当前位置:文档之家› 脂类

脂类

脂类
脂类

油脂-1

意大利化学家索布雷罗l847年在报告他的研究成果时说,用硝酸和硫酸处理甘油,得到一种黄色的油状透明液体,即硝化甘油,诺贝尔经过长期思考和实践,认识到要使硝化甘油爆炸,必须把它加热到爆炸点(170~180℃)或以重力冲击。寻求一种安全的引爆装置正是诺贝尔为自己确定的课题。1864年他在瑞典第一次获得了硝化甘油的引爆装置-雷管的专利权,1864年9月3日在瑞典首都斯德哥尔摩诺贝尔家住宅附近实验室的硝化甘油爆炸事故,使从事实验的5个人全部死于非命,其中包括诺贝尔最年轻的弟弟卢得卫,他的父亲也受了重伤。1867年他把产于德国北部的多孔的硅藻土与硝化甘油混合制成了两种固体炸药:1号和2号猛炸药。1875年坚结的腔质炸药和柔软可塑性极好的胶质炸药相继问世。它的爆炸效力高,价钱也比较便宜。它比纯硝化甘油有更大的爆炸力,而又具有更大的稳定性.他制造硝化甘油,是为了炸开矿山和铁路的脉胳;他服用硝化甘油,则是为了“炸”通他输血阻塞的脉胳。1896年12月10日,他在法国桑雷穆的别墅里逝世。他在去世前一年(1895年)留下遗嘱,将价值瑞典币30余亿克朗的财产的一部分(共920万美元)作为基金,以利息(每年约20万美元)作为奖金,每年颁发给在物理、化学、生物、医学和文学方面有贡献的人,以及有效地促进国际亲善、废除或裁减常备军、对促进和平事业有贡献的人。1968年又增设经济学奖。受奖人不受国籍限制.这就是自1901年开始,每年在诺贝尔逝世日(即12月10日)颂发的举世闻名的诺贝尔奖

磷脂是一类含有磷酸的脂类,机体中主要含有两大类磷脂,由甘油构成的磷脂称为甘油磷脂(phosphoglyceride);由神经鞘氨醇构成的磷脂,称为鞘磷脂(sphingolipid)。其结构特点是:具有由磷酸相连的取代基团(含氨碱或醇类)构成的亲水头(hydrophilic head)和由脂肪酸链构成的疏水尾(hydrophobic tail)。在生物膜中磷脂的亲水头位于膜表面,而疏水尾位于膜内侧。磷脂是重要的两亲物质,它们是生物膜的重要组分、乳化剂和表面活性剂

至今,人们已发现磷脂几乎存在于所有机体细胞中,在动植物体重要组织中都含有较多磷脂。动物磷脂主要来源于蛋黄、牛奶、动物体脑组织、肝脏、肾脏及肌肉组织部分。植物磷脂主要存在于油料种子,且大部分存在于胶体相内,并与蛋白质、糖类、脂肪酸、菌醇、维生素等物质以结合状态存在,是一类重要的油脂伴随物。在制油过程中,磷脂随油而出,毛油中磷脂含量以大豆毛油含量最高,所以大豆磷脂是最重要植物磷脂来源

固醇(sterol)又称甾醇。类固醇的一种。固醇类化合物广泛分布于生物界。用碱性溶液提取动植物组织中的脂类,其中常有多少不等的、不能为碱所皂化的物质,它们均以环戊烷多氢菲为基本结构,并含有醇基,故称为固醇类化合物。胆固醇是高等动物细胞的重要组分。它与长链脂肪酸形成的胆固醇酯是血浆脂蛋白及细胞膜的重要组分。植物细胞膜则含有其它固醇如豆固醇及谷固醇。真菌和酵母则含有菌固醇。胆固醇是动物组织中其它固醇类化合物如胆汁醇、性激素、肾上腺皮质激素、维生素D3等的前体

胆固醇又称胆甾醇。一种环戊烷多氢菲的衍生物。早在18世纪人们已从胆石中发现了胆固醇,1816年化学家本歇尔将这种具脂类性质的物质命名为胆固醇。胆固醇广泛存在于动物体内,尤以脑及神经组织中最为丰富,在肾、脾、皮肤、肝和胆汁中含量也高。其溶解性与脂肪类似,不溶于水,易溶于乙醚、氯仿等溶剂。胆固醇是动物组织细胞所不可缺少的重要物质,它不仅参与形成细胞膜,而且是合成胆汁酸,维生素D以及甾体激素的原料。胆固醇经代谢还能转化为胆汁酸、类固醇激素、7-脱氢胆固醇,并且7-脱氢胆固醇经紫外线照射就会转变为维生素D3,所以胆固醇并非是对人体有害的物质。

血浆脂蛋白:指哺乳动物血浆(尤其是人)中的脂-蛋白质复合物。血浆脂蛋白可以把脂类(三酰甘油、磷脂、胆固醇)从一个器官运输到另一个器官. 脂蛋白中脂质与蛋白质之间没有共价键结合,多数是通过脂质的非极性部分与蛋白质组分之间以疏水性相互作用而结合在一起。一般认为血浆脂蛋白都具有类似的结构,呈球状,在颗粒表面是极性分子,如蛋白质,磷脂,故具有亲水性;非极性分子如甘油三酯、胆固醇酯则藏于其内部。磷脂的极性部分可与蛋白质结合,非极性部分可与其它脂类结合,作为连接蛋白质和脂类的桥梁,使非水溶性的脂类固系在脂蛋白中。磷脂和胆固醇对维系脂蛋白的构型均具有重要作用

不含双键的脂肪酸称为饱和脂肪酸。一类碳链中没有不饱和键(双键)的脂肪酸,是构成脂质的基本成分之一。一般较多见的有辛酸、癸酸、月桂酸、豆蔻酸、软脂酸、硬脂酸、花生酸等。此类脂肪酸多含于牛、羊、猪等动物的脂肪中,有少数植物如椰子油、可可油、棕榈油等中也多含此类脂肪酸. 膳食中饱和脂肪酸多存在于动物脂肪及乳脂中,这些食物也富含胆固醇。饱和脂肪酸摄入量过高是导致血胆固醇、三酰甘油、低密度脂蛋白胆固醇(LDL-C)升高的主要原因,继发引起动脉管腔狭窄,形成动脉粥样硬化,增加患冠心病的风险。故进食较多的饱和脂肪酸也

必然进食较多的胆固醇

橄榄油由新鲜的油橄榄果实直接冷榨而成的,不经加热和化学处理,保留了天然营养成分,富含丰富的单不饱和脂肪酸——油酸,还有维生素A、维生素B、维生素D、维生素E、维生素K及抗氧化物等。橄榄油被认为是迄今所发现的油脂中最适合人体营养的油.橄榄油和橄榄果渣油在地中海沿岸国家有几千年的历史,在西方被誉为“液体黄金”6万多年前,第一棵橄榄树出现在了现今的欧洲希腊地区,7世纪BC,奥利匹克运动在希腊盛行,象征和平与胜利的橄榄枝成为了获胜者的唯一奖品,1785年,美国独立战争结束,休养生息期间,传教士在现今的加利福尼亚地区种下了橄榄树;1964年,周恩来总理在云南昆明市海口众品优林场种下了中国第一颗油橄榄树,

椰肉含油达33% 。几千年来传统的提油办法相当简单,只要把椰肉制成碎屑,放在水里煮,油就会分离出来浮在水面上,然后把油撇出来。椰子油的熔点是23℃,在这温度之上,它是液体;低于此温度是白色糊状物。

棕榈油也被称为饱和油脂,因为它含有50%的饱和脂肪。含饱和脂肪酸较多。稳定性较好,不容易发生氧化变质,烟点高,故用作油炸食品很合适.固体脂可用来代替昂贵的可可脂作人造奶油和起酥油;液体油脂用作凉拌或烹饪用油,其味清淡爽口。大量未经分提的棕桐油用于制皂工业。世界上有约20个国家在生产棕榈油,主要生产国只有三个,他们是马来西亚、印度尼西亚和尼日利亚,这三个国家的总产量占世界棕榈油总产量的88%。

亚油酸具有降低血脂、软化血管、降低血压、促进微循环的作用,可预防或减少心血管病的发病率,特别是对高血压、高血脂、心绞痛、冠心病、动脉粥样硬化、老年性肥胖症等的防治极为有利,能起到防止人体血清胆固醇在血管壁的沉积,有“血管清道夫”的美誉,具有防治动脉粥样硬化及心血管疾病的保健效果

脂类-2

巴西松子仁具有很高的营养和药用价值,它包括人体必需的多种营养。现代医学研究表明,松子仁中的脂肪成分是油酸,亚油酸等不饱和脂肪酸,有防止胆固醇增高而引起的心血管疾病的功能。松子仁中所含的磷,对脑和神经系统都有裨益,并能补五脏、补虚损、白润皮肤、益智力,个大,长。东北松子也称东北红松子。红松子为松科植物红松的种子,又名海松子,个小。

山核桃核仁松脆味甘,香气逼人,可榨油、炒食,也可作为制糖果及糕点的佐料。山核桃果仁中含有7.8-9.6%的蛋白质,人体必需的氨基酸占7种以上且含量高达25%以上,还含有22种人体所需的微量元素,其中钙、镁、磷、锌、铁含量十分丰富

核桃的故乡是亚洲西部的伊朗,汉代张骞出使西域后带回中国,扁桃、腰果、榛子并称为世界著名的“四大干果

麻核桃,又名文玩核桃。主要分布在北京、河北、辽宁等地,是核桃和核桃楸的天然杂交种。果壳坚厚,不易开裂,内隔壁骨质发达,难于取仁

碧根果又名美国山核桃(caryaillinoensiskoch)、长寿果)属胡桃科的山核桃属,又名薄壳山核桃或长山核桃,碧根果外形是长椭圆型的干果,原产北美大陆的美国和墨西哥北部现已成为世界性的干果类树种之一,其种仁有优异的食疗保健价值。

榛子含有人体必需的8种氨基酸及多种微量元素和矿物质[1] 。其含量是其他坚果的数倍至几十倍,其中磷和钙有利于人体骨骼及牙齿的发育,锰元素对骨骼、皮肤、肌腱、韧带等组织均有补益强健作用。榛子含有丰富的脂肪,主要是人体不能自身合成的不饱和脂肪酸,

我国榛树果实的采集和利用已有悠久的历史。在陕西省半坡村新石器时代遗址中,发现了大量的已经碳化的榛果和果壳,说明距今五、六千年前人类就已经采集榛子为食了。

欧洲榛起源于亚洲的小亚细亚地区的黑海沿岸及欧洲的地中海沿岸,在公元前由此向希腊和罗马传播,并被当作果园作物得以广泛的分布

松树的种子按形态分为两类。

第一类,种子很大颗,饱满沉重,靠松鼠之类的小动物传播种子。

第二类,种子又小又轻,带一片褐色的膜质翅,在干燥的晴天里靠风传播种子。

月见草,北方为一年生植物,淮河以南为二年生植物。它是本世纪发现的最重要的营养药物。可治疗多种疾病,调节血液中类脂物质,对高胆固醇、高血脂引起的冠状动脉梗塞、粥样硬化及脑血栓等症有显著疗效。

芝麻,又名脂麻、胡麻(学名:Sesamumindicum),是胡麻的籽种,一年生直立草本植物,高60-150厘米。它遍布世界上的热带地区以及部分温带地区。芝麻是中国主要油料作物之一,具有较高的应用价值。它的种子含油量高达55%。中国自古就有许多用芝麻和芝麻油制作的各色食品和美味佳肴,一直著称于世。

油茶与油棕、油橄榄和椰子并称为世界四大木本食用油料植物,它生长在中国南方亚热带地区的高山及丘陵地带,是中国特有的一种纯天然高级油料。主要集中在浙江、江西、河南、湖南、广西五省全国年产量仅为20万吨左右。

黄豆的含油量低,只有16%~24%。为了实现最大的效益,厂家在压榨黄豆的过程中一般会使用浸出法来获取黄豆中大部分的油脂。

《诗·小雅·采菽》:“采菽采菽,筐之筥之。

瘦素(Leptin)是由脂肪细胞分泌的蛋白质类激素,主要由白色脂肪组织产生。人们之前普遍认为它进入血液循环后会参与糖、脂肪及能量代谢的调节,促使机体减少摄食,增加能量释放,抑制脂肪细胞的合成,进而使体重减轻。作用于下丘脑的代谢调节中枢,发挥抑制食欲,减少能量摄取,增加能量消耗,抑制脂肪合成的作用

前列腺素(prostaglandin,PG)是存在于动物和人体中的一类不饱和脂肪酸组成的、具有多种生理作用的活性物质。最早以为这一物质是由前列腺释放的,因而定名为前列腺素。现已证明全身许多组织细胞都能产生前列腺素。

食品化学A 及答案

注:装订线内禁止答题,装订线外禁止有姓名和其他标记。 东北农业大学成人教育学院考试题签 食品化学(A) 一、选择题(每题2分,共30分) 1 水分子通过_______的作用可与另4个水分子配位结合形成正四面体结构。 (A)范德华力(B)氢键(C)盐键( D)二硫键 2 关于冰的结构及性质描述有误的是_______。 (A)冰是由水分子有序排列形成的结晶 (B)冰结晶并非完整的晶体,通常是有方向性或离子型缺陷的。 (C)食品中的冰是由纯水形成的,其冰结晶形式为六方形。 (D)食品中的冰晶因溶质的数量和种类等不同,可呈现不同形式的结晶。 3 稀盐溶液中的各种离子对水的结构都有着一定程度的影响。在下述阳离子中,会破坏水的网状 结构效应的是_______。 (A)Rb+(B)Na+(C)Mg+(D)Al3+ 4 若稀盐溶液中含有阴离子_______,会有助于水形成网状结构。 (A)Cl-(B)IO 3 -(C)ClO 4 - (D)F- 5 食品中有机成分上极性基团不同,与水形成氢键的键合作用也有所区别。在下面这些有机分子 的基团中,_______与水形成的氢键比较牢固。 (A)蛋白质中的酰胺基(B)淀粉中的羟基(C)果胶中的羟基(D)果胶中未酯化的羧基 6 食品中的水分分类很多,下面哪个选项不属于同一类_______。 (A)多层水(B)化合水(C)结合水(D)毛细管水 7 下列食品中,哪类食品的吸着等温线呈S型?_______ (A)糖制品(B)肉类(C)咖啡提取物(D)水果 8 关于等温线划分区间内水的主要特性描述正确的是_______。 (A)等温线区间Ⅲ中的水,是食品中吸附最牢固和最不容易移动的水。 (B)等温线区间Ⅱ中的水可靠氢键键合作用形成多分子结合水。 (C)等温线区间Ⅰ中的水,是食品中吸附最不牢固和最容易流动的水。 (D)食品的稳定性主要与区间Ⅰ中的水有着密切的关系。 9 关于水分活度描述有误的是_______。 (A)α W 能反应水与各种非水成分缔合的强度。 (B)α W 比水分含量更能可靠的预示食品的稳定性、安全性等性质。 (C)食品的α W 值总在0~1之间。 (D)不同温度下α W 均能用P/P 来表示。 10 关于BET(单分子层水)描述有误的是_______。 (A)BET在区间Ⅱ的高水分末端位置。 (B)BET值可以准确的预测干燥产品最大稳定性时的含水量。 (C)该水分下除氧化反应外,其它反应仍可保持最小的速率。 (D)单分子层水概念由Brunauer、Emett及Teller提出的单分子层吸附理论。 11 当食品中的α W 值为0.40时,下面哪种情形一般不会发生?_______ (A)脂质氧化速率会增大。(B)多数食品会发生美拉德反应。

第十一章非营养物质代谢

第十一章非营养物质代谢 一、内容提要 肝是人体多种物质代谢的重要器官,它不仅在蛋白质、氨基酸、糖类、脂类、维生素、激素等代谢中起着重要作用,同时还参与体内的分泌、排泄、生物转化等重要过程。 (一)肝的物质代谢特点 1.肝的糖、脂类、蛋白质代谢特点 (1)糖代谢肝通过肝糖原的合成、分解与糖异生作用来维持血糖浓度的相对恒定。确保全身各组织,特别是脑和红细胞的能量供应。 (2)脂类代谢肝在脂类的消化、吸收、分解、合成及运输等过程中均起着重要的作用。肝将胆固醇转化为胆汁酸,以协助脂类物质及脂溶性维生素的消化、吸收;肝是进行脂肪酸β–氧化、脂肪合成、改造及合成酮体的主要场所;肝是合成磷脂、胆固醇、脂肪酸的重要器官,并以脂蛋白的形式转运到脂肪组织储存或其它组织利用。 (3)蛋白质代谢肝在人体蛋白质合成、分解和氨基酸代谢中起着重要作用。除γ-球蛋白外,几乎所有的血浆蛋白质均来自肝,包括全部的清蛋白、部分球蛋白、大部分凝血因子、纤维蛋白原、多种结合蛋白质和某些激素的前体等;肝含有丰富的氨基酸代谢酶类,氨基酸在肝内进行转氨基作用、脱氨基作用和脱羧基作用;氨基酸代谢产生的氨主要在肝生成尿素。 2.肝在维生素、激素代谢的特点 (1)维生素代谢肝在维生素的吸收、储存、运输及代谢中起重要作用,肝是人体内含维生素A、K、B1、B2、B6、B12、泛酸与叶酸最多的器官;肝可将很多B族维生素转化为相应辅酶或辅基。 (2)激素代谢许多激素在发挥其作用后,主要在肝内被分解转化、降低或失去其生物活性,此过程称为激素的灭活。 (二)肝的生物转化 1.生物转化的概念非营养物质经过氧化、还原、水解和结合反应,使其毒性降低、

第七章 脂类代谢

第七章脂类代谢 一、填空题: 1.饱和脂肪酸的生物合成在中进行。 2.自然界中绝大多数脂肪酸含数碳原子。 3.脂肪酸生物合成的原料是,其二碳供体的活化形式是。4.生成丙二酸单酰CoA需要酶系催化,它包含有三种成份、_ 和。 5.饱和脂肪酸从头合成需要的引物是,其产物最长可含有碳原子。6.人体必需脂肪酸是、和。 7.饱和脂肪酸从头合成的还原力是,它是由代谢途径和转换所提供。8.大于十六碳原子的脂肪酸是生物体内相应的各个系统的酶催化合成。 10.硬脂酸(C18)经β-氧化分解,循环次,生成分子乙酰CoA, FADH2和 NADH。11.脂肪酸β-氧化是在中进行的,氧化时第一次脱氢的受氢体是,第二次脱氢的受氢体是,β-氧化的终产物是。 14.乙酰COA主要由、和降解产生。 二、选择题(只有一个最佳答案): 1.在人体中,脂肪酸以下列哪种形式参与三酰甘油的生物合成( ) ①游离脂肪酸②脂酰ACP ③脂酰CoA ④以上三种均不是 2.脂肪酸生物合成中,将乙酰基运出线粒体进入胞液中的物质是( ) ①CoA ②肉碱③柠檬酸④以上三种均不是 4.饱和脂肪酸从头合成和β-氧化过程中,两者共有( ) ①乙酰CoA ②FAD ③NAD+④含生物素的酶 5.长链脂肪酸从胞浆转运到线粒体内进行β-氧化作用,所需载体是( ) ①柠檬酸②肉碱③辅酶A ④α-磷酸甘油 6.脂肪酸从头合成所用的还原剂是( ) ①NADPH+H+②NADH+H+③FADH2④FMNH2 8.β-氧化中,脂酰CoA脱氢酶催化反应时所需的辅因子是( ) ①FAD ②NAD+③ATP ④NADP+ 9.植物体内由软脂酸(C16)生成硬脂酸(C18)其原料是( ) ①乙酰CoA ②乙酰ACP ③丙二酸单酰CoA ④丙二酸单酰ACP 10.在脂肪酸的合成中,每次碳链的延长都需要什么直接参加?() ①乙酰CoA ②草酰乙酸③丙二酸单酰CoA ④甲硫氨酸 11.合成脂肪酸所需的氢由下列哪一种递氢体提供?() ①NADP+ ②NADPH+H+③FADH2④NADH+H+ 12.脂肪酸活化后,β-氧化反复进行,不需要下列哪一种酶参与?() ①脂酰CoA脱氢酶②β-羟脂酰CoA脱氢酶 ③烯脂酰CoA水合酶④硫激酶 13.软脂酸的合成及其氧化的区别为() (1)细胞部位不同 (2)酰基载体不同 (3)加上及去掉2C?单位的化学方式不同

第十六章 肝的生化习题

第十六章肝的生物化学 一、内容提要 肝是体内重要的代谢器官之一,具有多种生物化学功能。本章主要介绍肝除了与其他组织器官相同的功能外还具有一些重要功能,如物质代谢功能、生物转化功能和排泄功能等。 (一)肝的物质代谢功能 1.肝在糖、脂类、蛋白质代谢作用中的特点 (1)糖代谢肝通过糖原合成、分解与糖异生作用调节血糖水平,维持血糖浓度的相对恒定。 (2)脂类代谢肝在脂类的消化、吸收、合成、分解及运输等过程中均起着重要作用。如肝将胆固醇转化为胆汁酸,协助脂类的消化吸收;肝是体内合成磷脂、胆固醇、脂肪酸的重要器官,并能以脂蛋白的形式转运出去;肝是体内合成酮体的主要器官。 (3)蛋白质代谢肝对蛋白质代谢极为活跃,除γ-球蛋白外,几乎所有的血浆蛋白质均来自肝;肝是除支链氨基酸外所有氨基酸分解代谢的重要器官,是处理氨基酸分解代谢产物的重要场所,如氨主要在肝中合成尿素。 2.肝在维生素和激素代谢作用中的特点 (1)维生素代谢肝在维生素的吸收、贮存、运输及代谢中起重要作用,肝是人体内含维生素A、K、B1、B2、B6、B12、泛酸与叶酸最多的器官,且多种维生素在肝中转化为辅酶的组成成分。 (2)激素代谢许多激素在发挥其调节作用后,主要在肝内被

分解转化,从而降低或失去其活性,此灭活过程对于激素作用时间的长短及强度具有调控作用。 (二)肝的生物转化作用 1.生物转化的概念非营养物质经过氧化、还原、水解和结合反应,使其极性增加或活性改变,而易于排出体外的这一过程称为生物转化作用。 2.生物转化的物质生物转化的内源性非营养物质有体内代谢过程中生成的氨、胺、胆色素、激素等物质。外源性非营养物质有摄入体内的药物、毒物、食品防腐剂、色素等。 3.生物转化的反应类型主要有两相反应。第一相反应包括氧化、还原和水解反应,其中最重要的是存在于微粒体的加单氧酶系,其特点是可被诱导生成,生理意义是参与药物和毒物的转化;第二相反应是结合反应,结合反应是体内重要的生物转化方式,主要与葡萄糖醛酸(供体UDPGA)、硫酸(PAPS)和乙酰基(乙酰CoA)等结合,尤以葡萄糖醛酸结合反应最为普遍。 4.生物转化的作用特点①连续性,非营养物质在肝内进行的生物转化是在一系列酶的催化下连续进行的化学反应,最终将这些物质清除至体外。②多样性,在连续的化学反应中,非营养物质有的经过第一相反应可以清除,有的还要经过第二相反应才能清除。③失活与活化双重性,经过生物转化,有的非营养物质的活性基团被遮蔽而失去活性;有的却获得活性基团而被活化,表现出解毒与致毒双重性。 5.生物转化的生理意义对体内生物活性物质进行灭活,同时

第十五章肝的生物化学

第十五章肝的生物化学 (一)A型题 1、不属于肝脏功能的是: A:贮存糖原和维生素 B:合成血清白蛋白 C:进行生物转化 D: 合成尿素 E:储存脂肪 2、肝脏在脂类代谢中所特有的作用是: A:合成磷脂 B:合成胆固醇 C:生成酮体 D:将糖转变为脂肪 E:改变脂肪酸的长度和饱和度 3、正常人在肝合成血浆蛋白质,量最多的是: A:脂蛋白 B:球蛋白 C:清蛋白 D:凝血酶原 E:纤维蛋白原 4、下列哪种物质是肝细胞特异合成的 A:脂肪 B:尿素 C:ATP D:糖原 E:蛋白质 5、人体合成胆固醇量最多的器官是: A:脾脏 B:肝脏 C:肾脏 D:内质网 E:肾上腺 6、关于血浆胆固醇酯含量下降的论述正确的是:

A:胆固醇分解增多 B:胆固醇转变成胆汁酸增多 C:转变成脂蛋白增多 D:胆固醇由胆道排出增多 E:肝细胞合成LCAT减少 7、肝中不储存的维生素是: A:维生素D B:维生素B1 C:维生素B2 D:维生素C E:维生素A 8、下列关于生物转化的描述错误的是: A:生物转化是解毒作用 B:物质经生物转化可增加水溶性 C:肝脏是人体内进行生物转化最重要的器官 D:有些物质经氧化,还原和水解等反应即可排出体外 E:有些物质必须与极性更强的物质结合,才能排出体外9、不属于肝脏生物转化反应的是: A:氧化反应 B:还原反应 C:水解反应 D:脱羧反应 E:结合反应 10、肝脏生物转化作用第一相反应中最重要的酶是微粒体中的: A:加单氧酶 B:加双氧酶 C:胺氧化酶 D:水解酶 E:还原酶 11、下列哪种不是生物转化中结合物的供体? A:UDPG B:PAPS C:SAM D:乙酰CoA

食品化学名词解释与问答题

食品化学习题集(第二版)参考答案 第二章水 名词解释 1.水分活度:水分活度——食品中水分逸出的程度,可以近似地用食品中水的蒸汽分压与同温度下纯水饱和蒸汽压之比表示,也可以用平衡相对湿度表示。 2.吸湿等温线:在恒定温度下,食品水分含量(每单位质量干物质中水的质量)对Aw作图得到水分吸着等温线。(等温条件下以食品含水量为纵坐标Aw为横坐标得到的曲线。) 3.滞后现象:对于食品体系,水分回吸等温线很少与解吸等温线重叠,一般不能从水分回吸等温线预测解吸现象(解析过程中试样的水分含量大于回吸过程中的水分含量)。水分回吸等温线和解吸等温线之间的不一致性被称为滞后现象。 问答题 1.食品中水的存在状态有哪些?各有何特点? 答:食品中水的存在状态有结合水和自由水两种,其各自特点如下: ①结合水(束缚水,bound water,化学结合水)可分为单分子层水(monolayer water),多分子层水(multilayer water) 作用力:配位键,氢键,部分离子键 特点:在-40℃以上不结冰,不能作为外来溶质的溶剂 ②自由水( free water)(体相水,游离水,吸湿水)可分为滞化水、毛细管水、自由流动水(截留水、自由水) 作用力:物理方式截留,生物膜或凝胶内大分子交联成的网络所截留;毛细管力 特点:可结冰,溶解溶质;测定水分含量时的减少量;可被微生物利用。 2.食品的水分活度Aw与吸湿等温线中的分区的关系如何? 答:为了说明吸湿等温线内在含义,并与水的存在状态紧密联系,可以将其分为Ⅰ、Ⅱ、Ⅲ区:Ⅰ区 Aw=0~0.25 约0~0.07g水/g干物质 作用力:H2O—离子,H2O—偶极,配位键 属单分子层水(含水合离子内层水) 不能作溶剂,-40℃以上不结冰,与腐败无关 Ⅱ区 Aw=0.25~0.8(加Ⅰ区,<0.45gH2O/g干) 作用力:氢键:H2O—H2O H2O—溶质 属多分子层水,加上Ⅰ区约占高水食品的5%,不作溶剂,-40℃以上不结冰,但接近0.8(Aw w)的食品,可能有变质现象。 Ⅲ区,新增的水为自由水,(截留+流动)多者可达20g H2O/g干物质 可结冰,可作溶剂 划分区不是绝对的,可有交叉,连续变化 3.在水分含量一定时,可以选择哪些物质作为果蔬脯水分活度降低值? 答:在食品中添加吸湿剂可在水分含量不变条件下,降低Aw 值。 吸湿剂应该含离子、离子基团或含可形成氢键的中性基团(羟基,羰基,氨基,亚氨基,酰基等),即有可与水形成结合水的亲水性物质。 如:多元醇:丙三醇、丙二醇、糖 无机盐:磷酸盐(水分保持剂)、食盐 动、植物、微生物胶:卡拉胶、琼脂… 4.食品中的水分活度Aw与食品稳定性的关系如何? 答:(1)Aw w与微生物生长 微生物的生长繁殖需要水,适宜的Aw一般情况如下: Aw <0.90 大多数细菌不能生长

第七章脂类代谢习题及答案

第七章脂类代谢 一、知识要点 (一)脂肪得生物功能: 脂类就是指一类在化学组成与结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中得物质。通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类与类固醇及其衍生物、衍生脂类及结合脂类。 脂类物质具有重要得生物功能。脂肪就是生物体得能量提供者。 脂肪也就是组成生物体得重要成分,如磷脂就是构成生物膜得重要组分,油脂就是机体代谢所需燃料得贮存与运输形式。脂类物质也可为动物机体提供溶解于其中得必需脂肪酸与脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面得脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞得表面物质,与细胞识别,种特异性与组织免疫等有密切关系。 (二)脂肪得降解 在脂肪酶得作用下,脂肪水解成甘油与脂肪酸。甘油经磷酸化与脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP与CoA在脂酰CoA合成酶得作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统得帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢与硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA与比原先少两个碳原子得脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2与少一个碳原子得脂肪酸;经ω-氧化生成相应得二羧酸。 萌发得油料种子与某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成得乙酰CoA合成苹果酸,为糖异生与其它生物合成提供碳源。乙醛酸循环得两个关键酶就是异柠檬酸裂解酶与苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸与乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。 (三)脂肪得生物合成 脂肪得生物合成包括三个方面:饱与脂肪酸得从头合成,脂肪酸碳链得延长与不饱与脂肪酸得生成。脂肪酸从头合成得场所就是细胞液,需要CO2与柠檬酸得参与,C2供体就是糖代谢产生得乙酰CoA。反应有二个酶系参与,分别就是乙酰CoA羧化酶系与脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系得催化下,以ACP作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子得丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、两分子NADPH,直至生成软脂酰ACP。产物再活化成软脂酰CoA,参与脂肪合成或在微粒体系统或线粒体系统延长成C18、C20与少量碳链更长得脂肪酸。在真核细胞内,饱与脂肪酸在O2得参与与专一得去饱与酶系统催化下,进一步生成各种不饱与脂肪酸。高等动物不能合成亚油酸、亚麻酸、花生四烯酸,必须依赖食物供给。 3-磷酸甘油与两分子脂酰CoA在磷酸甘油转酰酶作用下生成磷脂酸,在经磷酸酶催化变成二酰甘油,最后经二酰甘油转酰酶催化生成脂肪。 (四)磷脂得生成 磷脂酸就是最简单得磷脂,也就是其她甘油磷脂得前体。磷脂酸与CTP反应生成CDP-二酰甘油,在分别与肌醇、丝氨酸、磷酸甘油反应,生成相应得磷脂。磷脂

食品化学复习及答案答案

第二章水分 A.分析MSI曲线中各区及分界的水的性质。 I区: ①其中的水被最强烈的吸附和最少流动; ②这部分水通过H20-离子或H20-偶极相互作用与极性部分结合; ③它在-40℃不能冻结; ④不具有溶解溶质的能力; ⑤看将这部分水看成固体的一部分。 I区和II区的边界: ①相当于食品的“BET单层”水分含量;(BET 计算,P28、29) ②AW =0.2 II区水分特点: ①此部分区域的水主要通过氢键与相邻的水分子和溶质分子缔合; ②它的流动性比体相水稍差; ③大部分水在-40℃不能冻结; ④I区和II区的水分通常占高水分食品原料5%以下的水分。 II区和III区的边界: AW =0.85 III区水分特点: ①此部分区域的水为体相水; ②作为溶剂的水, ③该区的水分通常占高水分食品原料95%以上的水分。 B.比较冰点以上和冰点以下AW的差异。 1、在冰点以上,AW是样品组成与温度的函数,前者是主要的因素; 2、在冰点以下,AW与样品的组成无关,而仅与温度有关,即冰相存在时, AW 不受所存在的溶质的种类或比例的影响,不能根据AW 预测受溶质影响的反应过程; 3、不能根据冰点以下温度AW预测冰点以上温度的AW ; 4、当温度改变到形成冰或熔化冰时,就食品稳定性而言,水分活度的意义也改变了; C.请至少从4个方面分析AW与食品稳定性的关系。 1、不同类群微生物生长繁殖的最低水分活度范围是:大多数细菌为0.99~0.94,大多数霉菌为0.94~0.80,大多数耐盐细菌为0.75,耐干燥霉菌和耐高渗透压酵母为0.65~0.60。在水分活度低于0.60时,绝大多数微生物就无法生长; 2、降低食品的AW,可以延缓褐变,减少食品营养成分的破坏,防止水溶性色素的分解。但AW过低,则会加速脂肪的氧化酸败,又能引起非酶褐变。要使食品具有最高的稳定性所必需的水分含量,最好将AW保持在结合水范围内。这样,使化学变化难于发生,同时又不会使食品丧失吸水性和复原性; 3、水活度与食品质构的关系:水分活度对干燥和半干燥食品的质构有较大影响。要保持干燥食品的理想性质,水分活度不能超过0.3~0.5; 4、食品在较高含水量(30-60%)的情况下,淀粉老化速度最快;如果降低含水量,则老化速度减慢,若含水量降至于10%-15%,则食品中水分多呈结合态,淀粉几乎不发生老化; D.AW的定义: 食品中水的蒸汽压与该温度下纯水的饱和蒸汽压的比值;

第三章脂类

第三章脂类 提要 一、概念 脂类、类固醇、萜类、多不饱和脂肪酸、必需脂肪酸、皂化值、碘值、酸价、酸败、油脂的硬化、甘油磷脂、鞘氨醇磷脂、神经节苷脂、脑苷脂、乳糜微粒 二、脂类的性质与分类单纯脂、复合脂、非皂化脂、衍生脂、结合脂 单纯脂 脂肪酸的俗名、系统名和缩写、双键的定位 三、油脂的结构和化学性质 (1)水解和皂化脂肪酸平均分子量=3×56×1000÷皂化值 (2)加成反应碘值大,表示油脂中不饱和脂肪酸含量高,即不饱和程度高。 (3)酸败 蜡是由高级脂肪酸和长链脂肪族一元醇或固醇构成的酯。 四、磷脂(复合脂) (一)甘油磷脂类 最常见的是卵磷脂和脑磷脂。卵磷脂是磷脂酰胆碱。脑磷脂是磷脂酰乙醇胺。 卵磷脂和脑磷脂都不溶于水而溶于有机溶剂。磷脂是兼性离子,有多个可解离基团。在弱碱下可水解,生成脂肪酸盐,其余部分不水解。在强碱下则水解成脂肪酸、磷酸甘油和有机碱。磷脂中的不饱和脂肪酸在空气中易氧化。 (二)鞘氨醇磷脂 神经鞘磷脂由神经鞘氨醇(简称神经醇)、脂肪酸、磷酸与含氮碱基组成。脂酰基与神经醇的氨基以酰胺键相连,所形成的脂酰鞘氨醇又称神经酰胺;神经醇的伯醇基与磷脂酰胆碱(或磷脂酰乙醇胺)以磷酸酯键相连。 磷脂能帮助不溶于水的脂类均匀扩散于体内的水溶液体系中。 非皂化脂 (一)萜类是异戊二烯的衍生物 多数线状萜类的双键是反式。维生素A、E、K等都属于萜类,视黄醛是二萜。天然橡胶是多萜。(二)类固醇都含有环戊烷多氢菲结构 固醇类是环状高分子一元醇,主要有以下三种:动物固醇胆固醇是高等动物生物膜的重要成分,对调节生物膜的流动性有一定意义。胆固醇还是一

些活性物质的前体,类固醇激素、维生素D3、胆汁酸等都是胆固醇的衍生物。 植物固醇是植物细胞的重要成分,不能被动物吸收利用。 1,酵母固醇存在于酵母菌、真菌中,以麦角固醇最多,经日光照射可转化为维生素D2。 2.固醇衍生物类 胆汁酸是乳化剂,能促进油脂消化。 强心苷和蟾毒它们能使心率降低,强度增加。 性激素和维生素D 3. 前列腺素 结合脂 1.糖脂。它分为中性和酸性两类,分别以脑苷脂和神经节苷脂为代表。 脑苷脂由一个单糖与神经酰胺构成。 神经节苷脂是含唾液酸的糖鞘脂,有多个糖基,又称唾液酸糖鞘脂,结构复杂。 2.脂蛋白 根据蛋白质组成可分为三类:核蛋白类、磷蛋白类、单纯蛋白类,其中单纯蛋白类主要有水溶性的血浆脂蛋白和脂溶性的脑蛋白脂。 血浆脂蛋白根据其密度由小到大分为五种:乳糜微粒主要生理功能是转运外源油脂。 极低密度脂蛋白(VLDL) 转运内源油脂。 低密度脂蛋白(LDL) 转运胆固醇和磷脂。 高密度脂蛋白(HDL) 转运磷脂和胆固醇。 极高密度脂蛋白(VHDL) 转运游离脂肪酸。 脑蛋白脂不溶于水,分为A、B、C三种。top 第一节概述 一、脂类是脂溶性生物分子 脂类(lipids)泛指不溶于水,易溶于有机溶剂的各类生物分子。脂类都含有碳、氢、氧元素,有的还含有氮和磷。共同特征是以长链或稠环脂肪烃分子为母体。脂类分子中没有极性基团的称为非极性脂;有极性基团的称为极性脂。极性脂的主体是脂溶性的,其中的部分结构是水溶性的。 二、分类 1.单纯脂单纯脂是脂肪酸与醇结合成的酯,没有极性基团,是非极性脂,又称中性脂。三酰甘油、胆固醇酯、蜡等都是单纯脂。蜡是由高级脂肪酸和高级一元醇形成的酯。 2.复合脂复合脂又称类脂,是含有磷酸等非脂成分的脂类。复合脂含有极性基团,是极性脂。磷脂是主要的复合脂。

基础护理学第十一章试题

基础护理学第十一章试题 一、填空题 1.人体排泄体内终产物的主要途径是通过___和___、呼吸道及皮肤。 2.为男性病人导尿时,通过____、____和____三个狭窄时需要注意嘱患者深 呼吸,慢慢插入尿管。 3.成人24h尿量约______ml,多尿指24小时尿量超过___ml,少尿指24小时 尿量小于___ml,无尿指24小时尿量少于____ml或12小时内无尿产生。 4.膀胱刺激症的主要表现为____、____、____,并时常伴有血尿。 5.女性患者导尿一般插入长度____cm,男性患者插入长度____cm。 6.为尿潴留患者导尿时,首次最多放尿不超过___ml,以防血尿和患者虚脱。 7.慢性痢疾患者进行保留灌肠常采取___卧位,阿米巴痢疾患者灌肠应取___卧位。 8.肛管排气时肛管插入的深度是____cm,一般保留肛管不超过__min。 9.正常尿液的pH值呈___性,进食大量肉类时,尿液可呈___性。 10.人体参与排便的主要器官是____,分盲肠、___、___、和肛管四个部分。 二、单选题 1.为女性患者导尿第二次消毒的顺序() A、阴阜大阴唇小阴唇尿道口 B、尿道口小阴唇尿道口 C、由外向内,自上而下 D、由内而外,自近而远,最后消毒肛门 2.为男性患者导尿时,为消除耻骨前弯,应提起阴茎与腹壁呈() A、30°角 B、45°角 C、60°角 D、90°角 3.下列哪项不是大量不保留灌肠的禁忌症() A、妊娠早期 B、急腹症 C、严重心血管疾病 D、直肠手术 4.胆红素尿尿色呈() A、红色或棕色 B、乳白色 C、酱油色 D、黄褐色 5.胆道阻塞时,粪便呈() A、暗红色 B、陶土色 C、果酱样 D、柏油样便 6.下列哪项不是大肠的生理功能() A、吸收水分、电解质和维生素 B、形成粪便并排出体外 C、利用肠内细菌制造维生素 D、消化和吸收部分糖类和脂类 7.为腹泻患者护理时,不正确的是() A、卧床休息,减少肠蠕动 B、指导患者进食清淡、高纤维饮食 C、严重腹泻时可禁食 D、防止水和电解质紊乱,按医嘱给予口服补盐液或静脉输液8.大量不保留灌肠时,肛管插入的长度及灌肠液液面距肛门为() A、7-10cm 40-60cm B、10-15cm 30cm C、15-20cm 50-60cm D、15-20cm 30-60cm 9.大量不保留灌肠时,成人每次用量及灌肠液的温度 A、200-500ml 39-41℃ B、500-1000ml 39-41℃ C、400-800ml 38 ℃ D、500-1000ml 35-40℃ 10.压力性尿失禁的原因为() A、排尿中枢与大脑皮层之间的联系受损 B、排尿中枢活动受抑制 C、膀胱括约肌张力降低、骨盆底肌肉及韧带松弛 D、昏迷、截瘫 11.下消化道出血时,其粪便呈() A、鲜红色 B、柏油样便 C、暗红色 D、果酱样便

第七章 脂类代谢

兰州科技职业学院 课程名称:生物化学授课教师:李妮 No: _17___

第七章脂类代谢 第一节概述 一、什么是脂类? 指脂肪和类脂的总称为脂类。 二、分类 1. 脂肪 (fat) 甘油一酯、甘油二酯、甘油三酯 2. 类脂(lipoid) 胆固醇 (cholesterol, Ch) 、胆固醇酯 (cholesterol ester, CE) 、磷脂(phospholipid, PL) 、糖脂 (glycolipids,GL)。 三、脂类在体内的分布 (一)脂肪的生理功能 1.储能和氧化供能 2.提供必需脂肪酸 必需脂肪酸:机体不能合成,必须由食物供给的不饱和脂肪酸称为,如亚油酸、亚麻酸、花生四烯酸。 3.协助脂溶性维生素吸收 4.保温和保护作用 (二)类脂的生理功能 1.维持生物膜的正常结构和功能 2.转化为多种重要的生理活性物质 在体内胆固醇可转化成胆汁酸、类固醇激素、维生素D3等重要物质。必需脂 肪酸可以转化为前列腺素、白三烯等具有重要生理功能的物质。 第二节甘油三酯代谢

一、甘油三酯的分解代谢 (一)脂肪动员 1.定义:贮存在脂肪组织中的甘油三酯,在脂肪酶催化下,逐步水解为甘油和游离脂肪酸(FFA)并释放入血,经血液运输至全身各组织而被氧化利用的过程称为脂肪动员。 2.脂肪动员过程 3. 限速酶 甘油三酯脂肪酶(激素敏感性脂肪酶) 使甘油三酯脂肪酶活性降低的激素: (1).胰岛素 (2).前列腺素E 思考: 糖尿病病人胰岛素分泌减少时如何影响脂肪动员? 使甘油三酯脂肪酶活性增加的激素: 1.肾上腺素 2.去甲肾上腺素 3.促肾上腺皮质激素 4.胰高血糖素 5.促甲状腺激素刺激激素 (二)脂肪酸的氧化 1.脂肪酸氧化的反应部位

食品化学-脂质

食品化学-脂质 A 卷 一﹒名词解释(20分): 1. 脂质的自动氧化 2. 同质多晶现象 3. (油脂自动氧化过程的)链传递 4. 酸败 5. 油脂的氢化 二﹒选择题(60分): 1﹒DHA可促进脑细胞生长发育,提高记忆能力和学习能力,而且还有抗血栓、降胆固醇和治疗糖尿病等功效,若按系统命名法,DHA应命名为…………………………………….() A﹒ 5, 8 ,11, 14 –二十碳四烯酸 B﹒ 13-二十二碳一烯酸 C﹒ 5, 8, 11, 14, 17 –二十碳五烯酸 D﹒ 4, 7, 10, 13, 16,19 - 二十二碳六烯酸 2﹒油脂在贮藏和使用得过程中随着_﹍﹍增多,油脂变得易冒烟,发烟点低于沸点。…() A﹒游离脂肪酸 B﹒一酰基甘油 C﹒二酰基甘油 D﹒三酰基甘油 3﹒当两种同质多晶变体均较稳定时,则可双向转变,转向何方则取决于…………………( ) A﹒pH值 B﹒水分 C﹒温度 D﹒催化剂 4﹒抗氧化剂添加时机应注意在油脂氧化发生的…………..时就应该及时加入。………...()A、诱导期B、传播期C、终止期D、氧化酸败时 5. 奶油、人造奶油为……………型乳状液。…………………………………….() A、O/W B、W/O C、W/O/W D、O/W或W/O 6. 以下选项正确的是() A、反式构型比顺式构型容易氧化 B、共轭双键结构比非共轭双键结构容易氧化 C、游离脂肪酸比甘油酯的氧化速率低 D、甘油酯中脂肪酸的规则分布有利于降低氧化速率 7. 比较三种晶系的稳定性,其中正确的是() (A)α>β′>β (B)α<β′<β (C)β′<α<β (D)β′>α>β 8. 关于固态脂晶体(晶胞)的说法,其中错误的是() (A)脂肪酸的羧基与羧基通过氢键相连,烃基与烃基相边,成为栅栏式的层状结构。 (B)晶体为长柱形,四根柱每一根柱是一对脂肪酸分子,羧基与羧基相对。 (C)四根共8分子脂肪酸,这4对脂肪酸分子构成一个结晶单位,叫晶胞。 (D)单元晶胞总是一个平行六面体,它的大小和形状决定于晶胞三维轴的长度和轴间夹角。 9. 关于油脂的氧化,其中错误的是() (A)不饱和脂肪酸比饱和脂肪酸更易氧化,且顺式构型比反式易氧化,共轭双键结构比非共轭双键易氧化。(B)单线态氧比三线态氧的氧化速率大得多,当氧浓度较低时,氧化速率与氧浓度近乎成正比,当氧浓度较高时,氧化速率与氧浓度无关。 (C)一般来说,氧化速率随温度升高而加快,饱和脂肪酸在高温下也会发生氧化。 (D)油脂氧化速率在0-1范围内随水分活度的增加而不断增大。 10. _①_的概念范围包含了_②_,_③_是_①_最常见的一种表达形式。() A ①酯②脂③脂肪酸 B ①酯②油酯③脂肪酸

7第七章脂类代谢

第七章脂类代谢 一、填空题 1.脂酰CQA的β—氧化经过_________、_________、、_________、和_________四个连续反应步骤,每次β—氧化生成一分子_________和比原来少两个碳原子的脂酰CoA,脱下的氢由____和携带,进入呼吸链被氧化生成水。2.脂肪酸合成的主要原料是_________,递氢体是_________,它们主要来源于____和___。3.脂肪酸合成酶系主要存在于_________,_________内的乙酰CoA需经_________穿梭转运至_________而用于合成脂肪酸。 4.脂肪酸氧化和葡萄糖氧化途径中的第一个共同的中间代谢产物是。 5.脂肪酸分解过程中,长链脂酰C O A进入线粒体需要_________携带,脂肪酸合成过程中,线粒体中的乙酰C O A运出线粒体需要与_________结合成。 6.一分子14碳饱和脂肪酸经次β氧化,生成分子乙酰C O A,产生分子ATP.

7.脂肪酸合成在中进行,合成原料中碳源是,并以形式参与合成;供氢体是,它主要来自和。 二、选择题 A型题 1.下列与脂肪酸β—氧化的无关的酶是A.脂酰CoA脱氢酶 B.β—羟脂酰CoA脱氢酶 C.β—酮脂酰CoA转移酶 D.烯酰CoA水化酶 E.β—酮脂酰CoA硫解酶 2.下列脱氢酶,不以FAD为辅助因子的是A.琥珀酸脱氢酶 B.脂酰CoA脱氢酶C.β—羟脂酰CoA脱氢酶 3.一摩尔软脂酸经一次β—氧化后,其产物彻底氧化生成CO2和H2O,可净生成ATP的摩尔数是 A.5 B.9 C.12 D.14 E.17

4.乙酰CoA用于合成脂肪酸时,需要由线 粒体转运至胞液的途径是 A.三羧酸循环 B.α—磷酸甘油穿梭 C.苹果酸-天冬氨酸穿梭 D.柠檬酸穿 梭 E.肉碱穿梭 5.不参与脂肪酸合成的物质是 A.乙酰CoA B.丙二酰CoA C.NADPH D.ATP E.FADH 6.下列化合物中哪一个不是β氧化过程中所 需要酶的辅助因子: A.NAD+ B.CoA C. FAD D.NADP+ 7.缺乏FAD时,脂肪酸氧化过程中哪一个中间 产物的形成出现障碍: A.β烯脂酰CoA B.β酮脂酰CoA C.脂酰CoA D.β羟脂酰CoA 8.脂肪酸氧化过程中,将长链脂酰CoA载入 线粒体的是: A.ACP B.肉毒碱 C. 柠檬酸 D.乙酰CoA

第十六章 脂类

第十六章脂类 1.写出下列化合物的结构式 ⑶:3ω3,6,9 18 ⑷:1△9 ⑴胆固醇⑵胆酸 18 ⑸磷脂酰乙醇胺(脑磷脂)⑹磷脂酰胆碱(卵磷脂) 2.命名下列各化合物 3.写出一个具有L-构型的混三酰甘油的结构式,并给予命名 4.写出亚油酸的立体结构式 5.组成脂类的脂肪酸结构有什么特点?比较α-亚麻酸与γ-亚麻酸在结构上的相同和不同点,两者在人体内能否相互转化,为什么? 6.将磷脂酰胆碱、磷脂酰乙醇胺完全水解,分别可得到哪几类化合物? 7.举例说明甾族化合物中正系、别系、α、β的含义。若甾环C5处有双键存在,还有5β-系与5α-系之分吗?为什么? 8.写出三油酰甘油在KOH溶液中完全水解的反应式。 9.根据溶解度差异,试提出初步分离卵磷脂、脑磷脂的方法。 10.胆甾酸与胆汁酸的涵义有何不同?为什么胆盐可以帮助脂类的消化吸收? 11.什么是油脂的皂化值、碘值?它们值的大小分别说明什么问题? 12.天然脂肪酸的熔点与脂肪酸的不饱和程度和双键构型有何关系?

13.正常成人空腹血脂中,胆固醇酯含量为1.81~5.17mmol/L,请写出一个胆固醇酯的分子结构通式。 14.说明7-脱氢胆固醇、麦角甾醇和维生素D的关系 15.举例说明什么是必需脂肪酸? 16.什么是酸败?酸败的主要原因是什么? 17.卵磷脂和脑磷脂的水解产物有什么不同? △9,11,13-十八碳三烯酸的结构式。 18.试写出. 19.试写出Sn-甘油-1-棕榈酸-2-油酸-3-磷脂酸的结构。 20.测皂化值和酸值都用KOH作为试剂,试想在操作上它们会有什么差别? 21.鲸蜡(spermaceti)中含有棕榈酸和十六碳醇形成的酯,它可作为肥皂和美发油中的柔软剂。请写出它的结构式。 22.香叶烯(C10H16),一个由月桂的油中分离而得的萜烯,吸收3摩尔氢分子而成为C10H22,臭氧分解时产生以下化合物: 根据异戊二烯规则,香叶烯可能的结构是什么? 23.试指出香叶醇与橙花醇之间是何立体异构关系?α-柠檬醛及β-柠檬醛之间呢? 24.指出组成下列萜类物种异戊二烯单元的数目、属哪一类?画出连接的部位。 25.写出(-)薄荷醇(即薄荷脑)的构型和构象式。 26.为什么樟脑分子中有2个手性碳,但只有一对对映体?

食品中的脂类测定

食品中的脂类主要包括脂肪(甘油三酯)和一些类脂质,如脂肪酸、脂、糖脂和固醇类k食物中的脂类 95%是甘油三酯,5%是其他脂类。人体贮存的脂类中,甘油三酯高达 99%。脂类的共同特点是具有脂溶性,不仅易溶解于有机溶剂,还可溶解其他脂溶性物质如脂溶性维生素等。人类膳食脂肪主要来源于动物的脂肪组织和肉类以及植物的种子。动物脂肪相对饱和脂肪酸和单个不饱和脂肪酸多,而多不饱和脂肪酸含量较少。植物油主要不饱和脂肪酸。 脂肪是食品中重要的营养成分之一。脂肪可为人体提供体内不能产生而是必需的脂肪酸;脂肪是一种富含热能营养素,是人体热能的主要来源,每克脂肪在体内可提39.7kj(9.46kcal)热能,比碳水化合物和蛋白质高一倍以上;脂肪还是脂溶性维生素的良好溶剂,有助于脂溶性维生素的吸收;脂肪与蛋白质结合生成的脂蛋白,在调节人体生理机能和完成体内生化反应方面都起着十分重要的作用。但过量摄人脂肪对人体健康也是有害的。食品中脂肪的存在形式有游离态的,如动物性脂肪及植物性油脂;也有结合态的。,如天然存在的磷脂。糖脂、脂蛋白及某些加工食品(如焙烤食品及麦乳精等)中的脂肪,与蛋白质或碳水化合物等成分形成结合态。对大多数食品来说,游离态脂肪是主要的,结合态脂肪含量较少。在食品加工生产过程中,原料、半成品、成品的脂类含量对产品的风味、组织结构、品质、外观、口感等都有直接的影响。蔬菜本身的脂肪含量较低在生产蔬菜罐头时,添加适量的脂肪可以改善产品的风味,对于面包之类焙烤食品,脂肪含量特别是卵磷脂等成分,对于面包心的柔软度、面包的体积及其结构都有影响。因此,在含脂肪的食品中,其含量都有一定的规定,是食品质量管理中的一项重要指标。测定食品中的脂肪含量,可以用来评价食品的品质,衡量食品的营养价值,而且对实行工艺监督,生产过程的质量管理,研究 食品的储藏方式是否恰当等方面都有重要的意义。 食品的种类不同,其中脂肪的含量及其存在形式就不相同,测定脂肪的方法也就不同。常用的测定脂类的方法有:索氏提取法、酸分解法、罗紫一哥特里法、巴布科克氏法、盖勃氏法和氯仿一甲醇提取法等。过去普遍采用的是索氏提取法,此法至今仍被认为是测定多种食品脂类含量的有代表性的方法,但对于某些样品测定结果往往偏低。酸水解法能对包括结合态脂类在内的全部脂类进行定量n而罗紫一哥特里法主要用于乳及乳制品中脂类的测定。 二、提取剂的选择及样品的预处理 (一)提取法的选择: 天然的脂肪并不是单纯的甘油三酯,而是各种甘油三酯的混合物,它们在不同溶剂中的溶解度因多种因素而变化,这些因素有脂肪酸的不饱和性、脂肪酸的碳链长度、脂肪酸的结构以及甘油三酸酯的分子构型等。显然,不同来源的食品,由于它们结构上的差异,不可能企图采用一种通用的提取剂。脂类不溶于水,易溶于有机溶剂。测定脂类大多采用低沸点的有机溶剂萃取的方法。常用的溶剂直乙醚、石油醚、氯仿一甲醇混合溶剂等。其中乙醚溶解脂肪的能力强,应用最多。但它沸点低(34.6℃),易燃,可含有约 2%的水分,含水乙醚会同时抽出糖分等非脂类成分,所以实用时,必须采用无水乙醚做提取剂,并要求样品无水分。石油醚溶解脂肪的能力比乙醚弱些,但含水 分比乙醚少,没有乙醚易燃,使用时允许样品含有微量水分。这两种溶剂只能直接提取游离的脂肪,对于结合态脂类,必须预先用酸或碱破坏脂类和非脂成分的结合后才能提取。因二者各有特点,故常常混合使用。具体提取这些结合脂类时,要根据各种食品不同情况作具体处理,并无固定不变的程式,因此,只能对基本原理和共同性的规律作简单介绍。一般说来,在提取之前,必须首先破坏脂类与其他非脂成分的结合,不然就无法得到满意的提取效果。

第十六章肝生物化学

第十六章肝生物化学 一、选择题 【A型题】 1.哪一项不是肝组织结构和化学组成上的特点 A. 双重血液供应 B. 肝有丰富血窦,利于物质交换 C. 肝细胞内蛋白质含量高 D. 肝脏有肝动脉和胆道系统两条输出通路 E. 肝细胞是肝多种反应进行的场所 2.肝合成最多的血浆蛋白是 A. α-球蛋白 B. β-球蛋白 C. 清蛋白 D. 纤维蛋白原 E. 凝血酶原 3.下列哪一种物质仅由肝合成 A. 尿素 B. 脂肪酸 C. 糖原 D. 胆固醇 E. 血浆蛋白 4.下列哪种蛋白质肝不能合成 A. 清蛋白 B. 凝血酶素 C. 纤维蛋白原 D. α-球蛋白 E. γ-球蛋白 5.生物素缺乏时,影响下列哪一个酶的活性 A. 丙酮酸脱氢酶 B. 丙酮酸羧化酶 C. 丙酮酸激酶 D. 苹果酸酶 E. 苹果酸脱氢酶 6.血氨升高的主要原因是 A. 体内合成非必须氨基酸过多 B. 急性、慢性盛衰竭 C. 组织蛋白质分解过多 D. 肝功能障碍 E. 便秘使肠道内产氨与吸收氨过多 7.短期饥饿时,血糖浓度的维持主要靠 A. 肝糖原分解 B. 糖异生作用 C. 组织中葡萄糖利用降低 D. 肌糖原分解 E. 肝糖原合成 8.肝昏迷前后,肌体各器官有出血倾向,主要是由于:

A. 维生素C少 B. 维生素K少 C. 维生素A少 D. 凝血酶原少 E. 纤维蛋白原多 9.严重肝疾患的男性患者出现男性乳房发育,蜘蛛痣,主要是由于 A. 雌激素分泌过多 B. 雌激素分泌过少 C. 雌激素灭活不好 D. 雄激素分泌过多 E. 雄激素分泌过少 10.肝功能不良时,下列哪种蛋白质的合成受影响较小 A. 清蛋白 B. 凝血酶原 C. 凝血因子 D. γ-球蛋白 E. 纤维蛋白原 11.下列哪一个不是非营养物质的来源 A. 肠道细菌腐败产物被重吸收 B. 外界的药物、毒物 C. 体内代谢产生的氨、胺 D. 食物添加剂,如色素等 E. 体内合成的非必需氨基酸 12.生物转化中第一相反应最主要的是 A. 水解反应 B. 还原反应 C. 氧化反应 D. 脱羧反应 E. 结合反应 13.生物转化中参与氧化反应最重要的酶是 A. 加单氧酶 B. 加双氧酶 C. 水解酶 D. 胺氧化酶 E. 醇脱氢酶 14.关于加单氧酶系的叙述错误的是 A.此酶系存在于微粒体中 B.通过羟化参与生物转化作用 C.过氧化氢是其产物之一 D.细胞色素P450是此酶系的组分 E.与体内很多活性物质的合成、灭活、外源性药物代谢有关 15.关于生物转化作用,下列哪项是不正确的 A.具有多样性和连续性的特点 B.常受年龄、性别、诱导物等因素影响 C.有解毒与致毒的双重性 D.使非营养性物质的极性降低,利于排泄 E.使非营养物质极性增加,利于排泄

第七章 脂类代谢复习题-带答案

第七章脂代谢 一、名词解释 80、脂肪酸 答案:(fatty acid)自然界中绝大多数为含偶数碳原子,不分枝的饱和或不饱和的一元羧酸。 81、必需脂肪酸 答案:(essential fatty acids EFA)人体及哺乳动物正常生长所需要,而体内又不能自身合成,只有通过食物中摄取的脂肪酸:如亚油酸,亚麻酸,花生四烯酸(可通过亚油酸进一步合成)。 82、β-氧化作用 答案:(beta oxidation)是指脂肪酸在一系列酶的作用下,在α-碳原子和β-碳原子之间发生断裂,β-碳原子被氧化形成羧基,生成乙酰CoA 和较原来少2个碳原子的脂肪酸的过程。83、α-氧化作用 答案:(alpha oxidation)以游离脂肪酸为底物,在分子氧的参与下生成D-α-羟脂肪酸或少一个碳原子的脂肪酸。 84、ω-氧化作用 答案:(omega oxidation)指远离脂肪酸羧基的末端碳原子(ω-碳原子)被氧化成羟基,再进一步氧化成羧基,生成α,ω --二羧酸的过程。 85、乙醛酸循环 答案:(glyoxylate cycle )是植物体内一条由脂肪酸转化为碳水化合物途径,发生在乙醛酸循环体中,可看作三羧酸循环支路,它绕过两个脱羧反应,将两分子乙酰CoA转变成一分子琥珀酸的过程。 二、填空题 102、大部分饱和脂肪酸的生物合成在中进行。 答案:胞液 103、自然界中绝大多数脂肪酸含数碳原子。 答案:偶 104、参加饱和脂肪酸从头合成途径的两个酶系统是和。 答案:乙酰辅酶A羧化酶;脂肪酸合成酶复合体 105、脂肪酸生物合成的原料是,其二碳供体的活化形式是。 答案:乙酰CoA;丙二酸单酰CoA 106、生成二酸单酰辅酶A需要催化,它包含有三种成分 、和。 答案:乙酰辅酶A羧化酶系;生物素羧化酶(BC);生物素羧基载体蛋白(BCCP);转羧基酶(CT) 107、大肠杆菌脂肪酸合成酶复合体至少由六种酶组成、、 、、、和一个对热稳定的低分子量蛋白质。答案:酰基转移酶、丙二酸单酰转移酶、?-酮脂酰ACP合成酶(缩合酶)、?-酮脂酰ACP 还原酶、? -羟脂酰ACP脱水酶、烯脂酰ACP还原酶;酰基载体蛋白(ACP) 108、大肠杆菌脂肪酸合成酶复合体中接受脂酰基的两个巯基臂分别存在于 和上。 答案:-SH;酰基载体蛋白(ACP);? -酮脂酰ACP合成酶 109、饱和脂肪酸从头合成需要的引物是,其产物最长可含有碳原子。 答案:乙酰CoA;十六

相关主题
文本预览
相关文档 最新文档