基人[1]。 20世纪60年代,随着航海技术,空间技术的发展,控制领域面临着人们对其性能要求愈来愈高和被控对象的复杂性和不确定性,被控对象的复杂性和不确定性主要表现在被控对象的非线性和不确定性,以及分散的传感元件与执行元件,复杂的信息网络和庞大的数据量。而传统控制在解决这些问题时存在三方面的问题:一、由于传统控制理论是建立在以微积分为工具的精确模型上,所以无法对高度复杂和不确定的被控对象进行描述;二、传统控制理论中的自适应控制和Robust控制虽可克服系统中所包含的的不确定性,达到优化控制的目的,但这些方法只适用于缓慢变化的情况。三、传统控制系统输入较单一,而面对海量信息(视觉的、听觉的、触觉的等)的复杂环境,智能控制应运而生。 智能控制是对传统控制的补充和发展,是自动控制发展的高级阶段,而传统控制是智能控制产生的基础。 国内对智能控制的研究今年来也十分活跃。从八十年代人工智能与系统科学相结合到863计划的实施,智能控制在我国的发展已有稳固的基础。 2、智能控制结构与特点 智能控制是自动控制发展的高级阶段,是人工智能、控制论、系统论、信息论、仿生学、和计算机等多种学科的高度结合,是一门新兴的边缘交叉学科。它不仅包含了自动控制、人工智能、系统理论和计算机科学,而且还涉及到生物学,正在成为自动化领域中最兴旺和发展最迅速的一个分支学科[2]。 (1)智能控制具有明显的跨学科、多元结构特点。至今,智能控制方面的专家已提出二元结构、三元结构、四元结构等三种结构,它们可分别以交集的形式表示如下: IC=AI∩AC (1) IC=AI∩CT∩OR (2) IC=AI∩CT∩ST∩OR (3) 上式中,各子集的含义为 AI——人工智能;AC——自动控制;CT——控制论; OR——运筹学;ST——系统论;IC——智能控制。 智能控制的二元交集结构、三元交集结构和四元交集结构分别由傅京孙、萨克迪斯(G.N.Saridis)和蔡自兴于1971,1977和1986年提出的[3],以上的交集表达式也可表示成如下图1、2、3的形式:

智能控制器使用手册

一概述 智能控制器是框架式空气断路器的核心部件,适用于50~60Hz电网,主要用作配电、馈电或发电保护,使线路和电源设备免受过载、短路、接地/漏电、电流不平衡、过压、欠压、电压不平衡、过频、欠频、逆功率等故障的危害;通过负载监控,需量保护,区域连锁等功能实现电网的合理运行。同时也用作电网节点的电流、电压、功率、频率、电能、需量、谐波等电网参量的测量;故障、报警、操作、电流历史最大值、开关触头磨损情况等运行维护参数的记录;当电力网络进行通讯组网时,智能控制器可用为电力自动化网络的远程终端实现遥测,遥信,遥控,遥调等,智能控制器支持多种协议以适用不同的组网要求。 二基本功能 对于M型无任何可选功能(加*的项目)时其功能配置为基本功能,如表1所示: 表1 基本功能配置 2.1.3 通讯功能 通讯功能为可选项,对于M型没有通讯功能,对于H型通讯协议可根据需要选择为Modbus,Profibus-DP,Device net.

2.1.4增选功能选择 增选功能为可选项,M型,H型都可以选择增选功能配置,不同增选功能代号与增选功能容如表2所示。 2.1.5 区域连锁及信号单元的选择 “区域连锁及信号单元”为可选项,M型、H型都可以选择信号单元的功能配置,当信号单元选择为S2,S3时,控制器具备区域连锁功能。 2.2 技术性能 2.2.1 适用环境 工作温度:-10℃~+70℃(24h?平均值不超过+35℃) 储存温度:-25℃~+85℃ 安装地点最湿月的月平均最大相对湿度不超过90%,同时该月的月平均最低温度不超过+25℃,允许由于温度变化产生在产品表面的凝露。 污染等级:3级。 (在和断路器装配在一起的情况下) 安装类别:Ⅲ。 (在和断路器装配在一起的情况下) 2.2.2工作电源 由辅助电源和电源互感器同时供电,保证负载很小和短路情况下控制都可以可靠工作。控制器的供电方式有下面3种方式:

智能控制技术现状与发展

摘要:在此我综述智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法;然后介绍智能控制在各行各业中的应用现状;接着论述智能控制的发展。智能控制技术的主要方法,介绍了智能控制在各行各业中的应用。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制应用自动化 浅谈智能控制技术现状及发展 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 一、智能控制的性能特点及主要方法 1.1根据智能控制的基本控制对象的开放性,复杂性,不确定性的特点,一个理想的智能控制系统具有如下性能: (1)系统对一个未知环境提供的信息进行识别、记忆、学习,并利用 积累的经验进一步改善自身性能的能力,即在经历某种变化后,变化后的

智能台灯毕业设计文献综述

关于“智能台灯的设计与开发”的文献综述 一、前言部分 毕业设计是大学四年最后一个阶段特别重要的一个作业,它能让我们将大学四年学习的课本知识联系到具体的应用当中去。它是对我们大学阶段所学知识的一次综合运用,不但能使我们各方面的知识系统化,而且使所学知识实践化。要求我们了解并掌握硬件知识,软件知识,培养我们独立分析解决实际问题的能力及创新能力,并锻炼我们调查研究,搜集资料、查阅资料及阅读中、外文文献的能力等,为以后独立工作贡献社会做大学期间最后的准备。 我选择的设计题目是智能台灯的设计与开发。随着智能化时代的到来,智能产品层出不穷,已逐步渗入到人们工作和生活的方方面面。当前,患有近视眼的人数越来越多,我国近视眼发病率尤其突出。由于没有正确使用台灯,当光线变得昏暗时忘记及时打开台灯,或者长时间在高亮度的台灯下工作,久而久之,都会对视力产生一定的影响。虽然市场上已出现了具有调亮功能概念的台灯,但其仍不具备成熟的自动调亮功能。本设计所制作的智能台灯具备手动和自动调节两种模式,同时还加入了人体检测功能,可实现人走灯灭。在保护视力的同时,也为节能环保做出了一份贡献。 二、主题部分 2.1传统台灯与智能台灯的区别 传统的台灯的功能比较单一,主要就是为了实现照明,既不节约也不环保。而智能灯的主要含义是除了智能灯体,还有一个手持智能控制设备,智能灯控制设备具备计算能力和网络联接能力,通过应用程序,功能可以不断扩展。智能灯的核心功能是控制、灯光效果、创作、分享、光与音乐互动、光提升健康和幸福。 2.2智能台灯的发展方向 2.2.1、走向以人为本的科学化照明 智能化灯将从纯粹的智能功能的发展转向更注重人的行为的智能灯控。以人的行为、视觉功效、视觉生理心理研究为基础,开发更具有科学含量的,以人为本的高效、舒适、健康的智能化照明。 2.2.2、满足个性化、层次化的照明 智能技术与灯光控制的结合使照明更进一步地满足不同个体、不同层次群体的照明需求,是使照明从满足一般人的需求到满足个体、个性需求的必不可少的技术手段。这也应该是智能灯的发展方向。 2.2.3、智能技术与新光源及新照明技术的结合,创造崭新的照明文化 智能技术和电子开关等新照明光源和照明技术的结合,将构筑崭新的照明技术平台,其应用领域从智能家居照明到智能化的城市照明,有无限广阔的前景,并且正在创造一种崭新的高技术和高科学思想含量的照明文化。智能化照明的出现是灯具市场的发展趋势。 2.3此款台灯的有关技术知识 本人设计的智能台灯涉及的主要内容有热释电红外传感器技术,PWM脉冲宽度调制技术,模—数转换技术,电子电路技术以及有关的编程知识。 2.3.1热释电红外传感器 它主要是由一种高热电系数的材料,如锆钛酸铅系陶瓷、钽酸锂、硫酸三甘钛等制成尺寸为2*1mm的探测元件。在每个探测器内装入一个或两个探测元件,并将两个探测元件以反极性串联,以抑制由于自身温度升高而产生的干扰。由探

智能控制导论复习题

试题 一、名词解释 1.智能 2. 自动控制 3. 专家控制系统 4. 学习控制 5. 免疫算法 6.信息7. 智能控制系统8. 专家系统9. 学习控制系统10. 人工免疫系统 11.信息论12. 黑板13. 模糊判决14. 学习系统15. 选择操作 二、填空题 16. 免疫系统在受到外界病菌的感染后,能够通过自身的免疫机制恢复健康以保持正常工作的一种特性称为免疫系统的。 17.智能控制是采用驱动智能机器实现其目标的过程 18.知识是人们通过体验、学习或联想而知晓的对客观世界。 19.与学习系统相似,学习控制系统分为在线学习控制系统和控制系统两类。 20.基于模式识别的学习控制系统,可被推广为一个具有在线特征辨识的分层递阶结构,该控制系统由三级组成,即组织级、和执行控制级。 21. 真体的行动受其心理状态驱动,人类心理状态的要素有认知、情感、三种。 22.神经网络主要通过两种学习算法进行训练,即无师学习算法和。 23.神经网络自适应控制和常规自适应控制一样,也分为两类,即和模型参考自适应控制。 24.实现学习控制系统需要三种能力:性能反馈、、训练。 25,遗传算法是模仿和自然选择机理,通过人工方式构造的一类优化搜索算法。 26. 把智能控制与传统控制有机地组合起来,即可构成系统。 27.人们通过体验、学习或联想而知晓的对客观世界规律性的认识是。 28.间接进化控制是由作用于系统模型,再综合系统状态输出与系统模型输出作用于进化学习,然后,系统在应用一般闭环反馈控制原理构成进化控制系统。 29. 仿人控制研究的主要目标不是控制对象,而是控制器本身如何对控制专家结构和的模拟。 30.连接主义的原理主要为神经网络及神经网络间的连接机制与。 31. 真体程序的核心部分称为或问题求解器。 32.在专家系统的主要组成部分中,能够向用户解释专家系统的行为,包括解释推

智能家居的安防控制系统设计文献综述

智能家居的安防控制系统设计文献综述 摘要:随着我国经济的快速发展,生活水平的不断提高,人们对居家的概念已从最初满足简单的居住功能发展到注重对住宅的人性化需求。安全、舒适、快捷、方便的智能小区,已成为住宅发展的主流趋势,其中,安全性是首要目标。智能小区安全性的实现,除了人为的因素外,主要依靠小区的智能化安全防范系统。 关键词:智能小区/住宅/安防系统 为了完成本次毕业设计,我通过学校图书馆和网络资源查阅了大量的有关智能家居的安防控制系统设计方面的中外文献,这些文献为我本次毕业设计提供了很多帮助,以下这些文献就是我在本次毕业论文书写过程中所用到的参考文献,现将其列举如下: 文献[1]以保障安全为目的而建立起来的技术防范系统,称为安全防范系统。它包括以现代物理和电子技术及时发现侵入破坏行为、产生声光报警阻吓罪犯、实录事发现场图像和声音提供破案凭证,以及提醒值班人员采取适当的物理防范措施的各种设备。智能小区安全防范系统的设置应遵循以下原则: 应根据智能小区内保护对象的风险等级,确定相应的防护级别,满足小区全面防护和局部纵深防护的设计要求,以达到所要求的安全防范水平。 应根据智能小区的建设标准、使用功能及安全防范管理的需要,综合运用电子信息技术、计算机网络技术、传感检测技术、安全防范技术等,形成先进、可靠、经济、适用的安全防范技术体系。 文献[2]智能小区安全防范系统的系统设计及其各子系统的配置,须遵照国家相关安全防范技术规程及智能化居住小区的规范、标准,并坚持以人为本的原则。系统的集成应以结构化、模块化、规范化的方式来实现,应能适应工程建设发展和技术发展的需要。 文献[3]智能小区一般通过在小区周界、重点部位与住户室内安装安全防范装置,并由小区物业管理中心统一管理,来提高小区的安全防范水平。小区的智能化安全防范系统,主要由下列子系统构成。 住户室内安装家庭防盗或紧急求助报警装置,与小区物业管理中心计算机系统联

智能控制技术综述

网络高等教育 本科生毕业论文(设计)需要完整版请点击屏幕右上的“文档贡献者” 题目:智能控制技术综述

20世纪20年代,在建立了以频域法为主的经典控制理论的基础上,智能控制技术逐步发展。随着信息技术的进步,许多新方法和新技术进入工程化、产品化阶段。这对自动控制理论技术提出了新的挑战,促进了智能理论在控制技术中的应用。在智能控制技术比较的基础上,较详细地阐述了智能控制技术主要方式的特点及优化算法,并举例说明。智能控制技术将不断地发展和充实。 关键词:自动化;智能控制;应用

摘要............................................................. I 1 绪论.. (1) 1.1 智能控制技术简介 (1) 1.2 智能控制技术研究的领域及应用 (1) 1.2.1模糊逻辑控制 (1) 1.2.2神经网络控制 (1) 1.3 智能控制技术的应用现状 (1) 1.4 本论文的主要工作 (1) 2 智能控制理论概述 (2) 2.1 智能控制的基本概念 (2) 2.2 智能控制技术的主要方法 (2) 2.2.1 模糊控制 (2) 2.2.2 专家控制 (2) 2.2.3 神经网络控制 (3) 2.2.4 集成智能控制 (3) 2.3 智能控制技术常用的优化算法 (3) 2.3.1 遗传算法 (3) 2.3.2 蚁群算法 (3) 3 模糊控制及其应用 (4) 3.1 模糊控制理论提出 (4) 3.1.1 模糊控制理论的概念 (4) 3.1.2 模糊控制理论与传统控制相比的优势 (4) 3.2 模糊控制理论在制冷领域的应用情况 (4) 3.3 模糊控制理论在磨煤机控制系统领域的应用情况 (4) 4 神经网络控制及其应用 (5) 4.1 神经网络控制理论提出 (5) 4.1.1 神经网络控制理论的概念 (5) 4.1.2 神经网络控制理论与传统控制相比的优势 (5)

控制工程文献综述

工程控制基础文献综述 院系: 班级: 姓名: 学号:

一、引言 本学期初步学习了工程控制基础,为了更好地了解和学习该门课程,我通过网络渠道搜集了十篇有关工程控制的期刊文献。深入阅读后,我进行了总结,并对工程控制有了一定深度的理解。本文是对搜集和阅读的文献的综述,旨在简要的介绍工程控制的发展和应用。我所搜集的期刊均来自中国知网,其中包括工程控制的发展史和在车辆、电力及机器人方面应用的文献。 二、文献综述 1.智能控制工程研究的进展 自1985年在纽约召开第一届智能控制学术会议至今,智能控制已经被广泛研究应用于工业、农业、服务业、军事航空等各个领域。近年来,随着人工智能技术和其他信息处理技术,尤其是信息论、系统论和控制论的发展,智能控制在控制机理和应用实践方面均取得了突破性的进展。遗传算法与模糊逻辑、神经网络相互融合,通过模拟人类思维方式和结构来设计用于解决复杂的各种非线性问题的控制策略,并已在各种实际工程项目中得到应用,取得了良好的效果。分布式人工智能中的Agent和Multi Agent System已成为研究的热点,构建基于Agent 的集散递阶结构的智能控制系统为智能控制注入了新的活力。 在理论研究取得进步的同时,国内外的研究者均意识到智能控制的研究不能只停留在计算仿真的层次上,智能控制应该直接面向传统控制难以或无法解决的复杂的非线性系统,面向实际工程应用。 2.车间运输小车的智能控制 工厂运输是协调生产的重要环节和工厂设施的重要组成部分,它的效率直接影响生产成本及生产率。目前,加工中小产品机械加工车间运输系统主要有空间运输和地面运输两种。空间运输主要是小吨位桥式起重机和电动葫芦,其控制方式多为下拉线式,这种方式有以下缺点:1)设备复杂,功率消耗大,投资高。2)操作不方便,运输效率低。3)只适应车间内部运输。 地面运输主要采用叉车及手推运料小车,叉车需专人驾驶且无固定轨道,在车间内运行极不安全,手推运料小车需人为动力,劳动强度大,运输效率低。本设计的有轨运料小车,利用了 PLC 的编程简单,工作可靠,硬件组合灵活,不增加外部控制电器即可实现任意复杂逻辑控制等特点,实现了运料小车的智能控制。 小车应具有两种控制方式,即:呼叫自动响应控制和手动点动控制,正常情况下应使用前一种控制方式。两种控制方式必须实现互锁。呼叫自动响应控制:每个机床处各设一个呼叫按钮。由于意外或故障导致小车在非呼叫工位处停车时,不响应任一工位处的呼叫信号,只能采用手动控制进行纠正。

智能控制技术实验报告

《智能控制技术》实验报告书 学院: 专业: 学号: 姓名:

实验一:模糊控制与传统PID控制的性能比较 一、实验目的 通过本实验的学习,使学生了解传统PID控制、模糊控制等基本知识,掌握传统PID控制器设计、模糊控制器设计等知识,训练学生设计控制器的能力,培养他们利用MATLAB进行仿真的技能,为今后继续模糊控制理论研究以及控制仿真等学习奠定基础。 二、实验内容 本实验主要是设计一个典型环节的传统PID控制器以及模糊控制器,并对他们的控制性能进行比较。主要涉及自控原理、计算机仿真、智能控制、模糊控制等知识。 通常的工业过程可以等效成二阶系统加上一些典型的非线性环节,如死区、饱和、纯延迟等。这里,我们假设系统为:H(s)=20e0.02s/(1.6s2+4.4s+1) 控制执行机构具有0.07的死区和0.7的饱和区,取样时间间隔T=0.01。 设计系统的模糊控制,并与传统的PID控制的性能进行比较。 三、实验原理、方法和手段 1.实验原理: 1)对典型二阶环节,根据传统PID控制,设计PID控制器,选择合适的PID 控制器参数k p、k i、k d; 2)根据模糊控制规则,编写模糊控制器。 2.实验方法和手段:

1)在PID控制仿真中,经过仔细选择,我们取k p=5,k i=0.1,k d=0.001; 2)在模糊控制仿真中,我们取k e=60,k i=0.01,k d=2.5,k u=0.8; 3)模糊控制器的输出为:u= k u×fuzzy(k e×e, k d×e’)-k i×∫edt 其中积分项用于消除控制系统的稳态误差。 4)模糊控制规则如表1-1所示: 在MATLAB程序中,Nd用于表示系统的纯延迟(Nd=t d/T),umin用于表示控制的死区电平,umax用于表示饱和电平。当Nd=0时,表示系统不存在纯延迟。 5)根据上述给定内容,编写PID控制器、模糊控制器的MATLAB仿真程序,并记录仿真结果,对结果进行分析。 表1-1 FC的模糊推理规则表 四、实验组织运行要求 根据本实验的综合性、设计性特点以及要求学生自主设计MATLAB仿真程序的要求以及我们实验室的具体实验条件,本实验采用以学生自主训练为主的开

智能电网文献综述

智能电网综述 摘要:智能电网是当今世界电力系统发展变革的最新动向,并被认为是21世纪电力系统的重大科技创新和发展趋势。目前,以美国、英国、法国、德国为代表的欧美国家,己经纷纷加入到研究和发展智能电网的行列中来,将智能电网(Smart Grid )作为末来电网发展的远景目标之一,建立一个高效能、低投资、安全可靠、灵活应变的电力系统。具有对用户可靠、经济、清洁、互动的电力供应和增值服务的智能电网是未来电网的发展方向。本文阐述了智能电网的内涵和特点,分析了国内外智能电网的研究进展和我国发展智能电网的条件,对一些现有的研究行进了分析和讨论。 关键词:智能电网;智能化;信息化;节能减排; 1 智能电网的概念 随着一些国家对电网的环境影响、可靠性和服务质量的关注,电网朝着更经济、稳定、安全和灵活的方向发展,因此提出了“智能电网”的概念。智能电网是以通信网络为基础,通过传感和测量技术、电力电子技术、控制方法以及决策支持系统技术,实现电网的可靠、安全、经济、高效、环境友好和高服务质量的目标,其主要特征包括自愈、引导用户、抵御攻击、提供满足用户需求的电能质量、容许各种不同发电形式的接入、电力市场以及资产的优化高效运行。 目前,全世界智能电网的发展还处在起步阶段,没有一个共同的精确定义。对于智能电网,各个国家的定义有所不同。美国能源部在《Grid 2030》中将智能电网定义为:一个完全自动化的电力传输网络,能够监视和控制每个用户和电网节点,保证从电厂到终端用户整个输配电过程中所有节点之间的信息和电能的双向流动。中国物联网校企联盟将智能电网更具体的定义为:智能电网由:智能配电网、智能电能表、智能发电系统、新型储能等系统组成。欧洲技术论坛把智能电网定义为:一个可整合所有连接到电网用户所有行为的电力传输网络,以有效提供持续、经济和安全的电力。而国家电网中国电力科学研究院将智能电网定义为:以物理电网为基础(中国的智能电网是以特高压电网为骨干网架、各电压等级电网协调发展的坚强电网为基础),将现代先进的传感测量技术、通讯技术、信息技术、计算机技术和控制技术与物理电网高度集成而形成的新型电网。它以充

智能控制导论复习题

试题 一、名词解释 1.智能2. 自动控制3. 专家控制系统4. 学习控制5. 免疫算法 6.信息7. 智能控制系统8. 专家系统9. 学习控制系统10. 人工免疫系统 11.信息论12. 黑板13. 模糊判决14. 学习系统15. 选择操作 二、填空题 16. 免疫系统在受到外界病菌的感染后,能够通过自身的免疫机制恢复健康以保持正常工作的一种特性称为免疫系统的。 17.智能控制是采用驱动智能机器实现其目标的过程 18.知识是人们通过体验、学习或联想而知晓的对客观世界。 19.与学习系统相似,学习控制系统分为在线学习控制系统和控制系统两类。 20.基于模式识别的学习控制系统,可被推广为一个具有在线特征辨识的分层递阶结构,该控制系统由三级组成,即组织级、和执行控制级。 21. 真体的行动受其心理状态驱动,人类心理状态的要素有认知、情感、三种。 22.神经网络主要通过两种学习算法进行训练,即无师学习算法和。 23.神经网络自适应控制和常规自适应控制一样,也分为两类,即和模型参考自适应控制。 24.实现学习控制系统需要三种能力:性能反馈、、训练。 25,遗传算法是模仿和自然选择机理,通过人工方式构造的一类优化搜索算法。 26. 把智能控制与传统控制有机地组合起来,即可构成系统。 27.人们通过体验、学习或联想而知晓的对客观世界规律性的认识是。 28.间接进化控制是由作用于系统模型,再综合系统状态输出与系统模型输出作用于进化学习,然后,系统在应用一般闭环反馈控制原理构成进化控制系统。 29. 仿人控制研究的主要目标不是控制对象,而是控制器本身如何对控制专家结构和的模拟。 30.连接主义的原理主要为神经网络及神经网络间的连接机制与。 31. 真体程序的核心部分称为或问题求解器。 32.在专家系统的主要组成部分中,能够向用户解释专家系统的行为,包括解释推

某小区的智能化系统设计-文献综述

文献综述 智能建筑起源于20世纪80年代初的美国,经过短短几十年的迅猛发展,已在世界各地逐步广泛普及开来。近几年来,随着计算机的普及和信息产业的发展,人们对居住环境要求的不断提高,“智能化”的概念也逐渐被引入了现代化住宅小区建设当中,智能小区已成为现代建筑行业中,继单一型智能建筑之后的又一热点,得到业内人士的广泛关注,并进入快速发展阶段。目前,智能小区不仅成为房地产开发商的投资的重点,而且也是人们购房的新热点。智能化住宅将成为21世纪的概念住宅。 据我国建设部住宅产业化办公室提出的智能化住宅小区新概念,即:在现代化的城乡住宅小区内综合采用微型计算机、自动控制、通信与网络等技术,建立一个由住宅小区综合物业管理中心与安防系统,信息通信服务与管理及家庭智能化系统组成的“三合一”住宅小区服务与管理集成系统,使小区与每个家庭达到安全、舒适、温馨和便利的环境。 理想的智能化家居可以使人们足不出户就可以进行网络漫游、电子购物、网上医疗、参观虚拟博物馆和图书馆、点播自己喜爱的影视节目,甚至在数千里之外通过因特网遥控家里的电器的开关和调节器,从而调整房间照明亮度、控制环境的温度和湿度等。当家庭中发生安全警报时(盗警、火警、煤气泄漏以及疾病紧急呼救等),在外的家庭成员可以接到报警信息,并可通过电话或网络查询确认家庭中的安全状况。智能化工程各系统要体现当今时代潮流,设计合理,具有既可单独操作控制,又能整体管理的功能,安装维护方便,安全可靠。智能化工程的核心在于其强大的一体化智能网络系统,它是智能住宅的灵魂和中枢。具体而言,既通过小区物业管理中心控制室实现对整个小区的功能控制和物业信息管理,把各相互独立的弱电子系统构件整合一个完美的整体,协同工作,并可视具体要求和将来发展任意拆装各弱电子系统。 对小区智能化系统,基本要求是:小区智能化系统的建设要达到建设部提出

智能控制技术的发展现状及心得体会

智能控制技术的发展现状及心得体会 摘要: 在此综述了智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法,然后介绍智能控制在各行各业中的应用现状,接着论述智能控制的国内外发展和现状。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出创新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制模糊控制神经网络遗传算法 一、引言 智能控制作为当今的一种交叉前沿学科,其研究中心始终是解决传统控制理论、方法(包括经典控制、现代控制、自适应控制、鲁棒控制、大系统方法等)所难以解决的不确定性问题。自智能控制概念的提出,自动控制界纷纷仿效,主流是人工智能技术引入到自动控制系统中,寻求难以精确建模的复杂系统的自动控制(自治)。 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 二、智能控制的性能特点 智能控制是自动控制发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂、非线性和不确定的系统控制问题。智能控制系统具有以下几个特点:(1)较强的学习能力: 能对未知环境提供的信息进行识别、记忆、学习、融合、分析、推理,并利用积累的知识和经验不断优化、改进和提高自身的控制能力; (2)较强的自适应能力: 具有适应受控对象动力学特性变化、环境特性变化和运行条件变化的能力; (3)较强的容错能力: 系统对各类故障具有自诊断、屏蔽和自恢复能力; (4)较强的鲁棒性: 系统性能对环境干扰和不确定性因素不敏感; (5)较强的组织功能: 对于复杂任务和分散的传感信息具有自组织和协调功能,使系统具有主动性和灵活性; (6)实时性好:

智能控制作业

1、已知某一炉温控制系统,要求温度保持在600度恒定。针对该控制系统有以下控制经验: (1)若炉温低于600度,则升压;低的越多升压越高。(2)若炉温高于600度,则降压;高的越多降压越低。(3)若炉温等于600度,则保持电压不变。 设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。输入、输出变量的量化等级为7级,取5个模糊集。试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。 解:1)确定变量 定义理想温度为600℃,实际温度为T,则温度误差为E=600-T。 将温度误差E作为输入变量 2)输入量和输出量的模糊化 将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将偏差E的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1所示。

表1 温度变化E划分表 控制电压u也分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将电压u的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。 表2 电压变化u划分表

表3 模糊控制规则表

2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态误差为零,超调量不大于1%,输出上升时间≤0.3s 。假定被控对象的传递函数分别为: 2 55.01)1()(+= -s e s G s ) 456.864.1)(5.0(228 .4)(2+++= s s s s G 解: 在matlab 窗口命令中键入fuzzy ,得到如下键面: 设e 的论域范围为[-1 1],de 的论域范围为[-0.1 0.1],u 的论域范围为[0 2]。 将e 分为8个模糊集,分别为NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; u 分为7个模糊集,分别为 NB ,NM ,NS, Z ,PS ,PM ,PB;

花园浇水智能控制系统的单片机设计【文献综述】

文献综述 电子信息工程 花园浇水智能控制系统的单片机设计 一、前言 m,居世众所周知,我国是水资源严重短缺的国家之一,虽然水资源总量约2.8万亿3 界第六位,但因人多地广,人均水资源不足世界人均占有量的四分之一。每年缺水量近400 m,其中农业缺水近300亿3m。[1]由于传统、粗放、落后的灌溉方式,我国灌溉水资源浪亿3 费情况相当严重。据统计,目前我国灌溉水利用率只有40%左右,个别省份只有20%,而发达国家的灌溉水利用率可达到80%-90%。对比可知,农业节水势在必行。各国实践研究也证明,农业节水切实可行且潜力巨大。另外,随着人们生活水平的提高,人们对花卉、树木等绿色植物的喜爱和种植越来越多,然而以前对花木的浇灌、施肥等工作都需要靠人工来实现,不能根据植物正常生长所需要的水分、温度来实时调节植物生长环境的参数,不利于花木的成长以及资源的高效利用。综上所述,当前加大技术投入,使环境控制高度自动化与智能化是现代浇水系统发展的必然趋势。 二、前人花园浇水智能控制系统研究成果 灌溉自动化始于20世纪30年代,二次世界大战前,法国研制了一系列用以实行渠系自动化运行的水力自动闸门,并提出了一套比较完整的自动化灌溉控制方法,开了自动化灌溉的先河。20世纪50年代以来,随着电子学和计算机技术的应用和发展,利用电子设备、计算机设备和程序控制的灌溉智能化技术也得到了同步发展,并在法国、美国、日本等发达国家乃至一些发展中国家得到了日益广泛的应用和发展。[2] 世界上智能灌溉工程实施比较好的国家有以色列、法国、美国等。这些国家现代温室的研究起步早、发展快,对综合环境控制技术水平相对较高。目前,他们采用先进的节水灌溉制度,由传统的充分灌溉向非充分灌溉发展,对灌区用水进行监测预报,实行动态管理,监测土壤情况和作物生长,开发了一系列功能强大的数字式灌溉控制器,并广泛应用。目前,世界上最先进的灌溉智能化技术是在微灌技术的基础上,按照技术集成和机械化程度,增加对土壤、作物长势情况、温度等生长环境因素等的监控和检测,用精确的灌溉设施及技术实

智能控制文献综述

智能控制的发展,应用及展望 周杰 21225062 摘要:智能控制是当今控制学领域研究和发展的热点之一。本文论述了智能控制的发展过程,相比传统控制的优势,在低压电器中的应用,并对其未来发展做了展望。 关键词:发展历史;智能控制;低压电器技术;模糊控制;人工智能;展望 1.智能控制的发展历史 从20世纪60年代起,由于空间技术、计算机技术及人工智能技术的发展,控制界学者在研究自组织、自学习控制的基础上,为了提高控制系统的自学习能力,开始注意将人工智能技术与方法应用于控制系统。 1965年,美国著名控制论专家Zadeh 创立了模糊集合论,为解决复杂系统的控制问题提供了强有力的数学工具;同年,美国著名科学家Feigenbaum着手研制世界上第一个专家系统;就在同年,傅京孙首先提出把人工智能中的直觉推理方法用于学习控制系统。1996年,Mendl进一步在空间飞行器的学习控制系统中应用了人工智能技术,并提出了“人工智能控制”的概念。直到1967年,Leondes和Mendel才首先正式使用“智能控制”一词,并把记忆、目标分解等一些简单的人工智能技术用于学习控制系统、提高了系统处理不确定性问题的能力。 从20世纪70年代开始,傅京孙、Glorios 和Saridis等人从控制论角度进一步总结了人工智能技术与自适应、自组织、自学习控制的关系,正式提出了智能控制就是人工智能技术与控制理论的交叉,并创立了人—机交互式分级递阶智能控制的系统结构。在70年代中后期,以模糊集合论为基础,从模仿人的控制决策思想出发,智能控制在另一个方向—规则控制上也取得了重要的进展。进入80年代以来,由于微机的迅速发展以及人工智能的重要领域—专家系统技术的逐渐成熟,使得智能控制和决策的研究及应用领域逐步扩大,并取得了一批应用成果。80年代后期,神经网络的研究获得了重要进展,为智能控制的研究起到了重要的促进作用。 2.智能控制的分支 目前关于智能控制的研究和应用沿着几个主要的分支发展,主要有专家控制、模糊控制、神经网控制、学习控制、基于知识的控制、复合智能控制、基于进化机制的控制、自适应控制等等。有的已在现代工业生产过程与智能自动化方面投入应用。主要介绍如下:专家控制是由K.J.Astrom将人工智能中的专家系统技术引入到控制系统。组成的一种类型的智能控制。借助专家系统技术,将常规的RLS 控制、最小方差控制等不同方法有机结合起来P 能根据不同的情况分别采取不同的控制策略。 模糊控制自1965年Zadeh 教授创建模糊集理论和1974年英国的Mamdani成功地将模糊控制应用于蒸汽机控制以来,模糊控制得到了很大的发展和广泛的应用。模糊控制是基于模糊推理、模仿人的思维方式、对难以建立精确数学模型的对象实施的一种控制,成为处理推理系统和控制系统中不精确和不确定性的一种有效方法,构成了智能控制的重要组成部分。 神经网络控制是另一类智能控制的重要形式。神经网络模拟人的大脑神经结构和功能,

基于模糊推理智能投喂控制技术研究”文献综述

“基于模糊推理的智能投喂控制技术研究” 文献综述 1.引言 我国是海洋大国,海洋自然条件优越,海域辽阔。随着我国深水网箱的快速发展,深水网箱养殖向—20 m以深水域拓展,单个网箱养殖水体也进一步扩大,但是缺少与深水网箱养殖相配套的自动投饵设备和技术。目前我国深水网箱养殖主要采用人工投饵,其具有劳动强度大、喂料不均匀、投饵量难控制、适应环境能力差等缺点。国内池塘养殖使用的一些小型的简易自动投饵机,完全不能适应深水网箱养殖高密度、大容量养殖的需要。基于我国海水养殖面临的产业发展难题以及我国正在兴起的深水网箱养殖及产业发展技术需求,深水网箱养殖作为一种高新技术对渔业现代化的发展具有重大的意义。 深水网箱智能投喂控制技术是为深水网箱规模化养殖构建的自动化控制系统,网箱智能投喂控制技术的开发和应用可以大大降低养殖工人的劳动强度,提高饲料的利用率,减少养殖过程的人为疏失,提高养殖管理水平和养殖效率,对于提高网箱养殖产量以及养殖由传统模式向现代化养殖模式迈进有重大的推进作用。 2.国外研究现状 挪威、丹麦、美国、日本等许多国家,网箱养殖产业的自动化程度都很高,基本上已经脱离了靠人工喂养的原始养殖模式,自动化投饵系统的应用非常普遍,在饵料的生产、运输、储存以及最终投放等各个环节都能做到精确的数量控制。其中挪威的水产养殖行业起步很早而且发展很快,从1986 年开始挪威就在鳕鱼幼鱼养殖上应用了音响集鱼系统和自动投饵系统。 深水网箱一般离海岸的距离比较远,所以深水网箱养殖一般建有海上工作平台,在这些养殖业发达的国家有的还配有工作船,投饲设备可以安装在海上工作平台上面或者工作船上。自动投饲机与网箱之间通过管道连接,饲料经过管道投

相关主题
文本预览
相关文档 最新文档