当前位置:文档之家› 深度学习-综述

深度学习-综述

深度学习-综述
深度学习-综述

1、定义和背景:

1.1 深度学习(DL)有各种相近的定义或者高层次描述

定义2:Deep Learning is a new area of Machine Learning research, which has been introduced with the objective of moving Machine Learning closer to one of its original goals: Artificial Intelligence. Deep Learning is about learning multiple levels of representation and abstraction that help to make sense of data such as images, sound, and text.(参见https://https://www.doczj.com/doc/61275897.html,/lisa-lab/DeepLearningTutorials)自2006年以来,深度学习(deep learning)(也通常叫做深层结构学习或分层学习)已经成为机器学习领域的一个新兴领域(Hinton et al., 2006; Bengio, 2009 ).在过去几年中,深度学习技术的发展已经对信号和信息过程领域产生广泛的影响,并将继续影响到机器学习和人工智能的其它关键领域;参见综述文章(Bengio et al., 2013; Hinton et al., 2012; Yu and Deng, 2011; Deng, 2011; Arel et al., 2010 ).最近,已有一系列的致力于关于深度学习以及应用的研讨会和特别会议。包括:

the 2013 ICASSP’s special session on New Types of Deep Neural Network Learning for Speech Recognition and Related Applications,

the 2010, 2011, and 2012 NIPS Workshops on Deep Learning and Unsupervised Feature Learning,

the 2013 ICML Workshop on Deep Learning for Audio, Speech, and Language Processing;

the 2012 ICML Workshop on Representation Learning,

the 2011 ICML Workshop on Learning Architectures, Representations, and Optimization for Speech and Visual Information Processing,

the 2009 ICML Workshop on Learning Feature Hierarchies,

the 2009 NIPS Workshop on Deep Learning for Speech Recognition and Related Applications, the 2008 NIPS Deep Learning Workshop,

the 2012 ICASSP tutorial on Deep Learning for Signal and Information Processing, the special section on Deep Learning for Speech and Language Processing in IEEE Transactions on Audio, Speech, and Language Processing (January 2012), and the special issue on Learning Deep Architectures in IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI, 2013).

一些DL领域活跃的实验室和研究团队包括:

University of Toronto - Machine Learning Group (Geoff Hinton, Rich Zemel, Ruslan Salakhutdinov, Brendan Frey, Radford Neal)

Université de Montréal - Lisa Lab (Yoshua Bengio, Pascal Vincent, Aaron Courville, Roland Memisevic)

New York University –Yann Lecun‘s and Rob Fergus‘ group

Stanford University –Andrew Ng‘s group

UBC –Nando de Freitas‘s group

Google Research–Jeff Dean, Samy Bengio, Jason Weston, Marc’Aurelio Ranzato, Dumitru Erhan, Quoc Le et al

Microsoft Research –Li Deng et al

SUPSI –IDSIA(Schmidhuber’s group)

UC Berkeley –Bruno Olshausen‘s group

University of Washington –Pedro Domingos‘ group

IDIAP Research Institute - Ronan Collobert‘s group

University of California Merced –Miguel A. Carreira-Perpinan‘s group

University of Helsinki - Aapo Hyv?rinen‘s Neuroinformatics group

Université de Sherbrooke –Hugo Larochelle‘s group

University of Guelph –Graham Taylor‘s group

University of Michigan –Honglak Lee‘s group

Technical University of Berlin –Klaus-Robert Muller‘s group

Baidu –Kai Yu‘s group

Aalto University –Juha Karhunen‘s group

U. Amsterdam –Max Welling‘s group

U. California Irvine –Pierre Baldi‘s group

Ghent University –Benjamin Shrauwen‘s group

University of Tennessee –Itamar Arel‘s group

IBM Research –Brian Kingsbury et al

University of Bonn –Sven Behnke’s group

Gatsby Unit @ University College London – Maneesh Sahani, Yee-Whye Teh, Peter Dayan

(详见https://www.doczj.com/doc/61275897.html,/deep-learning-research-groups-and-labs/ ).

这些研究团队在DL的各种不同应用中取得经验性的成功,如计算机视觉、语音识别、语音搜索、语音识别、语音会话和图像特征编码、语义分类、手写识别话语、音频处理、信息检索、机器人学、甚至在分析可能导致新药的分子方面等等。许多优秀的经常更新教程、参考资料::

https://www.doczj.com/doc/61275897.html,/reading-list/

https://www.doczj.com/doc/61275897.html,/wiki/index.php/UFLDL_Recommended_Readings

https://www.doczj.com/doc/61275897.html,/~hinton/

https://www.doczj.com/doc/61275897.html,/tutorial/

https://www.doczj.com/doc/61275897.html,/wiki/index.php/UFLDL_Tutorial

2.深度学习的发展历史:

传统机器学习和信号处理技术探索仅含单层非线性变换的浅层学习结构。浅层模型的一个共性是仅含单个将原始输入信号转换到特定问题空间特征的简单结构。典型的浅层学习结构包括传统隐马尔可夫模型(HMM)、条件随机场(CRFs)、最大熵模型(MaxEnt)、支持向量机(SVM)、核回归及仅含单隐层的多层感知器(MLP)等。例如,SVM用包含一层(使用核技巧)或者零个特征转换层的浅层模式分离模型。(最近已有将核方法与DL结合的新方法。如,Cho and Saul, 2009; Deng et al., 2012; Vinyals et al., 2012)。浅层结构的局限性在于有限的样本和计算单元情况下对复杂函数的表示能力有限,针对复杂分类问题其泛化能力受到一定制约。

神经科学研究表明,人的视觉系统的信息处理是分级的。人类感知系统这种明确的层次结构极大地降低了视觉系统处理的数据量,并保留了物体有用的结构信息。有理由相信,对于要提取具有潜在复杂结构规则的自然图像、视频、语音和音乐等结构丰富数据,深度学习能够获取其本质特征。受大脑结构分层次启发,神经网络研究人员一直致力于多层神经网络的研究。

历史上,深层学习的概念起源于神经网络的研究。带有多隐层的前馈神经网络或者多层感知器通常被成为深层神经网络(DNNs),DNNs就是深层构架的一个很好的例子。BP算法作为传统训练多层网络的典型算法,实际上对于仅含几层网络,该训练方法就已很不理想(参见(Bengio, 2009; Glorot and Bengio, 2010). 在学习中,一个主要的困难源于深度网络的非凸目标函数的局部极小点普遍存在。反向传播是基于局部梯度下降,通常随机选取初始点。使用批处理BP算法通常会陷入局部极小点,而且随着网络深度的增加,这种现象更加严重。此原因在一定程度上阻碍了深度学习的发展,并将大多数机器学习和信号处理研究从神经网络转移到相对较容易训练的浅层学习结构。

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

江南营_江南深度研学之旅(1)

诗梦江南,入画寻踪 ——长清区实验小学江南深度研学实践之旅 【课程简介】 一道水,一架桥,一支橹声,隽秀婉约的聚合了太多的历史文化。此次研学活动旨在让同学们了解祖国江南,同时感受一场从远古传说,到春秋的吴越文化,到南北朝的文人风骨,再到明清以及近代的大儒伟人的历史盛宴。活动中,同学们将一起寻访王羲之、蔡元培、鲁迅、周恩来等名人伟人故里,穿越历史,冶爱国之志,体悟文化魅力;一起走进园,欣赏宋代江南私家园林的秀美景观,探寻园林蕴含的文化涵;一起游历西湖,领略“淡妆浓抹总相宜”的如画美景;一起走进综合性人文科学博物馆博物馆、中国黄酒博物馆,全面了解历史文化。 【课程特色】 ●文化名镇江南风采 ●穿越时空触摸历史 【行程简表】

上午探访安昌古镇漫游小桥流水梦回江南水乡游历江南小镇,画笔描绘 第五天 下午乘坐高铁前往:车次G60东-西 15:22-19:48辅导员送站一次相聚一生情谊备注:因天气交通等原因,组委会保留调整活动顺序及个别项目的权力,保证活动总量不变。 【活动费用】 2900/人;包含火车(往返高铁)及活动期间所有的费用。 ?【人文积淀-理性思维】·第一天下午·钱塘江·六和塔 钱塘江潮被誉为“天下第一潮”,是世界一大自然奇观,它是天体引力和地球自转的离心作用,加上湾喇叭口的特殊地形所造成的特大涌潮。六和塔位于省市西湖之南,钱塘江畔 月轮山上,是中国现存最完好的砖木结构古塔之一。 小任务1:学生面对浩渺的钱塘江,接受审美教育,并结合手册提示,探究钱塘江大潮的在科学原理; 小任务2:学生走进六和塔,收集关于六和塔的传说故事,留下自己与六和塔最美的合照; ?【审美情趣-人文积淀】·第二天上午·西湖·省博物馆 西湖,是一首诗,一幅天然图画,一个美丽动人的故事,不论是多年居住在这里的人还是匆匆而过的旅人,无不为这天下无双的美景所倾倒。平湖秋月、断桥残雪、柳浪闻莺、花 港观鱼、雷峰夕照、双峰插云、南屏晚钟、三潭印月,西湖十景个擅其胜。省博物馆是省规 模最大的综合性人文科学博物馆,文物品类丰富,年代序列完整。 小任务1:集体创绘,全体学生齐动手,集体协作,面对美景,协作创作最美的西湖; 小任务2:走进博物馆,寻访国宝,找一找最能代表江南文化的文物,向小组同学分享并交流;

深度学习综述

深度学习综述 摘要:深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示。这些方法在许多方面都带来了显著的改善,包括最先进的语音识别、视觉对象识别、对象检测和许多其它领域,例如药物发现和基因组学等。深度学习能够发现大数据中的复杂结构。它是利用BP算法来完成这个发现过程的。BP算法能够指导机器如何从前一层获取误差而改变本层的内部参数,这些内部参数可以用于计算表示。深度卷积网络在处理图像、视频、语音和音频方面带来了突破,而递归网络在处理序列数据,比如文本和语音方面表现出了闪亮的一面。 Review of Deep learning Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech. 1 引言 机器学习技术在现代社会的各个方面表现出了强大的功能:从Web搜索到社会网络内容过滤,再到电子商务网站上的商品推荐都有涉足。并且它越来越多地出现在消费品中,比如相机和智能手机。 机器学习系统被用来识别图片中的目标,将语音转换成文本,匹配新闻元素,根据用户兴趣提供职位或产品,选择相关的搜索结果。逐渐地,这些应用使用一种叫深度学习的技术。传统的机器学习技术在处理未加工过的数据时,体现出来的能力是有限的。几十年来,想要构建一个模式识别系统或者机器学习系统,需要一个精致的引擎和相当专业的知识来设计一个特征提取器,把原始数据(如图像的像素值)转换成一个适当的内部特征表示或特征向量,子学习系统,通常是一个分类器,对输入的样本进行检测或分类。特征表示学习是一套给机器灌入原始数据,然后能自动发现需要进行检测和分类的表达的方法。深度学习就是一种特征学习方法,把原始数据通过一些简单的但是非线性的模型转变成为更高层次的,更加抽象的表达。通过足够多的转换的组合,非常复杂的函数也可以被学习。对于分类任务,高层次的表达能够强化输入数据的区分能力方面,同时削弱不相关因素。比如,一副图像的原始格式是一个像素数组,那么在第一层上的学习特征表达通常指的是在图像的特定位置和方向上有没有边的存在。第二层通常会根据那些边的某些排放而来检测图案,这时候会忽略掉一些边上的一些小的干扰。第三层或许会把那些图案进行组合,从而使其对应于熟悉目标的某部分。随后的一些层会将这些部分再组合,从而构成待检测目标。深度学习的核心方面是,上述各层的特征都不是利用人工工程来设计的,而是使用一种通用的学习过程从数据中学到的。 深度学习正在取得重大进展,解决了人工智能界的尽最大努力很多年仍没有进展的问题。它已经被证明,它能够擅长发现高维数据中的复杂结构,因此它能够被应用于科学、商业和政府等领域。除了在图像识别、语音识别等领域打破了纪录,它还在另外的领域击败了其他机器学习技术,包括预测潜在的药物分子的活性、分析粒子加速器数据、重建大脑回路、

城市道路可研编制深度要求

城市道路工程可行性研究报告文件编制深度(提纲) 1 概述 工程项目的背景,建设的必要性以及项目研究过程。 编制依据经批准的项目建议书或立项批准文件。 委托单位的委托书及有关的合同、协议书。 其它依据性文件。 批准的道路网规划及城市排水规划。 研究的范围及内容。 主要研究结论。 对预可行性研究报告(项目建议书)批复意见执行情况。 工程项目结论性评价和推荐方案概述(道路等级、功能定位、技术标准、主要技术指标、程规模范围、设计内容、建设进度计划、项目建设必要性、技术可行性、社会环境效益等)。 对下阶段工作的建议。 2 现状评价及建设条件 区域概况。 道路现状及评价。 现状道路交通量及评价。 沿线建筑、文物古迹、树木、河流、湖泊及地上杆管线等情况。 沿线水文地质等到自然条件,地震烈度区划。 工程地质资料。 3 道路规划及交通量预测 4采用的规范和标准 5工程建设必要性 论证分析道路沿线土地资源使用情况及将来开发情况,论证道路修建的可能性和必要性。论证经济发展对道路交通的要求,分析主要交通源的特点。 论证修建道路对交通量增长的满足程度。 论证修建道路对工农业生产和人民生活的改善程度。 论证修建道路对环境的影响及环境改善的要求。 论证对文物古迹、树木等的保护措施。 6工程方案内容(进行多方案比选) 工程方案内容(进行多方案比选)方案设计原则。 总体方案总体布置方案。 主要节点方案 工程建设范围及规模。 道路工程 道路(含主、辅路)平纵横设计方案。 道路交叉设计方案。

路基、路面、挡土墙及附属构筑物设计方案。 人行道及过街设施、公交停车站及无障碍设施等。 道路景观设计方案。 桥梁与隧道工程。 沿线桥梁与隧道工程概况。 技术标准。 桥梁与隧道设计方案。 排水工程排水工程概况。技术标准。 排水工程设计方案。附属工程。交通安全及管理设施。 照明工程。 绿化工程。 其它附属工程(管线综合布置方案等)。 7环境评价 大气环境质量。 交通噪声。 振动环境质量。 日照环境质量。 8新技术应用及建议科研项目 9工程建设阶段划分和进度计划安排设想 10 征地拆迁及主要工程数量11 资金筹措 12 投资估算及经济评价见本规定《投资估算经济评价和概预算文件》的相关章节 13 结论和存在问题 结论意见 根据论证,提出结论性评价和推荐方案的意见。存在问题和建议。 14 附图 道路区域地理位置图。 道路平面及纵断面图,平面 1:2000~1:5000。垂直 1:50~1:100。 道路规划横断面及拟建横断面布置、路面结构方案图。 主要节点方案图。 桥梁与遂道工程方案图。 排水工程方案图。 附属工程方案图。 15与编制依据有关的文件和附件 附注:

最新神经网络最新发展综述汇编

神经网络最新发展综述 学校:上海海事大学 专业:物流工程 姓名:周巧珍 学号:201530210155

神经网络最新发展综述 摘要:作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具。目前,模拟人脑复杂的层次化认知特点的深度学习成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。本文分8个方面综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。 关键词: 类脑智能;神经网络;深度学习;大数据 Abstract: As a typical realization of connectionism intelligence, neural network, which tries to mimic the information processing patterns in the human brain by adopting broadly interconnected structures and effective learning mechanisms, is an important branch of artificial intelligence and also a useful tool in the research on brain-like intelligence at present. Currently, as a way to imitate the complex hierarchical cognition characteristic of human brain, deep learning brings an important trend for brain-like intelligence. With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper summarizes the latest progress in eight applications and existing problems considering neural network and points out its possible future directions. Key words : artificial intelligence; neural network; deep learning; big data 1 引言 实现人工智能是人类长期以来一直追求的梦想。虽然计算机技术在过去几十年里取得了长足的发展,但是实现真正意义上的机器智能至今仍然困难重重。伴随着神经解剖学的发展,观测大脑微观结构的技术手段日益丰富,人类对大脑组织的形态、结构与活动的认识越来越深入,人脑信息处理的奥秘也正在被逐步揭示。如何借助神经科学、脑科学与认知科学的研究成果,研究大脑信息表征、转换机理和学习规则,建立模拟大脑信息处理过程的智能计算模型,最终使机器掌握人类的认知规律,是“类脑智能”的研究目标。 类脑智能是涉及计算科学、认知科学、神经科学与脑科学的交叉前沿方向。类脑智能的

文本分类综述

山西大学研究生学位课程论文(2014 ---- 2015 学年第 2 学期) 学院(中心、所):计算机与信息技术学院 专业名称:计算机应用技术 课程名称:自然语言处理技术 论文题目:文本分类综述 授课教师(职称):王素格(教授) 研究生姓名:刘杰飞 年级:2014级 学号:201422403003 成绩: 评阅日期: 山西大学研究生学院 2015年 6 月2日

文本分类综述 摘要文本分类就是在给定的分类体系下,让计算机根据给定文本的内容,将其判别为事先确定的若干个文本类别中的某一类或某几类的过程。文本分类在冗余过滤、组织管理、智能检索、信息过滤、元数据提取、构建索引、歧义消解、文本过滤等方面有很重要的应用。本文主要介绍文本分类的研究背景,跟踪国内外文本分类技术研究动态。介绍目前文本分类过程中的一些关键技术,以及流形学习在文本分类中降维的一些应用。并且讨论目前文本分类研究面临的一些问题,及对未来发展方向的一些展望。 关键词文本分类;特征选择;分类器;中文信息处理 1.引言 上世纪九十年代以来,因特网以惊人的速度发展起来,到现在我们进入大数据时代互联网容纳了海量的各种类型的数据和信息,包括文本、声音、图像等。这里所指的文本可以是媒体新闻、科技、报告、电子邮件、技术专利、网页、书籍或其中的一部分。文本数据与声音和图像数据相比,占用网络资源少,更容易上传和下载,这使得网络资源中的大部分是以文本(超文本)形式出现的。如何有效地组织和管理这些信息,并快速、准确、全面地从中找到用户所需要的信息是当前信息科学和技术领域面临的一大挑战。基于机器学习的文本分类系统作为处理和组织大量文本数据的关键技术,能够在给定的分类模型下,根据文本的内容自动对文本分门别类,从而更好地帮助人们组织文本、挖掘文本信息,方便用户准确地定位所需的信息和分流信息。 利用文本分类技术可以把数量巨大但缺乏结构的文本数据组织成规范的文本数据,帮助人们提高信息检索的效率。通过对文本信息进行基于内容的分类,自动生成便于用户使用的文本分类系统,从而可以大大降低组织整理文档耗费的人力资源,帮助用户快速找到所需信息。因此文本分类技术得到日益广泛的关注,成为信息处理领域最重要的研究方向之一。 2.文本分类技术的发展历史及现状 2.1文本分类技术发展历史 国外自动分类研究始于1950年代末,早期文本分类主要是基于知识工程,通过手工定义一些规则来对文本进行分类,这种方法费时费力,还需要对某一领域有足够的了解,才能提炼出合适的规则。H.P.Luhn在这一领域进行了开创性的研究,他将词频统计的思想用于文本分类中。这一时期,主要是分类理论的研究,并将文本分类应用用于信息检索。在这一段时期,提出了很多经典文本分类的数学模型。比如1960年Maron在Journal of ASM上发表了有关自动分类的第一篇论文“On relevance Probabilitic indexing and informarion retriral”,这是Maron和Kuhns提出概的率标引(Probabilitic indexing )模型在信息检

用社会化方法计算社会-学者网

同时,网络社会的虚拟性、用户匿名性、信息海量性、事件发展复杂性为虚拟数字社会的管理带来极大的挑战。特别是我国现处在经济转轨时期,各种事件频发,加强虚拟社会管理成为我国政府和社会管理的当务之急。 基于上述分析,社会计算出现的背景可以归纳为两方面,一是以用户为中心的Web2.0的思想得到广泛推广,逐渐产生了从个体行为到群体智能的社会化思维模式;二是许多虚拟社会网络的出现逐步形成了一种新型的数字化社会形态。 概念框架 社会计算作为一个新兴的跨学科研究领域,目前还没有一个公认的定义。但也许我们可以从社会计算出现的背景去剖析它的概念。基于这个认识,社会计算实际上可以简单地概括为“用社会化方法计算社会”,具体包含两层意思,即“为社会计算”和“用社会化方法计算”。如图2所示。 “为社会计算”反映了社会计算研究与服务的对象是社会,包括虚拟网络和现实社会,以及从中抽象出来的人工社会。从这个角度来说,通过信息技术方法对社会数字轨迹进行分析,了解社会已经发生、正在发生、将要发生的事情,准确地了解社会的动态特征和运行规律,预测政策实施的可行性,为虚拟网络社会的科学管理和政府决策提供参考。 “社会化方法”是一种以草根用户为中心、 引言 随着互联网的迅猛发展,特别是Web2.0理念的逐渐深入,越来越多的虚拟社会网络出现了,如微博(Twitter 、新浪微博)、社交网(Facebook 、人人网)、社会标注系统(Delicious 、Flickr )、论坛(BBS )、维基(Wiki )等,这些虚拟社会网络聚集了大量用户。据2010年2月资料显示,全球最大的社会网络Facebook 注册的用户已达4亿多,成为排在中国和印度之后的全球人口第三大社会[1],如图1所示。虚拟社会网络已经成为一种新形态的数字社会[2]。 虚拟社会网络不但聚集了大量的用户,而且用户参与网络活动的深度和广度都得到了空前的提高。网络用户不再仅是信息浏览和接受者,也是互联网信息资源的提供和传播者。虚拟网络已成为继报纸、广播、电视之后的“第四媒体”。这种由大众创造的社会媒体(social media )详细地记录了用户的思想和行为轨迹,这使得利用计算技术观察和研究社会成为可能。 用社会化方法计算社会 关键词:社会计算 Web2.0 社会网络 概念框架 孟小峰 余 力 中国人民大学 图1 Facebook 成为全球第三大社会

配电网工程可行性研究报告内容深度规定(征求意见稿)

百度文库- 让每个人平等地提升自我 配电网工程可行性研究报告内容深度规定 浙江省电力公司 2013年3月

第一部分配电网配电工程可行性研究内容深度规定 1范围 本标准规定了配电网配电工程可行性研究的内容深度要求。 本标准适用于新建、扩建或改造10(20)kV及以下配电工程的可行性研究。本标准只对设计的内容深度做出规定,不作为设计专业分工和卷册划分的标准。 2总则 本规定是编制、评审配电工程可行性研究报告(以下简称可研报告)的重要依据。 设计文件应遵守国家及有关部门颁发的设计文件编制和审批工作管理的规定。 编制可研报告应以审定的配电网规划为基础,并充分应用电力设施布局规划成果。 可研报告应落实通用设计方案的采用情况,落实差异化设计原则以及“两型一化”变电站设计原则的贯彻情况,说明新技术应用情况。 3一般规定 编制可研报告时,设计单位应完整、准确、充分地掌握设计原始资料和基础数据,确保资料齐全、文字说明清楚、计算结果和图纸清晰、正确。 当有多个设计单位参与编制同一工程可研报告时,应明确其中一个单位为总体设计单位。总体设计单位应对参与设计单位的设计内容负责,对相关协调、配合工作归口负责,对参与设计、测试单位的资质提出意见,并将各参与单位的可研、测试等报告的主要内容和结论整理归纳到工程可研总报告中。 配电网架空线路工程可行性研究成果包括以下内容: (1)可行性研究报告说明书(含附图、附件) (2)可研估算书 (3)专题报告(根据需要编制) 3.3.1 可行性研究报告说明书包括以下内容: (1)工程概述 (2)电力系统 (3)站址的选择 (4)配电站工程设想 (5)基建标准化成果及新技术的应用 (6)投资估算 (7)附图和附件 3.3.2 可研报告应包括以下图纸,可作为附图,也可随文布置: (1)电网地理接线图 (2)配电站主接线图 (3)配电站总平布置图 (4)通信链路拓扑图 (5)光缆走向示意图

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.doczj.com/doc/61275897.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

文本分类综述1

文本分类综述 1. 引言 1.1 文本分类的定义 文本分类用电脑对文本集按照一定的分类体系或标准进行自动分类标记,与文本分类相近的概念是文本聚类。文本聚类是指,由机器将相似的文档归在一起。与文本分类的区别在于,文本分类是监督学习,类别是事先规定好的,文本聚类是无监督学习,由计算机把类似文本归在一起,事先并不划定好类别。 基于统计的文本分类算法进行文本分类就是由计算机自己来观察由人提供的训练文档集,自己总结出用于判别文档类别的规则和依据。 文本分类的基本步骤是:文本表示->特征降维->分类器训练>文本分类 1.2 文本分类的基本思路 文本分类基本方法可以归结为根据待分类数据的某些特征来进行匹配,选择最优的匹配结果,从而实现分类。 计算机并不认识文档,因此首先就要设法如何转化一篇文档为计算机所接受,转化方法要与文本有对应关系。对于计算机文本分类而言,这是最重要的步骤。 其次要制定出一定的评判标准,根据文档表示结果对文本进行分类 1.3 文本分类目前的研究热点 2. 文本表示 利用计算机来解决问题,首先就是要找到一种使计算机能够理解方法来表述问题,对文本分类问题来说,就是要建立一个文档表示模型。 一般来说,利用文档中的语义信息来表示文档比较困难,因此直接采用词频来表示文档,不过也出现了许多利用语义的文档表示方法。 2.1 向量空间模型(VSM) VSM模型是目前所用的较多的文本表示模型,这种模型把文本看作是一个特征项的集合。特征项可以是词,也可以是人为所构造的合理的特征。

2.2 词袋模型 词袋模型是VSM 模型在文本分类问题中的一个最简单的应用。对于一篇文档,最直观的方法就是使用词和短语作为表示文本的特征。对于英文文章来说,各个单词之间己经用空格分开,可以直接获取特征词,不过由于英语中存在词形的变化,如:名词的单复数、动词的时态变化、词的前缀和后缀变化等,所以会需要一个抽取词干的过程。对于中文来说,因为词和词之间没有停顿,所以需要借助于词典来统计特征词。对于文本分类来说,常用的方法为TF 即词频法。 具体操作为: 对文本,北京理工大学计算机专业创建于1958年,是中国最早设立的计算机专业的大学之一。对于该文档,词袋为{北京、理工、大学、计算机、专业、创建、1958、中国、最早、设立}相应的向量为{1,1,2,2,2,1,1,1,1},这种统计特征词词频当作文档特征的方法也称为TF 法,为了防止这种方法统计出的特征使得文本长度影响到分类结果,要把它做归一化处理,最容易想到的归一化做法是除以文本长度。 另外还有另一个指标IDF 指标,衡量词的重要性,一个词在一篇文本中出现的频率越高,同时在总的训练文本中出现的频率越低,那么这个词的IDF 值越高。 操作: 总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到,公式表示为 ,idf 衡量了一个词的重要程度,因此tf ×idf 可以更好的来表示文本。 2.3 其他模型 3. 特征降维 文本所形成的不加处理的特征向量维数很高,以词袋模型为例,一方面,很多文章只有几千词,而一个分词词典所包含的词有数万个,如果不加处理,把所有词都表示出来,是极大的浪费,另一方面,若依照分词词典建立向量,事实上是无法使用的,因此需要对文档特征进行降维处理。把不用的特征去掉,保留区分度高的词语。特侦降维可以有两种思路,特征选择和特征提取,其中,特征选择是指在原有特征的基础上,选择一部分特征来表示文本,特征性质不变,例如||log()|:| i j D idf j t d =∈

研学方案

“研学旅行”实施方案 一、项目实施背景 从2013年发布《国民休闲旅游纲要》到2016年的《关于推进中小学生研学旅行的意见》,国家教育部等多部门发文要求大力推进研学旅行。研学旅行有利于促进学生培育和践行社会主义核心价值观,激发学生对党、对国家、对人民的热爱之情;有利于推动全面实施素质教育,创新人才培养模式,引导学生主动适应社会,促进书本知识和生活经验的深度融合;有利于加快提高人民生活质量,满足学生日益增长的旅游需求,从小培养学生文明旅游意识,养成文明旅游行为习惯。近年来,各地积极探索开展研学旅行,部分试点地区取得显著成效,在促进学生健康成长和全面发展等方面发挥了重要作用。二、定位与宗旨 目前大多数研学旅行还处在研究开发状态,良莠不齐,市场认可度不够,家长热度不高(尤其省内)。这是我们的机遇,也是挑战,我们的定位是要打造出一个学校认可、家长认可、学生认可的研学品牌,让学生在研学中学到东西。 三、具体实施 (一)方案A:纯旅游研学 本方案以若干旅游景点为研学地点,前期采取跟旅行社合作的方式(合作方式有待探讨),研学的核心(课件+“内容”)内容采取跟大学历史系或者旅游系的老师合作。 该方案的优点:该方案采用跟旅行社合作,研学路线可以借用

旅行社的优势,资源充分整合,老师和家长的路线选择多,可以极大丰富学生的课外知识,并且可以开展夏令营和冬令营活动。缺点是要综合考虑各个年龄段的学生,路线过多,会导致前期工作准备不够充足。 方案细节初步安排如下: 1、前期工作(3月20日-3月30日): (1)与某个旅行社达成合作关系(目前有合作意向的有康辉旅行社); (2)与某个大学的历史或者旅游系老师达成合作关系,负责研学核心内容的开发,包括路线的选择和内容的开发 (3)完成计划的策划和确定具体实施细节。 2、中期工作(4月1日-5月30日) (1)4月1日-4月15日与旅行社和老师确定最终的研学路线; (2)4月15日-5月30日一个半月的时间根据最终具体的研学路线,来做具体的研学课件和研学内容,研究出研学到底应该让学生学到什么,怎么保证学生能学到这些; (3)同时根据最终确定的研学方案做好定价方案,在这个过程中要充分进行调研,进学校、访家长,做到收费合理; (4)根据做好的方案做好线上推广,把做好的资料全部上传到线上,可以参考北京世纪明德。

深度文本匹配综述_庞亮

网络出版时间:2016-09-20 21:04:43 网络出版地址:https://www.doczj.com/doc/61275897.html,/kcms/detail/11.1826.TP.20160920.2104.006.html 第39卷计算机学报Vol. 39 深度文本匹配综述 庞亮1),2)3)兰艳艳1)2) 徐君1)2) 郭嘉丰1)2) 万圣贤1),2)3) 程学旗1)2) 1)(中国科学院网络数据科学与技术重点实验室北京 100190) 2)(中国科学院计算技术研究所,北京 100190) 3)(中国科学院大学,北京100190) 摘要自然语言理解的许多任务,例如信息检索、自动问答、机器翻译、对话系统、复述问题等等,都可以抽象成文本匹配问题。过去研究文本匹配主要集中在人工定义特征之上的关系学习,模型的效果很依赖特征的设计。最近深度学习自动从原始数据学习特征的思想也影响着文本匹配领域,大量基于深度学习的文本匹配方法被提出,我们称这类模型为深度文本匹配模型。相比于传统方法,深度文本匹配模型能够从大量的样本中自动提取出词语之间的关系,并能结合短语匹配中的结构信息和文本匹配的层次化特性,更精细地描述文本匹配问题。根据特征提取的不同结构,深度文本匹配模型可以分为三类:基于单语义文档表达的深度学习模型、基于多语义文档表达的深度学习模型和直接建模匹配模式的深度学习模型。从文本交互的角度,这三类模型具有递进的关系,并且对于不同的应用,具有各自性能上的优缺点。本文在复述问题、自动问答和信息检索三个任务上的经典数据集上对深度文本匹配模型进行了实验,比较并详细分析了各类模型的优缺点。最后本文对深度文本模型未来发展的若干问题进行了讨论和分析。 关键词文本匹配;深度学习;自然语言处理;卷积神经网络;循环神经网络 中图法分类号TP18 论文引用格式: 庞亮,兰艳艳,徐君,郭嘉丰,万圣贤,程学旗,深度文本匹配综述,2016,V ol.39,在线出版号No. 128 Pang Liang,Lan Yanyan,Xu Jun,Guo Jiafeng,Wan Shengxian ,Cheng Xueqi,A Survey on Deep Text Matching,2016,V ol.39,Online Publishing No.128 A Survey on Deep Text Matching Pang Liang 1),2)3)Lan Yanyan 1)2) Xu Jun 1)2) Guo Jiafeng 1)2)Wan Shengxian 1),2)3) Cheng Xueqi 1)2) 1)(CAS Key Lab of Network Data Science and Technology, Beijing100190) 2)(Institute of Computing Technology, Chinese Academy of Sciences, Beijing100190) 3)(University of Chinese Academy of Sciences, Beijing 100190) Abstract Many problems in natural language processing, such as information retrieval, question answering, machine translation, dialog system, paraphrase identification and so on, can be treated as a problem of text ——————————————— 本课题得到国家重点基础研究发展计划(973)(No. 2014CB340401, 2013CB329606)、国家自然科学基金重点项目(No.61232010, 61472401, 61425016, 61203298)、中国科学院青年创新促进会(No. 20144310,2016102)资助.庞亮(通讯作者),男,1990年生,博士,学生,计算机学会(CCF)学生会员(59709G),主要研究领域为深度学习与文本挖掘.E-mail: pangliang@https://www.doczj.com/doc/61275897.html,.兰艳艳,女,1982年生,博士,副研究员,计算机学会(CCF)会员(28478M),主要研究领域为统计机器学习、排序学习和信息检索.E-mail: lanyanyan@https://www.doczj.com/doc/61275897.html,.徐君,男,1979年生,博士,研究员,计算机学会(CCF)会员, 主要研究领域为信息检索与数据挖掘.E-mail: junxu@https://www.doczj.com/doc/61275897.html,.郭嘉丰,男,1980年生,博士,副研究员,计算机学会(CCF)会员, 主要研究领域为信息检索与数据挖掘.E-mail: guojiafeng@https://www.doczj.com/doc/61275897.html,.万圣贤,男,1989年生,博士,学生,主要研究领域为深度学习与文本挖掘.E-mail: wanshengxian@https://www.doczj.com/doc/61275897.html,.程学旗,男,1971年生,博士,研究员,计算机学会(CCF)会员, 主要研究领域为网络科学、互联网搜索与挖掘和信息安全等.E-mail: cxq@https://www.doczj.com/doc/61275897.html,.

中国南方电网有限责任公司10(20)kV及以下配电网项目可行性研究内容深度规定

Q/CSG 115004-2011 中国南方电网有限责任公司 10(20)kV 及以下配电网项目 可行性研究内容深度规定 Q/CSG 中国南方电网有限责任公司企业标准 Q/CSG 115004-2011 ICS 备案号: P 2011 – 4 - 20 发布 2011 – 4 - 20 实施 中国南方电网有限责任公司 发 布

目次 前言 (2) 引言 (3) 1 适用范围 (4) 2 规范性引用文件 (4) 3 编制的基本要求 (4) 4 内容及深度要求 (5) 5 附表及附图 (8) 5.1附表 (8) 5.2附图 (8) 附录A(规范性附录) XX地市(州)供电局10KV及以下配电网项目汇总 (9) 附录B(规范性附录) 10KV及以下配电网项目可行性研究表 (10) 附录C(规范性附录) XX批次配电网项目实施前后指标对比表 (11)

前言 根据中国南方电网有限责任公司(以下简称“公司”)一体化管理工作推进的要求,公司组织五省(区)电网公司、有代表性的地市(州)供电局及设计单位规划计划专业技术人员起草本内容深度规定。本规定的编写结合了各省(区)、地市(州)的实际情况,经过征求意见和三次会议集中讨论而形成。 本规定主要起草单位:南方电网公司计划发展部、广东电网公司、广西电网公司、云南电网公司、贵州电网公司、海南电网公司、广州供电局、佛山供电局、南宁供电局、昆明供电局、贵阳供电局、凯里供电局、台江供电局、海口供电局、佛山南海电力设计院工程有限公司、佛山电力设计院有限公司。 本规定主要起草人:陈旭、邱朝明、戴志伟、张祖荣、张雪莹、张宁、李云芬、张群安、刘长春、罗竹平、陆冰雁、刘东升、郑星炯、刘先虎、廖小文、施坚、雷霖、陈守吉、吴振东、柯景发、罗崇熙、李成、黄少红、柳春芳、梁辉平。 本规定由中国南方电网公司计划发展部提出、归口并解释。 本规定自2011年4月20日起执行。

文本分类中的特征提取和分类算法综述

文本分类中的特征提取和分类算法综述 摘要:文本分类是信息检索和过滤过程中的一项关键技术,其任务是对未知类别的文档进行自动处理,判别它们所属于的预定义类别集合中的类别。本文主要对文本分类中所涉及的特征选择和分类算法进行了论述,并通过实验的方法进行了深入的研究。 采用kNN和Naive Bayes分类算法对已有的经典征选择方法的性能作了测试,并将分类结果进行对比,使用查全率、查准率、F1值等多项评估指标对实验结果进行综合性评价分析.最终,揭示特征选择方法的选择对分类速度及分类精度的影响。 关键字:文本分类特征选择分类算法 A Review For Feature Selection And Classification Algorithm In Text Categorization Abstract:Text categorization is a key technology in the process of information retrieval and filtering,whose task is to process automatically the unknown categories of documents and distinguish the labels they belong to in the set of predefined categories. This paper mainly discuss the feature selection and classification algorithm in text categorization, and make deep research via experiment. kNN and Native Bayes classification algorithm have been applied to test the performance of classical feature detection methods, and the classification results based on classical feature detection methods have been made a comparison. The results have been made a comprehensive evaluation analysis by assessment indicators, such as precision, recall, F1. In the end, the influence feature selection methods have made on classification speed and accuracy have been revealed. Keywords:Text categorization Feature selection Classification algorithm

深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(DeepNeural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

相关主题
文本预览
相关文档 最新文档