当前位置:文档之家› 沪科版九年级二次函数教(学)案

沪科版九年级二次函数教(学)案

二次函数

1.定义:一般地,如果c b a c bx ax y ,,(2

++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2

ax y =的性质

(1)抛物线2

ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2

ax y =的图像与a 的符号关系.

①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2

ax y =)(0≠a . 3.二次函数 c bx ax y ++=2

的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2

用配方法可化成:()

k h x a y +-=2

的形式,其中a

b a

c k a b h 4422

-=-=,.

5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2

;③()2

h x a y -=;④顶点式

()k h x a y +-=2

;⑤c bx ax y ++=2;⑥两根式))((21x x x x a y --=

6.抛物线的三要素:开口方向、对称轴、顶点.

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.

8.求抛物线的顶点、对称轴的方法

(1)公式法:a b ac a b x a c bx ax y 44222

2

-+

??

? ??+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线

的对称轴,对称轴与抛物线的交点是顶点.

例:抛物线y =x 2

+2x -2的顶点坐标是 9.抛物线c bx ax y ++=2

中,c b a ,,的作用

(1)a 决定开口方向及开口大小,这与2

ax y =中的a 完全一样.

(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2

的对称轴是直线

a b x 2-

=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

b

(即a 、b 异号)时,对称轴在y 轴右侧.

(3)c的大小决定抛物线c

bx

ax

y+

+

=2与y轴交点的位置.

当0

=

x时,c

y=,∴抛物线c

bx

ax

y+

+

=2与y轴有且只有一个交点(0,c):

①0

=

c,抛物线经过原点; ②0

>

c,与y轴交于正半轴;③0

<

c,与y轴交于负半轴.

以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则0

<

a

b

.

例:已知二次函数c

bx

ax

y+

+

=2的图象如图所示,则下列结论正确的是

A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0 D.ab<0,c<0

10.二次函数图象的平移

1. 平移步骤:方法一:⑴将抛物线解析式转化成顶点式()2

y a x h k

=-+,确定其顶点坐标()

h k

,;

⑵保持抛物线2

y ax

=的形状不变,将其顶点平移到()

h k

,处,具体平移方法如下:

向右(h>0)【或左(h<0)】

平移 |k|个单位

向上(k>0)【或下(k<0)】

平移|k|个单位

向右(h>0)【或左(h<0)】

平移|k|个单位向右(h>0)【或左(h<0)】

平移|k|个单位

向上(k>0)【或下(k<0)】平移|k|个单位

向上(k>0)【或向下(k<0)】平移|k|个单位

y=a(x-h)2+k

y=a(x-h)2

y=ax2+k

y=ax2

2. 平移规律:在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”.

11.几种特殊的二次函数的图像特征如下:

函数解析式开口方向对称轴顶点坐标

2

ax

y=

当0

>

a时

开口向上

当0

<

a时

开口向下

=

x(y轴)(0,0)

k

ax

y+

=20

=

x(y轴)(0,

k)

()2h

x

a

y-

=

h

x=(h,0)

()k

h

x

a

y+

-

=2

h

x=(h,k)

(1)一般式:c bx ax y ++=2

.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2

.已知图像的顶点或对称轴,通常选择顶点式.

(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 13.直线与抛物线的交点

(1)y 轴与抛物线c bx ax y ++=2

得交点为(0, c ).

(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2

有且只有一个交点(h ,c bh ah ++2

).

(3)抛物线与x 轴的交点

二次函数c bx ax y ++=2

的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程0

2

=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点?0>??抛物线与x 轴相交;

②有一个交点(顶点在x 轴上)?0=??抛物线与x 轴相切; ③没有交点?0

同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2

的两个实数根.

(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02

≠++=a c bx ax y 的图像G 的交点,由方程组

c

bx ax y n kx y ++=+=2

的解的数目来确定:①方程组有两组不同的解时?l 与G 有两个交点; ②方程组只有一组解时

?l 与G 只有一个交点;③方程组无解时?l 与G 没有交点.

(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2

与x 轴两交点为()()0021,,,

x B x A ,由于1x 、2x 是方程02

=++c bx ax 的两个根,故:a

c

x x a b x x =?-

=+2121, ()

()

a a ac

b a

c a b x x x x x x x x AB ?=-=-??

?

??-=--=

-=

-=44422

212

212

2121

例:抛物线322

--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为 .

例:已知直线()02≠+-=b b x y 与x 轴交于点A ,与y 轴交于点B ;一抛物线的解析式为()c x b x y ++-=102

.

(1)若该抛物线过点B ,且它的顶点P 在直线b x y +-=2上,试确定这条抛物线的解析式;

(2)过点B 作直线BC ⊥AB 交x 轴交于点C ,若抛物线的对称轴恰好过C 点,试确定直线b x y +-=2的解析式.

14.一元二次方程与二次函数的关系

一元二次方程与二次函数的关系。(1)一元二次方程2

0ax bx c ++=(a ≠0)有两个不相等的实数根1x ,2x ?

判别式0?>?对应的二次函数2

y ax bx c =++(a ≠0)的图象与x 轴有两个交点为()1,0x ,()2,0x ?对应的二次函数2

y ax bx c =++(a ≠0)有两个不同的零点1x ,2x ;

(2)一元二次方程2

0ax bx c ++=(a ≠0)有两个相等的实数根1x =2x ?判别式0?=?对应的二次函数2y ax bx c =++(a ≠0)的图象与x 轴有唯一的交点为(1x ,0)?对应的二次函数2y ax bx c =++(a ≠0)有两个相同零点1x =2x ;

(3)一元二次方程2

0ax bx c ++=(a ≠0)没有实数根?判别式0?

y ax bx c =++(a

≠0)的图象与x 轴没有交点?对应的二次函数2

y ax bx c =++(a ≠0)没有零点.

15.二次函数在区间上的最值问题。

设()()02

>++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:

a

b n m 2-

<< n a b m <-

<2即[]n m a

b ,2∈- n m a

b

<<-

2 图象

最大、最小值

()()

()()

n f x f m f x f ==min max

()()(){}

()?

?

?

??-==a b f x f m f n f x f 2,max min max

()()

()()

m f x f n f x f ==min max

对于开口向下的情况,讨论类似.其实无论开口向上还是向下,都只有以下两种结论: (1)若[]n m a b ,2∈-

,则()()()????????? ??-=n f a b f m f x f ,2,max max ,()()()?????????

??-=n f a b f m f x f ,2,min min ; (2)若[]n m a

b

,2?-

,则()()(){}n f m f x f ,m ax max =,()()(){}n f m f x f ,m in min = 另外,当二次函数开口向上时,自变量的取值离开对称轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开对称轴轴越远,则对应的函数值越小.

16.二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称

2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;

()2

y a x h k =-+关于x 轴对称后,得到的解析式是()2

y a x h k =---;

2. 关于y 轴对称

2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;

()2

y a x h k =-+关于y 轴对称后,得到的解析式是()2

y a x h k =++;

3. 关于原点对称

2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2

y a x h k =-+关于原点对称后,得到的解析式是()2

y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)

2

y ax bx c =++关于顶点对称后,得到的解析式是2

2

2b y ax bx c a

=--+-;

()2y a x h k =-+关于顶点对称后,得到的解析式是()2

y a x h k =--+.

5. 关于点()m n ,

对称:()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()2

22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表

达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

17.二次函数常用解题方法总结:

⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;

⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;

⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以

0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的在联系:

二次函数考查重点与常见题型

1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:

已知以x 为自变量的二次函数2)2(2

2

--+-=m m x m y 的图像经过原点, 则m 的值是 2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系考查两个函数的图像,试题类型为选择题,如:

如图,如果函数b kx y +=的图像在第一、二、三象限,那么函数12

-+=bx kx y 的图像大致是( ) y y y y

1 1

0 x o-1 x 0 x 0 -1 x A B C D

3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:

已知一条抛物线经过(0,3),(4,6)两点,对称轴为3

5

=

x ,求这条抛物线的解析式。 4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如: 已知抛物线2y ax bx c =++(a ≠0)与x 轴的两个交点的横坐标是-1、3,与y 轴交点的纵坐标是-3

2

(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标. 5.考查代数与几何的综合能力,常见的作为专项压轴题。 【例题经典】

由抛物线的位置确定系数的符号

例1 (1)二次函数2y ax bx c =++的图像如图1,则点),(a

c b M 在( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

(2)已知二次函数y=ax 2

+bx+c (a ≠0)的图象如图2所示,?则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个

(1) (2)

【点评】弄清抛物线的位置与系数a ,b ,c 之间的关系,是解决问题的关键.

例2.已知二次函数y=ax 2+bx+c 的图象与x 轴交于点(-2,O)、(x 1,0),且1

(O ,2)的下方.下列结论:①aO ;③4a+cO ,其中正确结论的个数为( ) A 1个 B. 2个 C. 3个 D .4个 答案:D

会用待定系数法求二次函数解析式

例3.已知:关于x 的一元二次方程ax 2

+bx+c=3的一个根为x=-2,且二次函数y=ax 2

+bx+c 的对称轴是直线x=2,

则抛物线的顶点坐标为( )

A(2,-3) B.(2,1) C(2,3) D .(3,2) 答案:C 例4、(2006年市)如图(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重

合.设x 秒时,三角形与正方形重叠部分的面积为ym 2

. (1)写出y 与x 的关系式;

(2)当x=2,3.5时,y 分别是多少? (3)当重叠部分的面积是正方形面积的一半时, 三角形移动了多长时间?求抛物线顶点坐标、 对称轴.

例5、已知抛物线y=

12x 2+x-52

. (1)用配方法求它的顶点坐标和对称轴.

(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.

【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系. 例6.已知:二次函数y=ax 2

-(b+1)x-3a 的图象经过点P(4,10),交x 轴于)0,(1x A ,)0,(2x B 两点)(21x x <,

交y 轴负半轴于C 点,且满足3AO=OB .

(1)求二次函数的解析式;(2)在二次函数的图象上是否存在点M ,使锐角∠MCO>∠A CO?若存在,请你求出M 点的横坐标的取值围;若不存在,请你说明理由.

(1)解:如图∵抛物线交x 轴于点A(x 1,0),B(x2,O), 则x 1·x 2=3<0,又∵x 1

∴x 2>O ,x 1

∴x 1·x 2=-3x 12=-3.∴x 12

=1. x 1<0,∴x 1=-1.∴.x 2=3.

∴点A(-1,O),P(4,10)代入解析式得解得a=2 b=3

∴.二次函数的解析式为y-2x 2

-4x-6. (2)存在点M 使∠MC0<∠ACO .

(2)解:点A 关于y 轴的对称点A ’(1,O),

∴直线A ,C 解析式为y=6x-6直线A'C 与抛物线交点为(0,-6),(5,24). ∴符合题意的x 的围为-1

当点M 的横坐标满足-1∠ACO . 例7、 “已知函数c bx x y ++=

2

2

1的图象经过点A (c ,-2)

求证:这个二次函数图象的对称轴是x=3。”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。

(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。

(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整。

点评: 对于第(1)小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是x=3”当作已知来用,再结合条件“图象经过点A (c ,-2)”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式。对于第(2)小题,只要给出的条件能够使求出的二次函数解析式是第(1)小题中的解析式就可以了。而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等。

相关主题
文本预览
相关文档 最新文档