当前位置:文档之家› 无级变速器的基本结构和变速原理

无级变速器的基本结构和变速原理

无级变速器的基本结构和变速原理
无级变速器的基本结构和变速原理

无级变速器的基本结构和变速原理

沈林江,胥家政

摘要:无级变速技术是目前汽车传动系统中的前沿技术,无级变速器(CVT)与手动变速器(MT)、自动变速器(AT)相比,综合动力性能更佳,能与发动机形成理想的动力匹配,因此,无级变速汽车是当今发展的主要趋势之一。无级变速器中最为重要的一项是电液控制技术,直接影响到汽车变速品质、经济性以及动力性。速比控制、夹紧力控制和起步离合器的控制是无级变速控制系统的关键。

关键词:无级变速;结构;原理;特点

Basic structure and Variable speed principle of the CVT

Shen lin-jiang , Xu jia-zheng

Abstract: Continuously variable transmission technology is currently in the forefront of automotive technology,continuously variable transmission (CVT) with manual transmission(MT),automatic

transmission(AT),an integrated vechicle is the development of the car one of the main trend. CVT is the most important one is the electro-hydraulic control technology.Car speed directly affects the quality and economy, and dynamic.However ratio control, clamping force control and control is the key to starting clutch CVT control system.

Key word: I nfinitely variable speeds; structure; principle; characteristic

引言

汽车无级变速器能实现传动比连续变化,在更大范围内控制发动机的工作点,真正实现发动机—变速器—道路载荷的最佳匹配,所以一直以来是汽车制造商和用户追求的理想变速器。无级变速器按作用方式的不同和传动形式的差异,可分为机械式、电气式、液压式三大类。其中机械式无级变速器恒功率特性较好,有较高的传动效率,应用比较广泛,金属带式无级变速器就是典型的一种机械式摩擦无级变速器。由于金属带式无极变速器最为普遍,所以本文主要研究金属带式无级变速器的基本结构和变速原理。

1 汽车无级变速器的类型和特点

无级变速器可分为:液力变矩器,摆销链式无级变速器CVT,金属带式无级变速器CVT,环盘滚轮式无级变速器IVT这4大类。与有级变速器相比,它的优点明显:(1)提高燃油

经济性和排放性能。无级变速器在相当宽的范围内实现无级变速,可以获得传动系统与发动机工况的最佳匹配状态,提高整车的燃油经济性,降低排放。(2)提高动力性能。无级变速器能够获得较大的传动比,其动力性能明显优于机械变速器和自动变速器。(3)改善驾驶舒适性能。因速比连续变化,可使换挡平滑,实现了手动变速器的快速反应和自动变速器舒适的双优点。采用金属链条传递动力,解决了老式无级变速器“橡胶效应”和“离合器打滑”等问题。

1.1 液力变矩器

液力变矩器是较早用于汽车传动的无级变速器,成功地用于高档汽车的传动中。由于传动效率低,且变速比大于2时效率急剧下降,经常仅在有级(2~3档)变速器的两档中间实现无级变速,因此未能推广开来,目前经常作为起步离合器在汽车传动中使用。

1.2 金属带式无级变速器

金属带式无级变速器是荷兰VDT公司的工程师Van Doorne 发明的,用金属带代替了胶带,大幅度提高了传动的效率、可靠性、功率和寿命,经过30~40年的研究,开发已经成熟,并在汽车传动领域占有重要的地位。目前金属带式无级变速器的全球总产量已经达到250万辆/年,三年内将达到400万辆/年,发展速度很快。

金属带式无级变速器主要是由起步离合器、行星齿轮机构、无级变速机构、控制系统和中间减速机构构成。金属带式无级变速器的核心元件是金属带组件,金属带组件由两组9~12层的钢环组合350~400片左右的摩擦片组成。在传动时,主、从动两对锥盘夹持金属带,靠摩擦力传递运动和转矩。主、从动边的动锥盘的轴向移动,使金属带径向工作半径发生无级变化,从而实现传动比的无级变化,即无级变速。[9]

1.3 摆销链式无级变速器

摆销链式无级变速器是由德国LUK公司将摆销链用于Audi汽车传动的成功范例。与金属带式CVT不同的是,它将无级变速部分放到低速级,即最后一级。其原因是链传动的多边形效应在高速级时会产生更大的振动、噪声和动态应力。所以在其最新的结构中,加装了导链板以减少振动和噪声。但是由于在低速级传动中,要求传递的转矩大,轴向的夹持压力就大,液压系统的油压也大,而摩擦盘式离合器所要求的油压又不高,这样,液压系统的油压就比较复杂。由此看来,如果能进一步降低或者消除多边形效应,将会进一步提高此类传动的水平,简化整机设计,降低成本。

用两组摩擦盘式离合器和行星转换装置组成前进和倒档离合器,同时又满足起步离合器的功能要求,是很成功地设计。目前许多公司用液力变矩器作为起步离合器,简化了液压电

控系统,但增加了液力变矩器。而这样的两组摩擦盘式离合器加行星转换装置,在实现前进和倒档离合器的功能时又显得累赘。其传动简图如图1所示

图1 Multitronic 的传动简图

1.4 环盘滚轮式无级变速器

环盘滚轮式无级变速器是英国Torotrak公司发明的车用无级变速器,其原理如图2所示。运动和动力由输入盘靠摩擦力传给滚轮,滚轮将运动和动力靠摩擦力传给输出盘。当滚轮在垂直于纸面的轴向转动时,滚轮和两个环盘的接触点连续变化,输入盘和输出盘接触点(工作点)的回转半径连续变化,实现无级变速传动。[13]

图2 环盘滚轮式无级变速器原理图

2 金属带式无级变速器的基本结构

图3 金属带式CVT的主要结构跟工作原理简图

1-发动机飞轮;2-离合器及行星齿轮;3-主动轮油缸;4-主动轮可动部分;4a-主动轮固定部分;5-油缸;6-从动轮油缸;7-从动轮可动部分;7a-从动轮固定部分;8-中间减速器;9-主减速器和差速器;10-金属带

CVT的主要结构如上图所示,CVT的主要结构和工作原理如图所示,该系统主要包括主动轮组、从动轮组、金属带和液压泵等基本部件。金属带由两束金属环和几百个金属片构成。主动轮组和从动轮组都由可动盘和固定盘组成,与油缸靠近的一侧带轮可以在轴上滑动,另一侧则固定。可动盘与固定盘都是锥面结构,它们的锥面形成V型槽来与V型金属传动带啮合。发动机输出轴输出的动力首先传递到CVT的主动轮,然后通过V型传动带传递到从动轮,最后经减速器、差速器传递给车轮来驱动汽车。工作时通过主动轮与从动轮的可动盘作轴向移动来改变主动轮、从动轮锥面与V型传动带啮合的工作半径,从而改变传动比。可动盘的轴向移动量是由驾驶者根据需要通过控制系统自动调节主动轮、从动轮液压泵油缸压力来实现的。由于主动轮和从动轮的工作半径可以实现连续调节,从而实现了无级自动变速。[12]金属带是一种非常精密的组件,金属片和每一层钢环的加工制造都有严格的精度和性能要求。钢环组由一种高强度的马氏体时效钢制成,相邻两圈配合要求很高,否者将产生大的载荷不均,影响带的寿命。因此,金属带组件的制造有很高的技术含量。其结构示意图如图

4所示:

图4 金属带组件图及局部放大图

1—金属片;2—钢环。

3 金属带式无级变速的工作原理

如图5所示,汽车开始起步时,主动轮的工作半径较小,变速器可以获得较大的传动比,从而保证驱动桥能够有足够的扭矩使汽车获得较高的加速度。随着车速的增加,主动轮的工作半径逐渐减小,从动轮的工作半径相应增大,CVT的传动比下降,汽车能够以更高的速度行驶。[6]

图5 金属带式无级变速器传动变速原理

(a)传动原理图;(b)变速原理图

在金属带式无级变速器的液压系统中,从动油缸的作用是控制金属带的张紧力,以保证来自发动机的动力高效、可靠的传递。主动油缸控制主动锥轮的位置沿轴向移动,在主动轮组金属带沿V型槽移动,由于金属带的长度不变,在从动轮组上金属带沿V型槽向相反的方向变化。金属带在主动轮组和从动轮组上的回转半径发生变化,实现速比的连续变化。

前进时,前进挡离合器接合,倒档离合器松开。动力从输入轴传到行星架,再传到与其相连的右支架,经前进挡离合器传至太阳轮,通过太阳轮带动主动带轮,再由V形金属传动带将动力传递到从动工作带轮,带轮的可动部分和固定部分形成的V形槽与V形金属带啮合。在工作中,当主、从动工作带轮的可动部分在油缸内液压力作用下做轴向移动时,连续改变了金属传动带的工作半径,从而改变了传动比。最后动力经中间减速器、主减速器与差速器传递到车轮。

倒档时,前进挡离合器松开,倒档制动器接合。行星轮机构的内齿圈被固定,内行星轮与太阳轮啮合,外行星轮与内齿圈啮合,经这一双行星轮机构,传递到太阳轮的力矩方向发生改变,后面的力矩传递路线与前进时相同。

金属带式无级变速器主要是通过改变两个工作带轮和金属带之间的接触半径来实现速比的连续变化。其变速过程如图6所示:

图6 无极变速器的工作原理

1—输入轴;2—主动轮固定部分;3—主动轮可动部分;4—主动轮液压工作缸;5—被动轮固定部分;6—被动轮可动部分;7—输出轴;8—被动轮液压工作缸

如上图所示,两个V形轮(主、被动轮)都分为两部分:一部分(如2、5)为固定,另一部分(如3、6)可在轴上沿轴向移动,两部分形成的V形槽与V形金属带相啮合。工

作时,假设主动轮工作半径为Rp , 被动轮工作半径为Rs,则传动比为:i=Rp/Rs,其中,Rp为从动轮半径,Rs为主动轮半径。

主、被动轮的可动部分3、6在液压缸内液压力作用下,轴向移动,从而主动轮工作半径Rp和被动轮工作半径Rs随之改变,传动比改变,达到了变速的目的。可动带轮的轴向移动量可以通过液压控制系统分别调整,其中,i=f(Fp,Fs)

其中:i—传动比

Fp—主动轮液压缸压力

Fs—被动轮液压缸压力

Fs决定金属传动带的张紧力,当i不变时,Fp保持不变。只要根据汽车行驶工况及发动机工况要求实时控制Fp和Fs,即可实现变速器与发动机相匹配的无级变速传动。[3]

4 金属带式CVT控制技术的分类及发展

单压力回路控制,早期的CVT单压力回路系统控制原理如图7所示。该系统差不多全部保留了机-液控制系统的特点。

双压力回路控制,如图8。双压力回路电子液压控制系统能够很好地解决单压力回路电子液压控制系统存在的诸多缺点。[8]

图7单压力回路原理图

1、2-比例阀3-速比控制阀4-主动轮液压缸

图8 双压力回路原理图

5 金属带式CVT传动的控制技术

金属带式CVT的控制主要分为三种:速比控制、夹紧力控制、起步离合器控制。三者之间的控制过程是相互耦合的。在金属带式CVT的实时控制过程中,对速比控制时,需要考虑夹紧力控制的影响,而设计夹紧力控制时,则可以不考虑速比控制。由于起步离合器的控制相对独立,故不考虑其对速比和夹紧力控制的影响。下图9为CVT传动控制系统示意图。[4]

图9 CVT传动控制系统示意图

2.1 速比控制

CVT的速比控制是实现实际速比精确跟随目标速比,即按照CVT传动系统的匹配策略,控制速比根据汽车行驶工矿的改变而实时变化,使汽车在任何工矿下行驶时,均能维持发动机工作在动力性模式或经济性模式下。汽车行驶时,驾驶员改变加速踏板位移大小会直接改变发动机的转速大小,同时使工作在动力性模式或经济性模式下的目标速比也随之发生变化。这时,目标速比与实际速比便产生了一定的偏差,根据这个偏差值以及其变化率,速比控制其便通过产生控制量来执行控制任务,使实际速比尽快的跟踪到目标速比上。另外,在汽车行驶过程中突遇路面阻力,汽车加速度很快下降,目标速比须发生改变以保证发动机提供给汽车的牵引力与外界阻力相平衡,使发动机仍然维持工作在经济性模式或动力性模式下,这时,实际速比与目标速比产生了一定的偏差,根据这个偏差值以及其变化率,速比控制器通过产生控制量来控制执行机构,使实际速比尽快的逼近目标速比。如图10所示:

图10 速比控制系统框图

2.2 夹紧力控制

夹紧力控制和速比控制是相互耦合的,夹紧力的变化必然要引起速比的变化。而在实际控制中,控制价尽力并不考虑对其速比的影响。也就是说控制被动缸的压力时(夹紧力与被动缸压力有关),并不考虑它对主动缸的影响

夹紧力控制是以CVT传递的转矩和它当前的速比为依据的,由于金属带的长度为一定值,金属带式CVT所能传递的最大转矩Tin与金属带目标夹紧力Q DN和主动带轮节圆半径R DR之间的关系为:

Tin=2uQ DN R DR /cos a

式中,R DR为主动带轮节圆半径(m),该值可由主动轴间距、传动带周长、即时传动比计算出;u 为金属块与带轮间的最大摩擦因数;a 为带轮锥形角,一般为11度。

设Te为发动机的输出转矩,一般,CVT所能传递的最大转矩Tin稍大于Te,以保证CVT能可靠地传递发动机转矩。因此,用储备系数k>I表示有:Tin - k*Te,于是金属带的目标夹紧力Q DN为:

Q DN=kT e cos a /(2uR DR)

图11 夹紧力控制系统框图

2.3 起步离合器控制

无级变速传动系统中的起步离合器采用的是湿式多片离合器,目的是使汽车能以足够大的牵引力平顺的起步,提高驾驶舒适性,必要时切断动力传动。通过手动操纵阀来选择起步离合器或制动器。控制阀组控制离合器液压缸或制动器液压缸内的压力。

与常规液力机械自动变速传动汽车起步控制策略不同,对于无级自动变速汽车,车辆起步时不仅液力变矩器发挥自动变扭调速的作用,金属带式无级变速传动装置也将发挥作用。当车辆处于起步爬坡阶段时,充分利用液力变矩器低速增扭、通过性好的优点来实现车辆的快速平稳起步,此时带传动速比维持在最低档:当车辆处于低速行驶且液力变矩器速比大于联合工作输出最大功率所对应的速比时,通过改变带传动速比来调节液力变矩器速比,从而保证发动机与液力变矩器联合工作输出功率维持在最大值,使车辆获得最大的启动性能。不同油门开度下,维持发动机与液力变矩器联合工作输出功率最大时对应不同的液力变矩器速比。[14]

2.4 其它先进控制理论的应用

为了追求更好的控制效果,得到更好的动力性、经济性和排放指标,一些新兴的、先进的控制理论被应用于汽车动力传动系的控制中,其中的代表就是模糊控制。其控制结构如下图12所示:

图12 模糊控制结构示意图

在汽车动力传动系中应用模糊控制主要有3个原因:

(1)模糊控制能够很好地辨别汽车的运行工况和驾驶员的驾驶意图。

(2)模糊控制是基于语义和规则的控制理论,应用与汽车动力传动系这样的强非线性系统

具有很好的抗干扰效果。

(3)模糊控制具有很好的连接作用,可以将不同的控制算法结合起来,从而达到最优的控制效果[1]

6 金属带式CVT电液控制技术

金属带式CVT早期的控制系统多采用机液控制方式,但机液控制系统结构复杂,对传动系统多种性能的匹配要求缺乏灵活性。随着技术的进步和对汽车性能要求的不断提高,当前无级变速传动系统的控制均采用电液控制方式。电液控制方式可以使动力传动系统实现理想的工作状态,达到动力性、经济性和排放之间的最佳平衡。不同匹配策略的实现都是对无级变速器的主压力和速比控制来实现的。同时,采用电液控制方式还可以提高无级变速传动系统的效率,降低不必要的损失。[2]

下图13为金属带式CVT的电液控制系统原理图。系统的油泵直接由发动机驱动,为整个系统提供液压油。系统的主压力由压力控制阀(比例溢流阀)调节,它直接作用在从动轮油缸内。在速比一定的条件下,主压力的大小决定了系统传递转矩的能力。变速器的速比由速比控制阀(位置伺服阀)调节。调节主动轮油缸内的压力,是通过金属带的约束与从动轮油缸内的压力达到新的平衡状态,从而改变主动轮的轴向位置来实现的。

在控制系统中,主、从动轮油缸压力P P ,P S由压力传感器测量,主、从动轮的转速n P,n S 由转速传感器测量,测量得到的信号通过A/D转换和驱动放大,变成可以驱动比例阀的控制电流,控制主、从动轮油缸的压力变化。A/D,D/A和控制器构成了数据采集和反馈控制的闭环控制回路,从而提高了系统的控制精度,发动机的转速n C和油门开度a 的信号通过传感器输入给控制器,通过相应的控制策略来保证CVT无滑移地运转。[5]

图13 电液控制系统原理图

7 结论

在最近的十几年中,CVT技术已经上千迈进了一大步,使得CVT比有着超过100年历史的机械变速器MT和有着超过50年历史的自动变速器AT更有竞争力。CVT技术正处于寿命周期的开始,CVT的特性将进一步提高,而我们中国也紧跟世界步伐,发展我们自主创新的无级变速器。金属带式无级变速传动器作为新兴的车用变速器,具有明显的技术优势和开发潜力。金属带式CVT传动技术正处在寿命周期的开始,所以更应充分发展无级变速综合控制系统中的电液控制技术,只有这样才能满足现代汽车发展的要求。

参考文献:

[1]付铁军. 金属带式无级变速传动器智能控制技术研究. [D]. 吉林大学汽车学院, 2008

[2]张艳玲. 金属带式无级变速器电控系统及变速策略的研究. [D]. 湖南大学,2005

[3]胡国良,徐兵,杨华勇. 汽车金属带式无级变速传动技术. [J]. 浙江大学工程设计学报. 2003年,第10

卷,第2期

[4]卢延辉,张友坤,郑联珠,高京魁. 基于Infenioon C164CI的金属带式无级变速器电控系统设计. [J]. 吉

林大学汽车工程学院. 2006年,第36卷,增刊

[5]方泳龙,张伯英,周云山,等. 金属带式无级变速器液压控制系统. [J]. 吉林工业大学. 2000年,第30

卷,第3期

[6]陈奈士,刘温,张伟华,等. 金属带式车用无级变速器. [J]. 东北大学. 2000年,第11卷,第12期

[7]皱乃威,王庆年,刘金刚,等. 金属带式CVT速比的改进PID控制. [J]. 湖南大学. 2008年,第35卷,

第8期

[8]吴宝玉. 金属带式CVT电控系统控制策略研究. [D]. 汽车工程学院,2009

[9]陈乃士,张伟华,杨会林,等. 汽车金属带式无级变速器. [M]. 机械工业出版社

[10]李伟等编著. 图解汽车自动变速器、无级变速器构造与检修.[M]. 机械工业出版社

[11]王幼民,唐铃凤,唐凌霄. 金属带式无级变速器的发展历史、研究现状与展望. [J]. 安徽工程科学学院

学报. 2005年,第3卷,第5期

[12]王幼民,唐铃凤. 金属带式无级变速器的研究综述. [J]. 机械传动. 2007年,第31卷,第6期

[13]高路,于海斌,王宏. 汽车无级变速器原理与控制. [J]. 机械科学与技术. 2005年,第8卷,第3期

[14]何晓春. 金属带式无级变速器的控制策略的实现. [J]. 湖北汽车工业学院学报. 2001年,第15卷,

第8期

金属带式无级变速传动变速器工作原理分析

西南大学 本科生课程论文 论文题目:金属带式无级变速传动变速器的工作原理分析 姓名:孙伟 学院:工程技术学院 班级:2012 机制(2)班 专业:机械设计制造及其自动化 课程名称:汽车设计 学号:222012322220063 指导教师:冀杰

2015 年06 月24 日金属带式无级变速传动变速器工作原理分析 摘要:金属带式无级变速传动变速器(CVT,即Continuously Variable Transmission ),同传统的变速器相比,具有结构紧凑,操作简便,传动效率更高,成本更低,以及节能环保等多方面的优点。此外,它作为轿车发展的一项先进技术适合我国轿车变速器发展的要求,并且越来越受到普遍关注,本文重点介绍,以及分析了金属带式无级变速器的传动原理,并系统的介绍了其发展历史和当前的技术状况,对金属带式变速器与其他类型的变速器的优点,缺点进行比较说明在机械式无级变速传动中,金属带式无级变速器无论是在转矩传递能力还是在传动效率方面均优于其他类型的机械式无级变速器传动。 关键词金属带式无级变速器;无级变速器;机械式变速器;CVT 1.金属带式无级变速器(CVT)概述 1.1无级变速器的发展历史 无极变速技术最早诞生于于一百多年前,一位荷兰工程师设计制造了世界上第一台无级变速传动机构。而无极变速技术应用于汽车行业则可以追溯到1886年,德国奔驰公司将V型橡胶带式无极变速机构安装在该公司生产的汽油机汽车上。由于橡胶带式无级变速机构存在功率有限(转矩局限于135Nm以下),离合器工作不稳定,液压泵、传动带和夹紧机构的能量损失较大等缺陷,因而没有被汽车行业普遍接受。然而提高传动带性能和无级变速传递功率极限的研究一直在进行,将液力变矩器集成到无级变速系统中,主、从动轮的夹紧力实现电子化控制,在CVT中采用节能泵,传动带用金属带代替

自动变速器的结构和工作原理

自动变速器的结构和工作原 理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第二章自动变速器的结构和工作原理 第一节液力变矩器的基本原理简介 液力变矩器是一种液力传动装置,它以液体为工作介质来进行能量转换。它的能量输入部件称为泵轮,以“B”表示;它和发动机的输出轴相连,并将发动机输出的机械能转换为工作介质的动能。能量输出部件为涡轮,以“T”表示;它将液体的动能又还原为机械能输出。 一、液力偶合器的工作原理 如图2-1所示为液力偶合器原理图。泵轮2固定在发动机曲轴上,为能量输入端,涡轮4固定在输出轴5上,为输出端。泵轮和涡轮之间有2-4mm的间隙,整个偶合器充满了液体工作介质。 1-发动机曲轴,2-泵轮,3-偶合器壳体,4-涡轮,5-偶合器输出轴 图2-1 液力偶合器 1、泵轮的运动 ⑴发动机启动后,曲轴1旋转并带动泵轮2同步旋转。充满在泵轮叶片间的工作液体随着泵轮同步旋转,这是工作液体绕传动轴的牵连运动。 ⑵在离心惯性力的作用下,工作液体在绕传动轴坐牵连运动的同时,它沿叶片间的通道从内缘向外缘流动,这是流体和叶片间的相对运动,并于泵轮的外缘流入涡轮。 2、涡轮的运动 工作液体流入涡轮后,把从泵轮处获得的能量(动量)传递给涡轮,使涡轮旋转。从涡轮外缘(涡轮入口)流入的液体,既随涡轮旋转作牵连运动,又从外缘向内缘(涡轮出口)流动,这是涡轮叶片和流体的相对运动,最后,流体经涡轮内缘又流回泵轮。 二、液力偶合器和液力变矩器的能量转换原理 1、液力偶合器的能量转换

流体在偶合器(变矩器)内的循环流动是一个相当复杂的三维流动,流体与工作叶片间的相互作用也相当复杂。因此,分析这类问题时,在流体力学方面作了一系列假定后,一般用一元流束理论来描述。对于专业性较强的一些描述方式和术语,由于篇幅有限,不作介绍,请读者参考有关著作。 当发动机转速(即为泵轮转速)不变时,下述效率公式(1-2)中的分母是一个常数;随着涡轮转速的升高,传动比变大,效率也高。反之,随着涡轮转速的降低,偶合器的效率也随之下降。需要指出的是,从理论上讲,当n1=n2时i=0,效率最高。这只有在涡轮轴上没有负载时才可能出现。而实际是,当n1=n2,偶合器的泵轮和涡轮之间没有速度差;泵轮里的液体随泵轮作旋转运动产生的离心惯性力和涡轮里的液体随涡轮运动产生的离心惯性力大小相等而方向相反;偶合器内的液体不流动,也没有环流,偶合器也就失去了能量传递的作用。 2、变矩器的能量传递原理(见图2-2) 液力变矩器与液力偶合器在结构上的最大区别就是液力变矩器比液力偶合器多加装了一个固定的流体导向装置——导轮。图2-2所示为最简单的液力变矩器的结构简图。它由泵轮 1、涡轮2和导轮3等三个基本组件组成。 当泵轮1由发动机驱动旋转时,工作液体泵轮的外端出口b 甩出(R2即表示泵轮叶片出口在中间旋转曲面上的半径)而进入涡轮,然后自涡轮的C 端(R3表示涡轮叶片出口在中间旋转曲面的半径)流出而进入导轮,再经导轮a 端流入泵轮而形成环流。 偶合器的传动比偶合器的效率 : 则液力偶合器的效率为,则:,输出扭矩为入扭矩为根据动量矩定理,设输:i :) 21()11(12120 0ηη-===-=i n n n M n M M M M M i i o i

变速箱的工作原理(简易)

变速箱的工作原理 变速箱的原理一、变速箱的作用 发动机的物理特性决定了变速箱的存在。首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现。比如,发动机最大功率出现在5500转。变速箱可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。理想情况下,变速箱应具有灵活的变速比。无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能。 二、CVT 无级变速箱有着连续的变速比。其一直因为价格、尺寸及可靠性的关系而没有大量装备汽车。现在,改进的设计使得CVT的使用已比较普遍。 国产AUDI 2.8 CVT 变速箱通过离合器与发动机相连,这样,变速箱的输入轴就可以和发动机达到同步转速。 级Sport Coupe 6速手动变速箱 一个5档的变速箱提供5种不同的变速比,在输入轴和输出轴间产生转速差。 三、简单的变速箱模型 为了更好的理解变速箱的工作原理,下面让我们先来看一个2档变速箱的简单模型,看看各部分之间是如何配合的:

输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。 轴和齿轮(红色)叫做中间轴。它们一起旋转。轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时,中间轴就可以传输发动机的动力了。 轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。车轮转动会带着花键轴一起转动。 齿轮(蓝色)在花键轴上自由转动。在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动。 齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色)。 1档 挂进1档时,套筒就和右边的齿轮(蓝色)啮合。见下图:

液力自动变速器结构和原理(完整资料).doc

【最新整理,下载后即可编辑】 液力自动变速器结构和原理 液力自动变速器由变矩器、机械式变速器(一般多采用行星齿轮)和电子-液压控制系统三部分组成 变矩器 泵轮——主动部分,将发动机动力变成油液动能。 涡轮——输出部分,将动力传至机械式变速器的输入轴。 导轮——反作用元件,它对油流起反作用,达到增扭作用。 导轮起增扭作用

导轮固定-液流改变方向 当汽车行驶阻力大时,涡轮转速低于泵轮转速,从涡轮流入导轮的油液方向与泵轮旋转方向相反,导轮对油流起反作用,达到增扭作用,克服增大的阻力。 导轮自由旋转 当汽车行驶阻力小时,涡轮转速提高与泵轮转速接近,此时从涡轮流入导轮的油液方向与泵轮旋转方向趋于一致,导轮开始自由旋转以减少阻力。 锁止离合器的作用 当汽车行驶阻力小时 发动机转速较高,此时不需要增扭,锁止离合器将变矩器的泵轮和涡轮锁住,可以提高传动效率,能节油5%左右。 在汽车行驶阻力大时 发动机转速降低,此时锁止离合器分离,实现增扭。

电子-液压控制系统 主要由传感器、电控单元、换档电磁阀、油压调节电磁阀等组成。 行星齿轮变速器 液力自动变速器多采用结构紧凑的行星齿轮变速器。它通常采用两排行星齿轮来实现各档变速比。行星齿轮组由齿圈、行星齿轮、太

阳轮3个元件组成。任一元件固定,其余两个作输入或输出用多片离合器和制动器分别对这些元件进行接合制动来实现换档装置。 行星齿轮变速器 液力自动变速器有两种 一种为前置后驱动液力自动变速器,另一种为前置前驱动液力自动变速器

液力自动变速器的电子控制 液力自动变速器电子控制通过动力传动控制模块(PCM)接收来自汽车上各种传感器的电子信号输入,根据汽车的使用工况对这些信息处理来决定液力自动变速器运行工况。按照这些工况,动力传动控制模块给执行机构发出指令控制下列功能: 变速器的升档和降档 一般通过操纵一对电子换档电磁阀在通/断两种状态中转换。 变速器换档感觉 通过电控压力控制电磁阀(pcs-Pressure Control solenoid)用以调整管路油压。 变矩器锁止离合器(TCC-Torque Converter Clutch) 结合和分离时间,以及某些应用场合变矩器锁止离合器接合感觉:通过变矩器离合器控制电磁阀(按应用场合可能不止一个电磁阀)。 变速器的这些工作特性的电子控制,能按照汽车的运行工况提供稳定和精确的换档点(时间)和换档品质。

变速器结构详解之金属带式无级变速器4页word文档

变速器结构详解之金属带式无级变速器在现代汽车上常见的变速器种类,如果按照内部结构来分,大概可以分为有级式与无级式两种,有级式的两种在之前的两篇文章中都已经详细介绍过,那么接下来说无级式变速器。所谓无级式变速器就是指变速器并没有固定的档位,它的传动比是连续不断地变化的。而目前最为常见的无级式变速器可数金属带式无级变速器(VDT-CVT),这种变速器在国内车型上搭载的时间并不长,但它可不是什么新产品,因为它早在1490年便在达芬奇的想象力下被绘画出来,而在1889年就申请了CVT的专利。直到20世纪70年代的中后期荷兰的VDT(Van Doorne’s Transmissionb.V)公司研制出了第一台汽车用的CVT,并将这款CVT称为VDT-CVT。而且早在1987年斯巴鲁公司便首次将这款VDT-CVT变速器装备在他们的Justy车型上。直到2005年,荷兰VDT 公司已经累计生产了VDT-CVT变速器超过1000万套,而且它的搭载车型也越来越多,好像上一代的广本飞度(GD),菲亚特的派力奥、奇瑞的旗云、日产的天籁、蓝瑟翼神等都已经可以选配VDT-CVT变速器版本。那么下面就介绍一下这款变速器的结构与原理吧。 图:这款是复合型的金属带式无级变速器,可见除了金属带及工作轮之外,在输入轴前还有一组行星齿轮。 图:这是博世(BOSCH)推出的传动金属带,它由一个个金属环夹着 皮带所组成,

图:利用金属环保护皮带可以让皮带在运行过程中避免皮带被摩擦而 损坏的问题。 先说说CVT变速器的结构吧。金属带式无级变速也就是我们常说的CVT变速器,它的内部结构跟之前说的两种有级变速器也是完全不同,而且不单止是内部结构,就连传动的传动的部件也不一样。之前介绍的两种有级式的变速器虽然使用的齿轮不同,但是它们都是利用齿轮啮合来实现动力的传递,而金属带式无级变速器则是通过表面呈V型主动工作轮、金属带、V型的从动工作轮来实现动力传递。主动工作轮安装于输入轴之上,它在获得动力之后会带动金属带转动,而金属带的另一端则会连接于从动工作轮,而从动工作轮则连接在输出轴上,于是动力就会被这样传递至输出轴,然后通过尾牙等部件将动力传递至车轮上。 图:从上图可以看到,呈V型的是工作轮,它的一边连接着可以使其 活动的液压控制装置, 图:当液压控制装置为其注油或者放油,就可以让工作轮单边进行轴向移动,从而改变架在工作轮之上的金属带的工作半径。 既然说得上是变速器,那么当然不单止是传动那么简单,最起码也需要改变传动比吧。上面也说到,主动工作轮以及从动工作轮它们的表面是呈V型的,这个V型的工作轮不论是主动工作轮还是从动工作轮的两边都配有液压控制装置,这个液压控制装置的作用是让工作轮的一边作轴向移动。而架在V型工作轮中间的金属带也会因工作轮

变速箱工作原理

变速箱工作原理 2019.03 汽车变速器,由大小齿轮构成,按大小排列成塔状。 一般地,变速器有四根轴组成,第一根轴是动力进入轴,插在离合器内,只要离合器踏板抬起来,它就转,与发动机的转速同步。第二根轴在变速器的底部,其中一个齿与第一轴的一个齿永远啮合,跟着转,上面有大小不同的许多齿轮。第三根轴与第一根轴同心安置,上面大小不同的齿轮可以前后滑动,与第二轴的齿轮啮合,得到不同的转速和扭矩。第三轴是动力输出轴。 第四根轴是倒车轴,第二根轴要得到反向旋转,必须增加一个齿轮。这个齿轮专门安装在一根轴上。 变速器的齿轮,永远啮合的,用斜齿,为什么要用斜齿,说起来就费劲了。滑动的,起变速作用的,只能用直齿。 现在的汽车变速器,一般安装有同步器,作用是避免变档时齿轮发出响声,容易啮合成功。因为同步器结构复杂,增加成本,一般只安装在高速档上,高级轿车会全部安上同步器,当然由你买单啦。 这是拆开盖子的变速器,左边是离合器,第一个斜齿,是第一轴的。下面的第二轴看不见,除了第一轴上的那个齿轮,其余

齿轮全部是第三轴上的,由此也可以看出第三轴很长。第一轴是空心的,第三轴的一端要插入第一轴空心部分,以支承自身。 有小齿的,是同步器,密密的小齿是同步器的标志。 齿轮边上磨得发亮的凹槽,是变速叉叉的位置,变速杆带动变速叉前后移动,就使齿轮前后移动。 变速器在同一时间里,只能有一对齿轮啮合,否则就别死不可转动了。这个任务由变速器盖子实现。变速器盖结构简单,没有什么高科技,但却充满了智慧,非常巧妙,决定着变速叉的动作。机械就是这样,讲究一个巧劲。简单的东西能完成复杂的使命,另外的例子就是枪械,上面没有什么电路板,其动作却是智慧的结晶。 一、变速箱的作用 发动机的物理特性决定了变速箱的存在。首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现。比如,发动机最大功率出现在5500转。变速箱可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。理想情况下,变速箱应具有灵活的变速比。无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能。

《汽车自动变速器结构原理与检修》A(张永坡)

连云港工贸高等职业技术学校 2012-2013 学年第一学期11 中技汽修1、2 班 《汽车自动变速器结构原理与检修》期末试卷A 班级姓名得分 题号一二三四五总分 得分 评阅人 一、填空题(每空 2 分,共 30 分) 1.液力变矩器中有 5 个元件:、、、单向离合器和。有些液力变矩器为了提高效率内部还设置 了,它起作用时液力变矩器的传动效率可达到。2.多数电控自动变速器采用个电磁阀控制所有的四个前进档的运作。3.在液力变矩器中的油流形式有和二种。4.一般自动变速箱有 6 个档位、、、以及L2、L1。5.自动变速器换挡的主要依据是和。 二、判断题(每题 2 分,共 20 分) 1.根据换档工况的需要,自动变速器由液压系统控制其自由或锁止。()2.自动变速器中制动器的作用是把行星齿轮机构中的某二个元件连接起来形成一整 体共同旋转。()3.自动变速器油液散热器的主要作用,是散发行星齿轮换档时所产生的大量热量。 () 4.自动变速器的内啮合式齿轮泵是靠液力变矩器的输出轴驱动的。()5.在自动变速器中使用数个多片湿式制动器,为使其停止运作时油缸排油迅速,其 油缸内设置单向阀钢珠。()6.液力变矩器的导轮是通过单向离合器安装在涡轮轴上。()7.涡轮是与泵轮同步转动的。() 8.具有四个前进档的电控自动变速器,应该具有四个电磁阀。()9.所谓超速档是汽车在超车时使用的档位。() 10.油泵的压力越大,变速箱输出的扭矩就越大。() 三、多项选择题:(每题 2 分,多选或错选时该小题不得分。共10 分) 1.在下列几个答案中,选出自动变速器油液的作用有()A.使换档执行元件运作; B.在行星齿轮变速机构中作动力传递; C.在液力变矩器的锁止状态下作动动传输; D.在液力变矩器的非锁止状态下作动力传输。 2.液力变矩器内部油流的特点有() A.既有圆周运动,又有环形运动,形成首尾相接的油流; B.只有环形流动,在环流冲击下,使输出轴的力矩增大; C.被泵轮加速的油流先到达较小的导轮,再冲击涡轮; D.被泵轮加速的油流先冲击涡轮,再流向导轮并改变方向。 3.当液力变矩器的锁止离合器结合后,能达到()的效果。 A.增大输出转矩;B.减少发动机功率损耗,提高传动效率; C.增速降矩;D.降低ATF温度。 4.给自动变速器作失速试验,通过失速试验可检验()A.液力变矩器的锁止离合器的性能;B.液力变矩器的单向离合器的性能; C.齿轮变速器中磨擦片的工作;D.发动机的输出功率。 5.在单行星齿系机构中,指出处于增矩状态的是哪些()A.太阳齿输入、行星架自由、齿圈输出; 2—1

踏板车无级变速离合器详解

踏板车无级变速离合器详解(无级变速系统的结构、原理与检修) 1、无级变速系统技术及原理分析

1.1、无级变速机构简介 无级变速动力传递机构主要由前传动和后传动两大部分组成。如图1所示,前传动由前带轮、后带轮、V带3大件组成;后传动由后齿轮箱内的末级齿轮轴、双联齿轮、动力输入 轴组成。在前传动与后传动之间,由重锤式干式自动离心式离合器来联接或切断动力。 前传动机构既是动力传递机构,又是无级自动变速机构。前带轮由主动盘、强制冷却风扇、空心轴套、离心滚柱、定位板、移动盘组成。后带轮由固定盘、移动盘以及离心力控制弹 簧组成。传动带内侧有齿牙(不属于同步带),传动带在前、后带轮之间,既是动力传递件,又是无级变速件。 后传动是一个二级减速传动箱,它是将前传动输入的转速在此进行二级减速增矩后,把动 力传递给后轮轴。 V带无级变速系统(Continuously Variable Transmission以下简称CVT)目前广泛用于踏板车的传动系统中。该系统与我们常见的有挡变速系统相比主要有以下优点:a)操作 简单、平稳舒适。CVT系统传动比的变化只需由油门控制曲轴转速就可以达到,并可实现传动比的连续变化,没有有挡变速系统所必需的离合、变挡等操作和传动比突变造成的冲击。 b)CVT系统在设计范围内减速比可连续变化,使摩托车在使用时,发动机转速保持在比 较理想的范围内,有利于降低油耗,减少排放污染。 1.2、CVT与动力系统的分析 传动系统与动力系统的匹配是摩托车取得良好性能的重要途径。CVT系统具有连续的动力

输出和无级变速的动力特性,相比有挡式变速系统更容易达到比较理想的综合性能,但考 虑到摩托车使用时各种工况的复杂性,CVT系统与动力系统的匹配也是一个必须考虑油耗、排放、加速性、最高车速等多种因素并折衷取舍的复杂问题。这就必须仔细设定CVT系统的主要规格:最大减速比(imax)、最小减速比(imin)、二次减速比(i2)以及CVT 主动轮上的离心式转速感应调控机构和从动带轮上的转矩感应机构。 荷转矩的比例放大器,其比例系数取决于转矩感应机构转矩斜槽的升角和工作半径。比例 系数的大小可是定量,也可随斜槽升角的改变而改变,以更好地适应运行工况要求,提高 系统效率。CVT主动带轮上的离心式转速感应调控机构是发动机输入转速和输出的主动轮轴向力的比例控制器,其比例系数由离心滚子滑道轨迹和离心滚子运转半径来决定。在设 计以上参数时,必须考虑在各种不同的转速、转矩工况下主从动带轮作用力的平衡关系, 以及由此给整车油耗、排放、动力性带来的影响。 由图2可以看出当摩托车在加速初期CVT处于接近最大减速比状态,到了最高车速时则处于最小减速比状态,但二者都需要再经过二次减速才能将发动机输出的动力传输到后轮。 所以3者必须互相匹配才可能得到最佳性能。下面我们来分析CVT系统减速比的设定与整车动力性能的关系。 a)加速性 摩托车行驶时受力情况如图3所示。 发动机输出转矩克服行车阻力后剩余的用于加速。发动机加速之初CVT处于最大减速比状

变速器工作原理

手动档变速器工作原理ZT 发动机是汽车的心脏,它为车辆的行驶提供源源不断的动力,车辆变速器的主要作用就是改变传动比,将合适的牵引力通过传动轴输出到车轮上以满足不同车辆在工况下的需求。 下面,我们就从结构最简单最传统的手动变速器说起。一般的手动变速箱的基本结构包括了动力输入轴和输出轴这两大件,再加上构成变速箱的齿轮,这就是一个手动变速箱最基本的组件。动力输入轴与离合器相连,从离合器传递来的动力直接通过输入轴传递给齿轮组,齿轮组是由直径不同的齿轮组成的,不同的齿轮组合则产生了不同的齿比,平常驾驶中的换挡也就是指换齿轮比。输入轴的动力通过齿轮间的传递,由输出轴传递给车轮,这就是一台手动变速箱的基本工作原理。 接下来,让我们通过一个简单的模型来给大家讲讲,手动变速箱换挡的原理。下图是一个简易的3轴2档变速箱的结构模型

输入轴(绿色)也叫第一轴,通过离合器和发动机相连,轴和上面的齿轮是一个硬连接的部件。红色齿轮轴叫做中间轴。输入轴和中间轴的两个齿轮是处于常啮合状态的,因此当输入轴旋转时就会带动中间轴的旋转。黄色则是输出轴,它也叫第二轴直接和驱动轴相连(只针对后轮驱动,前驱一般为两轴),再通过差速器来驱动汽车。 当车轮转动时同样会带着花键轴一起转动,此时,轴上的蓝色齿轮可以在花键轴上发生相对自由转动。因此,在发动机停止,而车轮仍在转动时,蓝色齿轮和中间轴出在静止状态,而花键轴则随车轮转动。这个原理和自行车后轴的飞轮很相似。蓝色齿轮和花键轴是由套筒来连接的,套筒随着花键轴转动,但同时也可以在花键轴上左右自由滑动来啮合齿轮。

说完这些,换挡的过程就很好理解了,当套筒和蓝色齿轮相连时,发动机的动力就会通过中间轴传递到输出轴上,在这同时,左边的蓝色齿轮也在自由旋转,但由于没有和套筒啮合,所以它不对花键轴产生影响。而如果套筒在两个蓝色齿轮之间时,变速箱在空挡位置,此时两个蓝色齿轮都在花键轴上自由转动,互不干涉。 除了上述的传统三轴手动变速箱,目前轿车上广泛使用的是二轴手动变速箱,它的结构和三轴变速箱基本类似,只是其输入轴和中间轴整合为一根轴,因此具有结构简单,尺寸小的优势。

大众01M型自动变速器的结构组成及工作原理-详细版--

大众01M型自动变速器的结构组成及工作原理 1 大众01M型自动变速器内部总体结构 大众01M自动变速器由三部分组成。(图1) (1)液力元件:包括液力变扭器及油泵等,用于动力传递及提供液压元件(如各离合器和制动器)的动力源。 (图1)01M自动变速器结构图 由(图1)可知变速器内部有两个分隔的箱体,上部是变速器,内装ATF油;下部是差速器,内装齿轮油。在小齿轮轴3上有一个油封,把两种油分离开。 a. 液力变扭器 液力变扭器由壳体、锁止离合器、涡轮、导轮和泵轮组成,分解图见(2)。泵轮与壳体焊接为一体,由发动机飞轮驱动,工作时其内充满自动变速器油(ATF 油),其动力传递路线是:发动机飞轮→变扭器壳体→泵轮→涡轮→变速器输入轴,导轮的作用是增大低转速时的输出扭矩。涡轮和泵轮之间是靠液压油传递动力的,两者之间有一定的转速差,不但使油温升高,还降低了传动效率,锁止离合器可以把涡轮和泵轮连接为一体,形成刚性连接。锁止离合器由电控单元控制,电控单元通过电磁阀控制A、B、C 3个油道的油压交替变化,按要求在锁止离合器的前、后面产生压力或卸压,控制锁止离合器接合或断开。锁止离合器接合时,因油压作用,其带有摩擦片的一面与变扭器壳体接合,另一面通过齿牙与涡轮连接为一体。

(图2) 液力变扭器结构图 b. 油泵 油泵位于变扭器和变速器之间,由变扭器壳体驱动,其作用是建立油压,并通过滑阀箱控制各离合器和制动器的动作。它采用转子齿轮泵,其结构见(图3)。 (2)控制机构:采用电子、液压混合控制,电控部分包括电子控制单元J217及其相应的传感器和执行元件;液压控制部分包括滑阀箱等。 (3)变速机构:采用拉维那式行星齿轮变速机构,2个太阳轮独立运动,齿圈输出动力,通过对大、小太阳轮及行星架的不同驱动、制动组合,实现4个前进档及一个倒档。 01M 型自动变速器采用拉维娜式行星轮式变速机构,基本的行星轮机构包括太阳轮、星轮、行星架和齿圈,其中星轮是惰轮,不能输入、输出动力。在太阳轮、行星架和齿圈三者中,驱动其中一个,制动另一个, 则第三个输出动力,

液压机械无级变速器( HMT)原理及应用分析

现在车辆上的传动装置多采用机械式变速器, 1液力机械式变速器(AT)液力机械式变速器由液力变矩器和多挡机械变速箱组成。 2液压机械无级变速器(HMT)及应用分析 3静液压无级变速器(HST)及其应用分析静液压无级变速器(HST)依靠液压变量马达实现纯液压无级变速,效率较AT高,但较齿轮变速器低许多,传递功率不大 4 金属带式无级变速器 为了充分利用发动机大的功率,节约能源以及获得优良的动力性能,最理想的方法是从传统的有级传动发展为无级传动。 目前普遍采用的液力变矩器及其闭锁装置,自动换挡机构等均是为了弥补有级传动的不足而产生的传动模式,但不能实现真正的无级变速。 另外还出现了全液压传动的无级变速器,其操纵方式也由手动液控向电液控制或微电脑控制技术方面发展,并取得了非常好的效果,大大提高了整机的行使平顺性和作业性能,液压传动可以保证车辆具有稳定的行驶速度。但是在液压传动的车辆中传动效率低也是一个不容忽视的问题,按当代的技术水平,纯液压传动中最高效率在80-85%左右,而在车辆使用中,一般只能达到50-60%。此外,适用于重型车辆使用的大功率的液压元件难以加工,也使液压传动的车辆增加了制造成本。另外,这种高油压高转速的变量泵和定量马达的排量越大,即功率越大时,效率和寿命愈难以保证,生产愈困难,在市场上愈难买到。液压传动的低效率直接影响了整机的生产率和经济性,决定了它在车辆上很难有较大的发展空间。 机械液压双功率流则兼有机械传动的高效率和液压无级传动的双重优点,可在较宽的范围内实现可控的无级变速和所需的车速。以小功率的液压元件传递大功率特性,高效率特性,为车辆的经济性和动力性问题的解决找到了理想的道路。 液压机械无级传动是一种双功率流传动系统,分为液压功率和机械功率两路传递,分流机构分流后液压马达在正向和反向最大速度之间来回无级变速。其每一个行程和行星齿轮机构的一种工况相配合,最后两路汇合成由若干无级调速段相衔接并组逐段升高的全程无级输出速度。液压元件只负担最大功率的一部分,其他功率都由机械路传递。这相当于将液压无级变速功率扩大,传动总效率相对于液压传动也显著提高,和液力机械传动相比,装载量最大可提高30%,燃油经济性最大可提高25%。其特点是通过机械传动实现功率转递,通过液压机械相结合实现无级变速。 液压机械无级变速器( HMT)及应用分析 液压机械无级变速器(HMT)由液压调速机构和机械变速机构及分、汇流机构组成,是一种液压功率流与机械功率流并联的传动形式,通过机械传动实现传动高效率,通过液压传动与机械传动相结合实现无级变速。其原理如1所示,输入功率经分流机构分流为两路,一路经液压调速机构流至汇流机构,另一路经机械变速机构传至汇流机构,由于液压调速机构具有无级调速特性(通过控制系统控制变量泵斜盘倾角的变化使排量改变来实现),与机械变速机构经汇流机构汇流后,使HMT实现无级变速。液压调速机构有变量泵-定量马达,定量泵-变量马达,变量泵-变量马达3种形式,第一种应用较多。机械变速机构为自动有级变速器。分、汇流机构为定轴齿轮传动或行星齿轮传动,从成本及实

自动变速箱工作原理

自动变速箱工作原理 虽然现在市场上车型繁多,配备的自动变速器种类也繁多,但其控制和使用方法都大同小异。早几年,在国产车中最常见的是4前速自动变速器,现在很多车型更新换代,配备了5前速自动变速,奥迪A4甚至还配备了6前速自动变速。 自动变速器看似复杂,事实上只要我们了解了其中一些简单参数的奥秘,那么在选购汽车时,自动变速器的好坏就可一目了然了。自动变速器最重要的参数就是挡位的个数。这一点凡是开过车的人都能理解,谁都愿意开挡位多的车。如果挡位越多,变速器与发动机动力的配合就会越紧密,能够把发动机的性能发挥得更好。但光看挡位的个数是不够的。事实上一台自动变速器的挡位多少并不是技术的核心,因为简单的增加行星齿轮组就能增加挡位。象奔驰,沃尔沃的商用货车,有的挡位甚至多达20多个。自动变速器的技术核心在它的控制机构。因为一台好的自动变速器,它的换挡品质必须做到响应速度快,换挡冲击小等特点。而这一切都需要靠设计和改进性能优良的控制机构得以实现。 自动变速器是通过各种液压多片离合器和制动闸限制或接通行星齿轮组中的某些齿轮得到不同的传动比的。所以换挡品质的好坏与这些离合器和制动器有直接关系。根据汽车挡次的不同,出于成本考虑,经济型车的自动变速器的控制机构通常被设计得很简单。如图:

上图为自动变速器中最常用的制动机构。它通过制动带来限制行星齿轮的运动。制动带在杠杆的推动下能迅速包紧被制动的齿轮或轴,从而产生强大的制动力达到限制行星齿轮运动的目的。杠杆是直接被顶杆推动的,顶杆的动力又来自液压。所以行星齿轮的制动完全由液压来决定。这种制动带式的设计,结构非常简单,成本也很低,常用于经济型车的自动变速器当中。但由于制动带制动非常唐突,制动力来得很猛,所以换挡震动相对较大。在高挡车中很少用这种设计。高挡车中用得较多的是多片离合器式制动设计。如下图:

AT变速器的工作原理以及优缺点

AT变速器的工作原理以及优缺点 AT的主要组成部分是一个液矩扭力传递器和后面一组行星齿轮组。液矩扭力传递器又称液力变扭器,其原理是利用发动机输出轴驱动一组泵轮,而泵轮搅动液矩扭力传递器的密封油,通过油介质带动另一侧连接了输出轴的涡轮,从而实现了变速和变扭。但只靠液力变扭器显然是不行的,因此自动变速箱在液力变扭器后都连接了几组行星齿轮,而每组行星齿轮就相当于自动变速箱的一个挡位。通过锁止和解锁行星齿轮与变速箱输出轴的连接就可以 实现换挡动作。 优点:技术成熟可靠,应用围广,可承载大扭力输出。 缺点:多多少少在换档时会感受到顿挫;通过油介质实现动力传递的方式效率很低,部分动能被白白浪费掉,这也是AT车型比较费油的原因。 无级变速器(CVT)的工作原理以及优缺点 CVT又称为连续可变变速箱,这种变速箱的历史和AT几乎一样悠久,并不是什么最新技术。CVT主要组成部分为一对滑轮和一条钢制传送皮带(俗称:钢带),作为CVT的核心部件,它的耐用性是变速器质量的关键,市面上部分CVT采用的是德国博世公司提供的钢带。CVT的结构原理和变速自行车类似:通过发动机输出轴带动变速箱的锥形盘,而锥形盘与从动盘之间由钢带连接,如此一来动力就可以传递给从动盘进而传出给车轮。而锥形盘利用液压装置可以控制盘槽的宽度,改变这个宽度意味着改变钢带的位置,由此就可实现转速比的 改变。 优点:动力传输不间断,节能性优于AT变速器。 缺点:受传动钢带摩擦力限制,CVT无法承载大功率输出,所以大排量车型上很少看到 CVT变速器。 【知识普及】CVT和AT的比较(新手级别通俗易懂) 车展上,又有两款自主品牌车型推出了CVT版,即东南菱悦的CVT版和力帆620的CVT 版。在此之前,其实已经有很多自主品牌车型开始采用CVT变速器,例如长城炫丽、海马欢动以及比亚迪G3等等,当然也还包括更早的名爵3SW。与之对应的,自主品牌车型中采用常规AT变速器的却不多,从车型比例来看,CVT已经占据自动版自主品牌车型的半壁以上的江山。与此同时,在中小排量车型领域,合资品牌采用CVT的却不多,日产算是其中比较典型的代表,但也仅限于2.0L以上排量,过去的飞度采用CVT,先在也改回AT了。CVT与 AT比到底谁好?为何会出现这样的格局? 菱悦将推出CVT车型

汽车变速器的结构及工作原理分析

汽车变速器的结构及工作原理分析 所在学院 专业 学生姓名 学号 联系电话 指导老师 现代汽车与驾驶技术论文题目汽车变速器的结构及工作原理机电工程学院机械设 计制造及其自动化 [1**********] 成峰 2019年11月08日 汽车变速器的结构及工作原理 一、变速器的结构特点 自动变速器的特点。液力自动无级变速器也存在不足,如传动效率较低,结构复杂等。但因其无比优越的性能,自动无级变速器的应用仍相当普及。目前,国内大多数汽车采用 手动变速器,手动变速器因采用机械传动,故传动效率高、工作可靠、结构简单。但是, 因其动载荷大,易使零件过早地磨损。特别是手动变速器要求驾驶员在外界条件比较复杂 的情况下,频繁地操纵离合器和换挡,增加了驾驶员的负担,使驾驶员易于疲劳,也不利 于安全行车。 自动变速器能进行繁复的加速、减速变速器换挡等功能,具有变速平滑、驾驶轻便等 优点。可以根据发动机的工况和车速情况,自动选择挡位,而且具有下列显著特点: 1.1 良好的行驶性能。自动变速装置的挡位变换不但快而且平稳,提高了汽车的乘坐 舒适性。通过液体传动和微电脑控制换挡,可以消除或降低动力传递系统中的冲击和动载,这对在地形复杂、路面恶劣条件下作业的工程车辆、军用车辆尤为重要。试验表明,在坏 路段行驶时,自动变速器的车辆传动轴上,最大动载转矩的峰值只有手动变速器的20%~40%。原地起步时最大动载转矩的峰值只有手动变速器的50%~70%,且能大幅度延长发动 机和传动系零部件的寿命。 1.2 操纵简单。只需设置液压工作阀的位置,自动变速器就可以根据需要进行自动加 挡和减挡,省去了起步和换挡时踏离合器、更换变速杆位置和放松油门等复杂的操作规程,大大减小了驾驶员的劳动强度。 1.3 高行车安全性。在车辆行驶过程中,驾驶员必须根据道路、交通条件的变化,对 车辆的行驶方向和速度进行改变和调节。以城市大客车为例,平均每分钟换挡3~5次,

无级变速器的基本结构和变速原理

无级变速器的基本结构和变速原理 沈林江,胥家政 摘要:无级变速技术是目前汽车传动系统中的前沿技术,无级变速器(CVT)与手动变速器(MT)、自动变速器(AT)相比,综合动力性能更佳,能与发动机形成理想的动力匹配,因此,无级变速汽车是当今发展的主要趋势之一。无级变速器中最为重要的一项是电液控制技术,直接影响到汽车变速品质、经济性以及动力性。速比控制、夹紧力控制和起步离合器的控制是无级变速控制系统的关键。 关键词:无级变速;结构;原理;特点 Basic structure and Variable speed principle of the CVT Shen lin-jiang , Xu jia-zheng Abstract: Continuously variable transmission technology is currently in the forefront of automotive technology,continuously variable transmission (CVT) with manual transmission(MT),automatic transmission(AT),an integrated vechicle is the development of the car one of the main trend. CVT is the most important one is the electro-hydraulic control technology.Car speed directly affects the quality and economy, and dynamic.However ratio control, clamping force control and control is the key to starting clutch CVT control system. Key word: I nfinitely variable speeds; structure; principle; characteristic 引言 汽车无级变速器能实现传动比连续变化,在更大范围内控制发动机的工作点,真正实现发动机—变速器—道路载荷的最佳匹配,所以一直以来是汽车制造商和用户追求的理想变速器。无级变速器按作用方式的不同和传动形式的差异,可分为机械式、电气式、液压式三大类。其中机械式无级变速器恒功率特性较好,有较高的传动效率,应用比较广泛,金属带式无级变速器就是典型的一种机械式摩擦无级变速器。由于金属带式无极变速器最为普遍,所以本文主要研究金属带式无级变速器的基本结构和变速原理。 1 汽车无级变速器的类型和特点 无级变速器可分为:液力变矩器,摆销链式无级变速器CVT,金属带式无级变速器CVT,环盘滚轮式无级变速器IVT这4大类。与有级变速器相比,它的优点明显:(1)提高燃油

机械无级变速器分析

机械无级变速器分析 摘要 机械无极变速器传动是指在某种控制的作用下使机器的输出轴转速可在两个极值范围内连续变化的传动装置。能够适应工艺要求多变、工艺流程机械化和自动化发展以及改善机械工作性能。它具有主动和从动两根轴,并能通过传递转矩的中间介质把两根轴直接或间接地联系起来,以传递动力。当对主、从动轴的联系关系进行控制时,即可使两轴间的传动比在两极值范围内连续而任意地变化。 钢球式无极变速器是以钢球作为中间传动元件,通过改变钢球主动侧和从动侧的工作半径来实现输出轴转速连续变化的机械无级变速器。由钢球、主动锥轮、从动锥轮和内环所组成。动力由输入轴输入,带动主动锥轮同速转动,经钢球利用摩擦力驱动内环和从动锥轮,再经从动锥轮,V形槽自动加压装置驱动输出轴将动力输出,调整钢球抽芯的倾斜角就可达到变速的目的。本文分析在传动过程中变速器的主、从动轮,钢球的工作原理和受力关系;通过受力关系分析。 这种无级变速器具有良好的结构和性能优势,具有很强的实用价值,完全可以作为批量生产的无级变速器。其主要特点是:变速范围较宽;恒功率特性好;可以升、降速,正、反转;运转平稳,抗冲击能力较强;使用寿命长;调速简单,工作可靠;容易维修。 关键词:机械无级变速器原理钢球调速 # 绪论 机械无级变速器的概述和应用 机械无级变速器是由变速传动机构、调速机构以及加压装置和输出机构组成的一种传动装置。其功能特征主要是:在输入转速不变的情况下,能实现输出轴的转速在一定范围内连续变化,以满足机器或生产系统在运转过程中各种不同工况的要求。 机械无级变速器转速稳定、滑动率小、具有恒功率机械特性、传动效率较高,能更好地适应各种机械的工况要求及产品需要,易于实现整个系统的机械化、自动化,且结构简单,维修方便、价格相对便宜;特别是某些机械无级变速器可以在很大的变速范围内具有恒功率的机械特性,这是电气和液压无级变速所难以达到的。机械无级变速器的适用范围广,在驱动功率不变的情况下,因工作阻力变化而需要调节转速以产生相应的驱动力矩(如

摩擦式机械无级变速器结构设计

目录 摘要 (2) 第一章绪论 (4) §1.1 机械无级变速器的发展概况 (4) §1.3 无级变速研究现状 ................................................... 错误!未定义书签。 §1.5 毕业设计内容和要求 ............................................... 错误!未定义书签。第二章摩擦无级变速器的机械特性加压装置和调速机构错误!未定义书签。 §2.1 机械特性.................................................................... 错误!未定义书签。 §2.2 调速操纵机构 ........................................................... 错误!未定义书签。 §2.3 加压装置.................................................................... 错误!未定义书签。第三章摩擦式无级变速器设计说明和计算过程错误!未定义书签。 §3.1 摩擦机械无级变速器的工作原理 ........................... 错误!未定义书签。 §3.2 摩擦无级变速器的特点 ........................................... 错误!未定义书签。 §3.3 锥轮的设计与计算 ................................................... 错误!未定义书签。 §3.4 钢环的设计与计算 ................................................... 错误!未定义书签。 §3.5 轴系的设计................................................................ 错误!未定义书签。 §3.6 轴的结构设计 ........................................................... 错误!未定义书签。第四章主要零件的校核 ...................................错误!未定义书签。 §4.1 . 输出,输入轴的校核 ............................................... 错误!未定义书签。 §4.2 . 轴承的校核................................................................ 错误!未定义书签。第六章毕业设计总结 .......................................错误!未定义书签。第七章致谢词 ..................................................错误!未定义书签。参考文献资料 ......................................................错误!未定义书签。附录:文献翻译 ................................................错误!未定义书签。

GF6变速箱结构及原理

GF6自动变速器结构及原理 一.自动变速器简介 1904年,美国通用汽车公司的凯迪拉克采用了手动的三挡行星齿轮变速器。 1926年,别克小轿车开始使用液力机械传动的变速器。 1940年,美国通用正式装备OLDSMOBILE 顺风轿车Hydra-Matic 自动变速器。该变速器被认为是自动变速器的代表,是世界上第一个真正意义上的自动变速器。 1998年上海通用汽车率先在国产的别克新世纪轿车上推出4T65E 自动变速器。 随着新技术的发展应用,自动变速器结构也不断改进,逐步成熟。自动变速器与机械式变速器相比,它有以下主要优点: 1)提高发动机和传动系的使用寿命。自动变速器是液体工作介质“软”性连接。液力传动起一定的吸收、衰减和缓冲的作用,大大减少冲击和动载荷。例如,当负荷突然增大时,可防止发动机过载和突然熄火。汽车在起步、换挡或制动时,能减少发动机和传动系所承受的冲击及动载荷,因而提高了有关零部件的使用寿命。 2) 提高汽车通过性。采用自动变速器的汽车,在起步时,驱动轮上的驱动转矩是逐渐增加的,可防止很大的振动,减少车轮的打滑,使起步容易,且更换平稳。它的稳定车速可以降低。举例来说:当行驶阻力很大时(如爬陡坡),发动机也不至于熄火,使汽车仍能以极低速度行驶。在特别困难的路面行驶时,因换挡时没有功率间断,不会出现汽车停车的现象。 3) 具有良好的自适应性。自动变速器能自动适应汽车驱动轮负荷的变化。当行驶阻力增大时,汽车自动降低速度,使驱动轮力矩增加。当行驶阻力减小时,减小驱动力矩,增加车速。 4) 操纵轻便。不需要离合器和来回的换挡,大大减轻了驾驶员的劳动强度。 自动变速器主要缺点 1)结构较复杂。相应的维修技术也较复杂,要求有专门的维修人员,具有较高的修理水平和故障检查分析的能力。 2)效率不够高。传动效率比机械式变速器低,使汽车的燃油经济性有所降低。

相关主题
文本预览
相关文档 最新文档