当前位置:文档之家› 总结遗传学

总结遗传学

总结遗传学
总结遗传学

遗传学

第1章

1、园林植物的概念:园林植物是指具有一定观赏价值,使用于室内外布置以美化环境并丰富人们生活的植物,是观赏植物的泛称,并简称或统称为花卉。

2、西方人士称誉中国为园林之母,即指中国野生和栽培的园林植物资源极为丰富,曾对世界园艺事业作出了重要贡献。

3、园林植物遗传学:研究观赏植物遗传变异的基本规律。

4、遗传:子代和亲代相似的现象就是遗传。

5、变异:变异是指亲代与子代之间、子代个体之间的差异。

6、遗传的变异:: (1)基因的重组和互作(2)基因分子结构的改变

(3)染色体结构和数量的变化(4)细胞质遗传物质的改变

7、品种:是经人类培育选择创造的、经济性状和生物学特性符合人类生产、生活要求的,相对整齐一致而能稳定遗传的植物群体。

8、品种特性:特异性;一致性;稳定性;地区性;时间性第2章

1、染色体:是细胞核中遗传物质的主要载体,它是由DNA蛋白质和少量RNA组成,易被碱性染料染色的线状结构。

2、一般染色体的形态:着丝粒,染色体臂,次缢痕,随体,端

粒。

3、同源染色体:减数分裂时,配对的染色体一个来自父方一个来自母方,形态大小相似,其上所载的基因序列基本相同。

4、染色体的结构:(1)核小体(2)螺线体(3)超螺线体(4)染色体

5、有丝分裂和无丝分裂的区别:

(1)染色体数目不变——减半(2)体细胞——性母细胞

(3)形成细胞个数不同 2 ―― 4 (4)DNA复制一次,细胞分裂一次——两次

6、有丝意义:既维持了个体的正常生长发育,也保证了物种的连续性、稳定性。

7、减数分裂意义

(1)在世代间,保证了染色体数目的恒定性。为后代的正常发育,性状遗传提供了物质基础。同时,又保证了物种的相对稳定性。

(2)在后期I,同源染色体随机分离,产生2n种方式;粗线期非姊妹染色单体发生交换产生了遗传物质的重新组合,为生物的变异提供了重要的物质基础。

8、高等植物雌雄配子体的形成和受精(了解,不过老师仔细讲了一遍,不知道考不考)

第3章

1、等位基因:在同源染色体上占据相同位置、控制相对性状的

一对基因。

2、纯合体:等位基因上有两个相同的等位基因的合子体,成对的基因都是一样的。

3、杂合体:等位基因上有两个不相同的等位基因的合子体,成对的基因

不一样。

4、测交法:杂种过杂种后代与纯和隐性亲本进行杂交,以测定杂种或杂种后代的基因型。

5、分离规律的实质和概念成对的基因在配子形成过程中彼此分离,互不干扰,因而配子中只具有成对基因的一个。

讲的是一对相对性状的规律,控制杂种的等位基因互不混杂,形成配子时,彼此分离,形成两种类型不同,数目相等的配子,从而导致子二代基因型比1:2:1,表现型比3:1。自由组合实质:控制两对性状的两对等位基因,分布在不同的同源染色体上。在减数分裂形成配子时,同源染色体上的等位基因彼此分离,而非同源染色体上的非等位基因能以均等的机会在配子中自由组合,就形成了F2 的表现型比9:3:3:1 6、完全显性:纯合双亲的一对相对性状杂交,F1 所有个体都充

分的表现出一个亲本的性状.

7、不完全显性:纯合双亲的一对相对性状杂交所产生的F1,其

性状介于双亲之间,出现中间类型。

(参考遗传学43 页上的习题:有关杂交和后代分离比的)

第4章

1、连锁遗传的定义:同一条染色体上非等位基因连系在一起而遗传的现象。

2、完全连锁:同一染色体上非等位基因之间不发生分离而被一起传递到下一代的现象。

3、不完全连锁:杂种个体形成配子时,同源染色体的非姊妹染色单体发

生交换的连锁遗传。

4、连锁交换规律的实质:由于两个或多个基因位于同一条染色体上,因此,它们在遗传传递种共同行动而表现出完全连锁;又由于在形成配子时的减数分裂中,部分细胞的同源染色体之间发生了交换,所以产生了少量的重组类型,因而表现出不完全连锁。

(遗传学61 页习题,关于双交换计算的求法)

第5章

1、质量性状:具有明显的界限,没有中间类型,表现为不连续变异的性状。

2、数量性状:在性状的表现程度上有一系列的中间过渡类型,不易明确区分的连续变异的性状。

3、遗传力:又称遗传率,是指亲代传递其遗传特性的能力,通常以遗传引起的变异占总变异的百分数来表示。

4、杂种优势的概念:杂交产生的后代在一种或多种性状上优于两个亲本的现象。

第6章

1、细胞质遗传:由细胞质内的基因即细胞质基因决定的遗传现象和遗传规律叫做细胞质遗传。

2、细胞质遗传的特点:

1、正交和反交的遗传表现不同,F1通常只表现母本的性状,所以又称母性遗传。 2. 遗传方式是非孟德尔式的,杂交后代自交或与亲本回交一般不表现一定比例的分离。 3. 细胞质基因不能在某一特定染色体上定

位。

3、雄性不育的类型及特点:(1)核不育型(2)质不育型(3)质核不育型

4、“两系三区”制种法:见课本93 页

第7章

1 、染色体变异类型:缺失、重复、倒位、易位。

2、染色体组的定义: 细胞中的一组非同源染色体,它们在形态结构功能上各不相同,但携带着控制一种生物生长发育,遗传变异的全部信息。这样的一组染色体叫做一个染色体组。

基数(X)表示一个染色体组中所含有的染色体数。

3、同源多倍体:所有染色体均由同一套染色体加倍而成的多倍

体。

4、异源多倍体:体细胞中包含 2 种甚至 3 种不同来源的染色体组的植物体。

5、基因突变的概念:基因内部分子结构发生改变称为基因突变。

第10、11、12、13章

1、色素定义:

2、决定花色的物质成份主要有三大类群:类胡萝卜素,类黄酮,其它色素。

彩斑的定义:植物的花、叶、果实、枝干等部位的异色斑点、条纹统称为彩斑花瓣的彩斑分类:可分为规则和不规则的两大类。

3、规则的彩斑有花环、花心(花眼)、花斑、花肋和花边等多种形

式。

4、叶部彩斑分类:覆轮斑,条带斑,虎皮斑,扫迹斑,切块斑。

5、不规则彩斑出现的原因:1.质体(叶绿体)的分离和缺失2.易变基因的体细胞突变3.位置效应 4. 各种类型的染色体畸变5.嵌合体6.病毒感染。

6、增加花朵的直径的途径:(1)栽培措施的作用(2)增加花朵直径的遗传学途径:诱发多倍体、诱发突变、增加重瓣性、发掘多基因的潜力

7、花的发育:在合适的环境条件下, 营养分生组织转向花序分生组织, 然后花序分生组织转向花分生组织, 继而由花分生组织产

生花器官原基, 最后产生花器官。

8、从形态发生的角度划分成花过程四个阶段:花序分生组织的形成(花序发育)、花分生组织的形成(花芽发育)、花器官原基的形成(花器官发育)、花器官发育成熟(花型发育)

9、ABC模型(遗传学235页)

育种学

1、种质资源的概念:种质资源或称基因资源,遗传资源,是指包含一定的遗传物质,表现一定的优良性状,并能将其遗传性状传递给后代的园林植物资源的总和。

2、种质资源的类别及特点

(1. 按照栽培状况划分:: 野生种质资源,品系,品种。

(2. 按照发生来源划分:野生种质资源,人工种质资源。

(3. 按照地域划分:本地种质资源,外地种质资源。

3、花卉种质资源特点:种类繁多,变异丰富;分布集中;品质优良

4、种质资源保存方式

①离体保存:种子保存;无性繁殖体的保存;组织培养。优点:

缺点:

②就地保存优点:保存原有的生态环境与生物多样性;保存费用较低缺点:易受自然灾害

③迁地保存:优点:基因型集中、比较安全、管理研究方便缺点:费用较高、基因易发生混杂。

5、引种驯化:原分布区和引种区的自然条件差异较大,或由于引种植物的适应范围窄,只有通过改变遗传特性才能适应新环境,称为引种驯化7、驯化引种时应考虑的因素

(一)重视拟引进植物在原产地的观赏价值和经济表现

(二)比较原产地和引种地区的生态条件气候相似理论:生态条件相似的地区驯化引种容易获得成功。

(三)分析影响植物生长发育的主要生态因子温度:年平均温度、临界温度、季节交替特点

(四)、研究植物的生态历史

(五)、拟引进生态类型

8、选择育种的概念:从植物群体中挑选符合人们需要的类型,经过比较,鉴定,从而培育出新品种的方法就是选择育种。

9、混合选择法:从原始的混杂群体,选出类似的优良植株,种子混合播种,次年再与标准品种比较。

医学遗传学知识总结

1.医学遗传学是用遗传学的理论和方法来研究人类病理性状的遗传规律及物质基础的学科 2.遗传病的类型:单基因病多基因病染色体病体细胞遗传病线粒体遗传病 3.遗传因素主导的遗传病单基因病和染色体病 4.遗传和环境因素共同作用的疾病多基因病和体细胞遗传病 5.环境因素主导的疾病非遗传性疾病 6.遗传病由遗传因素参与引起的疾病,生殖细胞或受精卵的遗传物质(染色体或基因)异常所引起的疾病,具有垂直传递的特点 7.染色质和染色体是同一物质在细胞周期不同时期的不同形态结构 8.染色体的化学组成DNA 组蛋白RNA 非组蛋白 9.染色体的基本结构单位是核小体 10.染色质的类型:常染色质异染色质 11.常染色质是间期核纤维折叠盘曲程度小,分散度大,能活跃的进行转录的染色质特点是多位于细胞核中央,不易着色,折光性强12.异染色质是间期核纤维折叠盘曲紧密,呈凝集状态,一般无转录活性的染色质特点:着色较深,位于细胞核边缘和核仁周围。13.结构性异染色质是各类细胞的整个发育过程中都处于凝集状态的染色质 14.兼性异染色质是特定细胞的某一发育阶段由原来的常染色质失去转录活性,转变成凝集状态的异染色质 15.染色体的四级结构:一级结构:核小体;二级结构:螺线管;三

级结构:超螺线管;四级结构:染色单体 16.性别决定基因成为睾丸决定因子;Y染色体上有性别决定基因:SRY 17.基因突变是指基因在结构上发生碱基对组成或排列顺序的改变 18.点突变是基因(DNA链)中一个或一对碱基改变 19.基因突变的分子机制:碱基替换移码突变动态突变 20.碱基替换方式有两种:转换和颠换 21.碱基替换可引起四种不同的效应:同义突变、错义突变、无义突变、终止密码突变 22.移码突变:在DNA编码顺序中插入或缺失一个或几个碱基对从而使自插入或缺失的那一点以下的三联体密码的组合发生改变进而使其编码的氨基酸种类和序列发生改变 23.整码突变:DNA链的密码子之间插入或缺失一个或几个密码子则合成肽链将增加或减少一个或几个氨基酸,但插入或丢失部位的前后氨基酸顺序不变动态突变:DNA分子中碱基重复序列或拷贝数发生扩增而导致的突变(脆性X综合症) 24.系谱是指某种遗传病患者与家庭各成员相互关系的图解 25.系谱分析法是通过对性状在家族后代的分离或传递方式来推断基因的性质和该性状向某些家系成员传递的概率 26.先证者是指家系中被医生或研究者发现的第一个患病个体或具有某种性状的成员 27.单基因遗传病:疾病的发生主要由一对等位基因控制,传递方式

普通遗传学知识点总结

普通遗传学知识点总结 绪论 1.什么是遗传,变异?遗传、变异与环境的关系? (1).遗传(heredity):生物亲子代间相似的现象。 (2).变异(variation):生物亲子代之间以及子代不同个体之间存在差异的现象。遗传和变异的表现与环境不可分割,研究生物的遗传和变异,必须密切联系其所处的环境。 生物与环境的统一,这是生物科学中公认的基本原则。因为任何生物都必须具有必要的环境,并从环境中摄取营养,通过新代进行生长、发育和繁殖,从而表现出性状的遗传和变异。 2.遗传学诞生的时间,标志? 1900年孟德尔遗传规律的重新发现标志着遗传学的建立和开始发展) 第二章遗传的细胞学基础 1.同源染色体和非同源染色体的概念? 答:同源染色体:形态和结构相同的一对染色体; 异源染色体:这一对染色体与另一对形态结构不同的染色体,互称为非同源染色体。 2.染色体和姐妹染色单体的概念,关系? 染色体:在细胞分裂过程中,染色质便卷缩而呈现为一定数目和形态的染色体姐妹染色单体:有丝分裂中,由于染色质的复制而形成的物质 3.染色质和染色体的关系? 染色体和染色质实际上是同一物质在细胞分裂周期过程中所表现的不同形态。 4.不同类型细胞的染色体/染色单体数目?(根尖、叶、性细胞,分裂不同时期(前期、中期)的染色体数目的动态变化?) 答:有丝分裂: 间期前期中期后期末期 染色体数目:2n 2n 2n 4n 2n DNA分子数:2n-4n 4n 4n 4n 2n 染色单体数目:0-4n 4n 4n 0 0 减数分裂: *母细胞初级*母细胞次级*母细胞*细胞 染色体数目:2n 2n n(2n) n DNA分子数:2n-4n 4n 2n n 染色单体数目:0-4n 4n 2(0) 0 5.有丝分裂和减数分裂的特点?遗传学意义?在减数分裂过程中发生的重要遗传学事件(交换、交叉,同源染色体分离,姐妹染色单体分裂?基因分离?)

医学免疫学重点知识总结

免疫学复习 第一章免疫学概论 一、免疫系统的基本功能 免疫(immunity):是免疫系统抵御抗原异物的侵入,识别“自己”和“非己”的抗原,对“自己”的抗原形成天然免疫耐受,对“非己”抗原进行排除,维持机体内环境平衡和稳定的生理功能。抗原的概念稍后会介绍,这里通俗的说,就是机体认为不是自己的,外界来的大分子物质。比如输血,如果输的血型与自身的血型不同,机体就认为这种血是外来的“抗原” 免疫系统包括:免疫器官、免疫细胞、免疫分子 机体的免疫功能概括为:①免疫防御②免疫监视③免疫自身稳定 二、免疫应答的种类及其特点 免疫应答(immune response):是指免疫系统识别和清除抗原的整个过程。分为固有免疫和适应性免疫 ⒈固有免疫(innate immunity):也称先天性免疫或非特异性免疫,是生物长期进化中逐步形成的,是机体抵御病原体入侵的第一道防线 特点:先天具有,无免疫记忆,无特异性。 ⒉适应性免疫(adaptive immunity):亦称获得性免疫或特异性免疫。由T、B淋巴细胞介导,通过其表面的抗原受体特异性识别抗原后,T、B淋巴细胞活化、增殖并发挥免疫效应、清除抗原;须经历克隆增殖; 分为三个阶段:①识别阶段②活化增殖阶段③效应阶段 三个主要特点①特异性②耐受性③记忆性 因需要细胞的活化、增殖等较复杂过程,故所需时间较长 第二章免疫组织与器官 免疫系统(Immune System):由免疫器官、免疫细胞和免疫分子构成。

第一节中枢免疫器官和组织 中枢免疫器官,是免疫细胞发生、分化、发育和成熟的场所 一、骨髓 是各种血细胞和免疫细胞发生及成熟的场所 ㈠骨髓的功能 ⒈各类血细胞和免疫细胞发生的场所 ⒉B细胞分化成熟的场所 ⒊体液免疫应答发生的场所再次体液免疫应答的主要部位 二、胸腺 是T细胞分化、发育、成熟的场所 ㈠胸腺的结构 胸腺分为皮质和髓质。皮质又分为浅皮质区和深皮质区; ㈡胸腺微环境:由胸腺基质细胞、细胞外基质及局部活性物质(如激素、细胞因子等)组成,其在胸腺细胞分化发育过程的不同环节均发挥作用。 ㈢胸腺的功能 ⒈T细胞分化、成熟的场所⒉免疫调节⒊自身耐受的建立与维持 第二节外周免疫器官和组织 外周免疫器官是成熟淋巴细胞定居的场所,也是这些淋巴细胞针对外来抗原刺激启动初次免疫应答的主要部位 一、淋巴结 1. T、B细胞定居的场所⒉免疫应答发生的场所⒊参与淋巴细胞再循环 ⒋过滤作用(过滤淋巴液) 二、脾人体最大的外周免疫器官

专升本医学遗传学练习题(A)

专升本《医学遗传学》练习题(A) 班别:姓名:学号:成绩: 一.选择题 1. 最常见的染色体三体综合征是_______________________; A.18号三体 B. 13号三体 C. 9号三体 D. 21号三体 2. 200个初级母细胞最终形成的卵子数是___________; A. 800; B. 600; C. 400; D. 200; 3. 常染色体隐性遗传病家系中,患者双亲__________; A.都是携带者;B. 都是患者; C. 有一个患者; D. 没有患者; 4. 镰状贫血是由于血红蛋白β链第6位谷氨酸被____________所取代; A. 胱氨酸; B. 缬氨酸; C. 亮氨酸; D. 赖氨酸; 5. 下面__________疾病不属于多基因疾病; A. 高血压; B. 糖尿病; C. 先天性幽门狭窄; D. 毛细管扩张性共济失调; 6. 嵌合型克氏综合征的核型为_____________; A. 46, XY/47, XXY; B. 46, XX/47, XXX; C. 46, XY/47, XYY; D. 46, XX/47, XYY; 7. 如果一种多基因病,其男性发病率高于女性,则其后代复发风险是 A. 男性高于女性; B. 男女相同; C. 女性高于男性; D. 与双亲发病无关; 8. 一患者核型为难47,XXY, 在细胞分裂间期,其性染色质组成为:_______ A. 1个X染色质,1个Y染色质; B. 2个X染色质,1个Y染色质; C. 1个X染色质, 无Y染色质; D. 2个X染色质,1个Y染色质; 10. 一个个体核型为: 46,XY,-14,+t(14q21q), 该个体是___________; A. 正常人; B. 先天愚型患者; C. 平衡易位携带者 D. 以上都不对; 11. 下列疾病除______________外都是多基因病. A. 原发性高血压; B. 精神分裂症; C. 强直性脊柱炎; D. 血友病. 12. 一对夫妇已生出两个苯酮尿症(常染色体隐性遗传病)患儿,这对夫妇再生育 时,生出不患病婴儿的概率是:_______ A. 0; B. 25%; C. 100%; D. 75%;

遗传学重点总结

遗传学 第一章 (一) 名词解释: 1.原核细胞: 没有核膜包围的核细胞,其遗传物质分散于整个细 胞或集中于某一区域形成拟核。如:细菌、蓝藻等。 2.真核细胞:有核膜包围的完整细胞核结构的细胞。多细胞生物 的细胞及真菌类。单细胞动物多属于这类细胞。 3.染色体:在细胞分裂时,能被碱性染料染色的线形结构。在原 核细胞内,是指裸露的环状DNA分子。 4.姊妹染色单体:二价体中一条染色体的两条染色单体,互称为 姊妹染色单体。 5.同源染色体:指形态、结构和功能相似的一对染色体,他们一 条来自父本,一条来自母本。 6.超数染色体:有些生物的细胞中出现的额外染色体。也称为B 染色体。 7.无融合生殖:雌雄配子不发生核融合的一种无性生殖方式。认 为是有性生殖的一种特殊方式或变态。 8.核小体(nucleosome):是染色质丝的基本单位,主要由DNA 分子与组蛋白八聚体以及H1组蛋白共同形成。 9.染色体组型 (karyotype) :指一个物种的一组染色体所具有的 特定的染色体大小、形态特征和数目。 10.联会:在减数分裂过程中,同源染色体建立联系的配对过程。

11.联会复合体:是同源染色体联会过程中形成的非永久性的复合 结构,主要成分是碱性蛋白及酸性蛋白,由中央成分(central element)向两侧伸出横丝,使同源染色体固定在一起。 12.双受精: 1个精核(n)与卵细胞(n)受精结合为合子(2n),将 来发育成胚。另1精核(n)与两个极核(n+n)受精结合为胚乳核 (3n),将来发育成胚乳的过程。 13.胚乳直感:在3n胚乳的性状上由于精核的影响而直接表现父 本的某些性状,这种现象称为胚乳直感或花粉直感。 14.果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现 父本的某些性状,则另称为果实直感。 简述: 2.简述细胞有丝分裂和减数分裂各自的遗传学意义? 答:细胞有丝分裂的遗传学意义:(1)每个染色体准确复制分裂为二,为形成两个子细胞在遗传组成上与母细胞完全一样提供了基础。(2)复制的各对染色体有规则而均匀地分配到两个子细胞中去,使两个细胞与母细胞具有同样质量和数量的染色体。 细胞减丝分裂的遗传学意义:(1)雌雄性细胞染色体数目减半,保证了亲代与子代之间染色体数目的恒定性,并保证了物种相对的稳定性;(2)由于染色体重组、分离、交换,为生物的变异提供了重要的物质基础。 第四章孟德尔遗传 (一) 名词解释:

医学免疫学大题总结

医学免疫学大题总结 问答题。 1. 免疫系统组成与功能。 免疫系统是执行免疫功能的组织系统,包括:(1)免疫器官:由中枢免疫器官(骨髓、胸腺)和外周免疫器官(脾脏、淋巴结和黏膜免疫系统)组成;(2)免疫细胞:主要有T淋巴细胞、B淋巴细胞、中性粒细胞、单核-巨噬细胞、自然杀伤细胞、树突状细胞等;(3)免疫分子:如抗体、补体、细胞因子和免疫细胞表面的多种膜分子,可发挥三种功能:(1)免疫防御:即抗感染免疫,机体针对病原微生物及其毒素的免疫清除作用,保护机体免受病原微生物的侵袭;(2)免疫自稳:机体可及时清除体内衰老或损伤的体细胞,对自身成分处于耐受,以维系机体内环境的相对稳定;(3)免疫监视:机体免疫系统可识别和清除畸形和突变细胞的功能。在某些情况下,免疫过强或低下也能产生对机体有害的结果,如引发超敏反应、自身免疫病、肿瘤、病毒持续感染等。 2.简述内源性抗原的加工、处理、提呈过程。 答:完整的内源性抗原在胞浆中,在LMP的作用下降解成多肽片段,然后多肽片段经TAP1/TAP2选择,转运到内质网,在内质网中与MHC Ⅰ类分子双向选择结合成最高亲和力的抗原肽/MHC分子复合物,该复合物由高尔基体转运到细胞表面,供CD8+T 细胞识别。 3.抗体的生物学活性。

(1)IgV区的功能主要是特异性识别、结合抗原。(2)IgC区的功能a.激活补体;b.细胞亲嗜性:调理作用(IgG与细菌等颗粒性抗原结合,通过IgFc段与吞噬细胞表面相应IgGFc受体结合,促进吞噬细胞对颗粒抗原的吞噬;抗体依赖的细胞介导的细胞毒作用(ADCC,IgG与肿瘤细胞、病毒感染细胞表面结合,通过IgFc段与具有胞毒作用的效应细胞表面相应IgGFc受体结合,从而触发效应细胞对靶细胞的杀伤作用,称为ADCC);介导I II III型超敏反应。(3)各类免疫球蛋白的特性和功能。IgG:是抗感染的主要抗体;是唯一能通过胎盘屏障的抗体,在新生儿抗感染免疫中起重要作用;可与吞噬细胞和NK细胞表面的Fc受体结合,发挥调理作用和ADCC效应;(2)IgM:为五聚体,分子量最大;激活补体能力最强;是初次体液免疫应答中最早出现的抗体,可用于感染的早期诊断;(3)IgA:分泌型IgA(SIgA)为二聚体,主要存在于呼吸道、消化道、泌尿生殖道黏膜表面和乳汁中,在黏膜免疫中发挥主要作用;(4)IgD:是B细胞发育分化成熟的标志;(5)IgE:正常人血清中含量最少,具有很强的亲细胞性,与肥大细胞、嗜碱性粒细胞等具有高度亲和力,可介导Ⅰ型超敏反应的发生。 4.简述决定抗原免疫原性的因素。 答:第一是抗原的异物性,一般来讲,异物性越强,免疫原性越强;第二是抗原的理化性质,包括化学性质、分子量、结构复杂性、分子构象与易接近性、物理状态等因素。一般而言,蛋白质是良好的免疫原,分子量越大,含有的芳香族氨基酸越多,结构越复杂,其免疫原

(完整版)高中生物遗传学知识点总结

高中生物遗传学知识点总结 高中生物遗传学知识点—伴性遗传 高中生物伴性遗传知识点总结: 伴性遗传的最大特点就是性状与性别的关联,这部分常考题目主要有伴性遗传的判断和相关计算。判断是伴性遗传还是常染色体遗传,常用同型的隐形个体与异型的显性个体杂交,根据后代的表现型进行判断。以XY型性别决定的生物为例,如果为伴X隐性遗传,雌性隐性个体与雄性显性个体杂交,如果后代雄性个体中出现了显性性状,即为常染色体遗传,否则即为伴X遗传。 高中生物遗传学知识点—遗传病 常见遗传病的遗传方式有以下这几种:(1)单基因遗传: 常染色体显性遗传:并指、多指; 常染色体隐性遗传:白化病、失天性聋哑 X连锁隐性遗传:血友病、红绿色盲; X连锁显性遗传:抗维生素D佝偻病; Y连锁遗传:外耳道多毛症; (2)多基因遗传:唇裂、先天性幽门狭窄、先天性畸形足、脊柱裂、无脑儿; (3)染色体病:染色体数目异常:先天性愚型病; 染色体结构畸变:猫叫综合症。 单基因遗传:单基因遗传病是指受一对等位基因控制的遗传病,较常见的有红绿色盲、血友病、白化病等。根据致病基因所在染色体的种类,通常又可分四类: 一、常染色体显性遗传病 致病基因为显性并且位于常染色体上,等位基因之一突变,杂合状态下即可发病。致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。此种患者的子女发病的概率相同,均为1/2。此种患者的异常性状表达程度可不尽相同。在某些情况下,显性基因性状表达极其轻微,甚至临床不能查出,种情况称为失显。由于外显不完全,在家系分析时可见到中间一代人未患病的隔代遗传系谱,这种现象又称不规则外显。还有一些常染色体显性遗传病,在病情表现上可有明显的轻重差异,纯合子患者病情严重,杂合子患者病情轻,这种情况称不完全外显。

医学免疫学总结

医学免疫学 第一章医学免疫学概论 传统免疫的概念:免除疾病;针对病原微生物;对机体一定有利。 现代免疫的概念:免疫是机体识别和排除抗原性异物的一种生理功能。 免疫的三大功能: 1、免疫防御:是机体杀死和清除病原微生物、或中和其毒素的保护性免疫,又称抗感染免疫。 2、免疫自稳:免疫系统自身精细的网络调节,使机体内环境维持相对稳定。 3、免疫监视:是免疫系统识别体内不断出现的畸变和突变细胞,并将其清除。 免疫的类型: 一、非特异性免疫(天然免疫) 种系进化中逐步形成;可以遗传;对一切异物均发挥作用。 二、特异性免疫 接触抗原后产生;仅对相应抗原有免疫;有明显个体差异;不能遗传。 其特点比较如下: 非特异性免疫应答特异性性免疫应答 先天后天 迅速潜伏期 非特异性特异性 无免疫记忆有免疫记忆 非特异性免疫的构成因素: (1)屏障作用 a皮肤和粘膜屏障:阻挡微生物侵入(机械阻挡);化学物质抑杀微生物。 b血脑屏障:阻挡微生物或其他大分子异物从血入脑组织或脑脊液。 c胎盘屏障:阻挡母体微生物进入胎儿。 (2)免疫分子 补体系统;防御素;溶酶菌;细胞因子。 (3)参与非特异性免疫的效应细胞 a吞噬细胞:大吞噬细胞——单核-巨噬细胞系统;小吞噬细胞——中性粒细胞、嗜酸性粒细胞。其吞噬过程为:接触、吞入、杀灭。 吞噬作用的后果:完全吞噬——异物被消化破坏;不完全吞噬——异物不被杀灭,反而得到庇护在吞噬细胞内增殖。 B自然杀伤细胞:两种受体——杀伤细胞活化受体、杀伤细胞抑制受体。其主要生物学效应是:1、抗肿瘤作用;2、抗病毒和胞内寄生菌的感染。 免疫器官的结构与功能 中枢免疫器官是免疫细胞发生、分化、发育、成熟的场所。 1、骨髓:各类免疫细胞的发源地;B淋巴细胞分化和成熟的场所;再次体液免疫应答的场所 2、胸腺:结构和大小随年龄增长而发生变化;T淋巴细胞分化和成熟的场所;形成自身耐受。 外周免疫器官是免疫细胞定居、增殖、分化的场所。包括:淋巴结;脾脏;黏膜免疫系统。a淋巴结的作用:T、B细胞定居场所;免疫应答发生的场所;参与淋巴细胞再循环。

医学遗传学试题及答案大全(一)

《医学遗传学》答案 第1章绪论 一、填空题 1、染色体病单基因遗传病多基因遗传病线粒体遗传病体细胞遗传病 2、突变基因遗传素质环境因素细胞质 二、名词解释 1、遗传因素而罹患的疾病成为遗传性疾病或遗传病,遗传因素可以是生殖细胞或受精卵 内遗传物质结构和功能的改变,也可以是体细胞内遗传物质结构和功能的改变。 2、主要受一对等位基因所控制的疾病,即由于一对染色体(同源染色体)上单个基因或 一对等位基因发生突变所引起的疾病。呈孟德尔式遗传。 3、染色体数目或结构异常(畸变)所导致的疾病。 4、在体细胞中遗传物质的改变(体细胞突变)所引起的疾病。 第2章遗传的分子基础 一、填空题 1、碱基替换同义突变错义突变无义突变 2、核苷酸切除修复 二、选择题1、A 三、简答题 1、⑴分离律 生殖细胞形成过程中,同源染色体分离,每个生殖细胞中只有亲代成对的同源染 色体中的一条;位于同源染色体上的等位基因也随之分离,生殖细胞中只含有两 个等位基因中的一个;对于亲代,其某一遗传性状在子代中有分离现象;这就是 分离律。 ⑵自由组合律 生殖细胞形成过程中,非同源染色体之间是完全独立的分和随机,即自由组合 定律。 ⑶连锁和交换律 同一条染色体上的基因彼此间连锁在一起的,构成一个连锁群;同源染色体上 的基因连锁群并非固定不变,在生殖细胞形成过程中,同源染色体在配对联会 时发生交换,使基因连锁群发生重新组合;这就是连锁和交换律。 第3章单基因遗传病

一、填空题: 1、常染色体显性遗传、常染色体隐性遗传、X连锁隐性遗传、X连锁显性遗传 2、系谱分析法 3、具有某种性状、患有某种疾病、家族的正常成员 4、高 5、常染色体、无关 6、1/4、2/3、正常、1/2 7、半合子 8、Y伴性遗传9、环境因素10、基因多效性 11、发病年龄提前、病情严重程度增加12、表现型、基因型 二、选择题——A型题 1、B 2、A 3、C 4、D 5、D 6、A 7、D 8、B B型题 1、A 2、D 3、B 4、C 5、D 6、C 7、B 8、C 三、名词解释: 1、所谓系谱(或系谱图)是从先证者入手,追溯调查其所有家族成员(直系亲属和 旁系亲属)的数目、亲属关系及某种遗传病(或性状)的分布资料绘制而成的图解。 2、先证者是指某个家族中第一个被医生或遗传学研究者发现的罹患某种遗传病的患 者或具有某种性状的成员。 3、表现度是基因在个体中的表现程度,或者说具有同一基因型的不同个体或同一个体 的不同部位,由于各自遗传背景的不同,所表现的程度可有显著的差异。 4、外显率是某一显性基因(在杂合状态下)或纯合隐性基因在一个群体中得以表现的 百分率。 5、由于环境因素的作用使个体的表型恰好与某一特定基因所产生的表型相同或相似, 这种由于环境因素引起的表型称为拟表型。 6、遗传异质性指一种性状可由多个不同的基因控制。 7、一个个体的同源染色体(或相应的一对等位基因)因分别来自其父放或母方,而表 现出功能上的差异,因此所形成的表型也有不同,这种现象称为遗传印记或基因组印记、亲代印记。 8、杂合子在生命的早期,因致病基因并不表达或虽表达但尚不足以引起明显的临床症 状,只有达到一定年龄后才才表现出疾病,这一显性形式称为延迟显性。 9、也称为半显性遗传,指杂合子Dd的表现介于显性纯合子和隐性纯合子dd的表现 型之间,即在杂合子Dd中显性基因D和隐性基因d的作用均得到一定程度的表现。

遗传学(第二版) 刘庆昌 重点整理2

第九章 ★无性繁殖(Asexual reproduction) 指通过营养体增殖产生后代的繁殖方式,其优点是能保持品种的优良特性、生长快。★有性繁殖(Sexual reproduction) 指通过♀、♂结合产生的繁殖方式,其优点是可以产生大量种子和由此繁殖较多的种苗。大多数动植物都是进行有性生殖的。 ★近交(Inbreeding) 指血缘关系较近的个体间的交配,近亲交配。近交可使原本是杂交繁殖的生物增加纯合性(homozygosity),从而提高遗传稳定性,但往往伴随严重的近交衰退现象(inbreeding depression)。 ★杂交(crossing or hybridization) 指亲缘关系较远,基因型不同的个体间的交配。可以使原本是自交或近交的生物增加杂合性(heterozygosity),产生杂种优势。 一、近交的种类 ★自交(Selfing) 指同一个体产生的雌雄配子彼此融合的交配方式,它是近交的极端形式,一般只出现在植物中(自花授粉植物),又称自花受粉或自体受精(self-fertilization)。 ★回交(Back-crossing) 杂交子代和其任一亲本的杂交,包括亲子交配(parent-offspring mating)。 ★全同胞交配(Full-sib mating) 相同亲本的后代个体间的交配,又叫姊妹交。 ★半同胞交配(Half-sib mating) 仅有一个相同亲本的后代个体间的交配。 ★自花授粉植物(Self-pollinated plant) 天然杂交率低(1-4%):如水稻、小麦、大豆、烟草等; ★常异花授粉植物(Often cross -pollinated plant) 天然杂交率常较高(5-20%):如棉花、高粱等; ★异花授粉植物(Cross-pollinated plant): 天然杂交率高(>20-50%)如玉米、黑麦等,在自然状态下是自由传粉。 ★近交衰退(Inbreeding depression) 近交的一个重要的遗传效应就是近交衰退,表现为近交后代的生活力下降,产量和品质下降,适应能力减弱、或者出现一些畸形性状。 ★回交(Backcross)B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent) 未被用来回交的亲本。 B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent)

(完整版)遗传学知识点归纳(整理)

遗传学教学大纲讲稿要点 第一章绪论 关键词: 遗传学 Genetics 遗传 heredity 变异 variation 一.遗传学的研究特点 1. 在生物的个体,细胞,和基因层次上研究遗传信息的结构,传递和表达。 2. 遗传信息的传递包括世代的传递和个体间的传递。 3. 通过个体杂交和人工的方式研究基因的功能。 “遗传学”定义 遗传学是研究生物的遗传与变异规律的一门生物学分支科学。 遗传学是研究基因结构,信息传递,表达和调控的一门生物学分支科学遗传 heredity 生物性状或信息世代传递的现象。 同一物种只能繁育出同种的生物 同一家族的生物在性状上有类同现象 变异variation 生物性状在世代传递过程中出现的差异现象。 生物的子代与亲代存在差别。 生物的子代之间存在差别。 遗传与变异的关系 遗传与变异是生物生存与进化的基本因素。遗传维持了生命的延续。没有遗传就没有生命的存在,没有遗传就没有相对稳定的物种。 变异使得生物物种推陈出新,层出不穷。没有变异,就没有物种的形成,没有变异,就没有物种的进化,遗传与变异相辅相成,共同作用,使得生物生生不息,造就了形形色色的生物界。 二. 遗传学的发展历史 1865年Mendel发现遗传学基本定律。建立了颗粒式遗传的机制。 1910年Morgan建立基因在染色体上的关系。 1944年Avery证明DNA是遗传物质。 1951年Watson和Crick的DNA构型。 1961年Crick遗传密码的发现。 1975年以后的基因工程的发展。 三. 遗传学的研究分支 1. 从遗传学研究的内容划分 进化遗传学研究生物进化过程中遗传学机制与作用的遗传学分支科学 生物进化的机制突变和选择 有害突变淘汰和保留 有利突变保留与丢失 中立突变 DNA多态性 发育遗传学研究基因的时间,空间,剂量的表达在生物发育中的作用分支遗传学。 特征:基因的对细胞周期分裂和分化的作用。 应用重点干细胞的基因作用。 转基因动物克隆动物 免疫遗传学研究基因在免疫系统中的作用的遗传学分支。 重点不是研究免疫应答的过程, 而是研究基因在抗体和抗 原形成和改变中的作用。 2. 从遗传学研究的层次划分 群体遗传学研究基因频率的改变的遗传学分支。

医学免疫学 大题

免疫应答 概念:免疫应答是指机体受抗原性物质刺激后,免疫细胞发生一系列反应以排除抗原性异物的过程。主要包括抗原提呈细胞对抗原的加工、处理和呈递,以及抗原特异性淋巴细胞活化、增殖、分化,进而产生免疫效应的过程。 类型:免疫应答根据其效应机理,可分为B细胞介导的体液免疫和T细胞介导的细胞免疫两种类型。 意义:免疫应答的重要生物学意义是及时清除体内抗原性异物以保持内环境的相对稳定。但在某些情况下,免疫应答也可对机体造成损伤,引起超敏反应或其他免疫性疾病。 三类免疫性疾病。 超敏反应性疾病:由抗原特异应答的T及B细胞激发的过高的免疫反应过程而导致的疾病。分为速发型和迟发型。前者由抗体介导,发作快;后者由细胞介导,发作慢。 免疫缺陷病:免疫系统的先天性遗传缺陷或后天因素所致缺陷,导致免疫功能低下或缺失,易发生严重感染和肿瘤。 自身免疫病:正常情况下,对自身抗原应答的T及B细胞不活化。但在某些特殊情况下,这些自身应答T及B细胞被活化,导致针对自身抗原的免疫性疾病。 抗体与免疫球蛋白的联系。 联系:抗体都是免疫球蛋白而免疫球蛋白不一定都是抗体。原因是:抗体是由浆细胞产生,且能与相应抗原特异性结合发挥免疫功能的球蛋白;而免疫球蛋白是具有抗体活性或化学结构与抗体相似的球蛋白,如骨髓瘤患者血清中异常增高的骨髓瘤蛋白,是由浆细胞瘤产生,其结构与抗体相似,但无免疫功能。因此,免疫球蛋白可看做是化学结构上的概念,抗体则是生物学功能上的概念。 免疫球蛋白的功能。 1与抗原发生特异性结合:主要由Ig的V区特别是HVR的空间结构决定的。在体内表现为抗细菌、抗病毒、抗毒素等生理学效应;在体外可出现抗原抗体反应。 2激活补体:IgG(IgG1、IgG2和IgG3)、IgM类抗体与抗原结合后,可经经典途径激活补体;聚合的IgA、IgG4可经旁路途径激活补体。 3与细胞表面的Fc 受体结合:Ig经Fc段与各种细胞表面的Fc受体结合,发挥调理吞噬、粘附、ADCC及超敏反应作用。 4穿过胎盘:IgG可穿过胎盘进入胎儿体内。 5免疫调节:抗体对免疫应答具有正、负两方面的调节作用。

医学遗传学题库汇总

精品文档 绪论 一、单5选1 [分值单位:1] 1.遗传病特指 A.先天性疾病B.家族性疾病C.遗传物质改变引起的疾病 D.不可医治的疾病E.既是先天的,也是家族性的疾病 答案:C [分值单位:1] 2.环境因素诱导发病的单基因病为 A.Huntington舞蹈病B.蚕豆病C.白化病D.血友病A E.镰状细胞贫血 答案:B [分值单位:1] 3.传染病发病 A.仅受遗传因素控制 B.主要受遗传因素影响,但需要环境因素的调节 C.以遗传因素影响为主和环境因素为辅 D.以环境因素影响为主和遗传因素为辅 E.仅受环境因素影响 答案:D [分值单位:1] 4.提出分子病概念的学者为 A.Pauling B.Garrod C.Beadle D.Ford E.Landsteiner 答案:A [分值单位:1] 5.Down综合征是 A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病答案:C [分值单位:1] 6.脆性X综合征是 A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病答案:C [分值单位:1] 7.Leber视神经病是 A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病答案:D [分值单位:1] 8.高血压是 A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病答案:B

[分值单位:1] 9.遗传病最基本的特征是() A.先天性B.家族性C.遗传物质改变D.罕见性E.不治之症 答案:C [分值单位:1] 10.下列哪种疾病不属于遗传病() . 精品文档 A.单基因病B.多因子病C.体细胞遗传病D.传染病E.染色体病 答案:D [分值单位:1] 11. 提出分离律定律的科学家是 A. Morgan B. Mendel C. Pauling D. Garrod E. Ingram 答案:B [分值单位:1] 12. 提出自由组合律定律的科学家是 A. Morgan B. Mendel C. Pauling D. Garrod E. Ingram 答案:B [分值单位:1] 13.提出连锁互换定律的科学家是 A. Morgan B. Mendel C. Pauling D. Garrod E. Ingram 答案:A [分值单位:1] 14. 在研究尿黑酸尿症的基础上,提出先天性代谢缺陷概念的是 A. Morgan B. Mendel C. Pauling D. Garrod E. Ingram 答案:D [分值单位:1] 15. 对镰状细胞贫血病患者血红蛋白(HbS)电泳分析后,推论其泳动异常是HbS分子结构改变所致,从而提出分子病的概念,提出分子病概念的科学家是 A. Morgan B. Mendel C. Pauling D. Garrod E. Ingram 答案:C [分值单位:1] 16. ______于1953年提出DNA双螺旋结构,标志分子遗传学的开始。 A. Avery 和McLeod B. Watson 和Crick C. Jacob 和Monod D. Khorana 和Holley E. Arber和 Smith 答案:B [分值单位:1] 遗传的细胞与分子基础 一、单5选1 [分值单位:1]

(完整word版)医学遗传学重点归纳

第一章人类基因与基因组 第一节、人类基因组的组成 1、基因是遗传信息的结构和功能单位。 2、基因组是是细胞内一套完整遗传信息的总和,人类基因组包含核基因组和线粒体基因组 单拷贝序列串联重复序列 按DNA序列的拷贝数不同,人类基因组高度重复序列 反向重复序列 重复序列短分散核元件 中度重复序列 长分散核元件 3、多基因家族是指由某一祖先经过重复和所变异产生的一组基因。 4、假基因是基因组中存在的一段与正常基因相似但不能表达的DNA序列。 第二节、人类基因的结构与功能 1、基因的结构包括:(1)蛋白质或功能RNA的基因编码序列。(2)是表达这些结构基因所需要的启动子、增强子等调控区序列。 2、割裂基因:大多数真核细胞的蛋白质编码基因是不连续的编码序列,由非编码序列将编码序列隔开,形成割裂基因。 3、基因主要由外显子、内含子、启动子、增强子、沉默子、终止子、隔离子组成。 4、外显子大多为结构内的编码序列,内含子则是非编码序列。 5、每个内含子5端的两个核苷酸都是GT,3端的两个核苷酸都是AG,这种连接方式称为GT--AG法则。 6、外显子的数目等于内含子数目加1。 7、启动子分为1类启动子(富含GC碱基对,调控rRNA基因的编码)、2类启动子(具有TATA 盒特征结构)、3类启动子(包括A、B、C盒)。 第三节、人类基因组的多态性 1、人类基因组DNA多态性有多种类型,包括单核苷酸多态性、插入\缺失多态性、拷贝数多态性。 第二章、基因突变 突变是指生物体在一定内外环境因素的作用和影响下,遗传物质发生某些变化。基因突变即可发生在生殖细胞,也可发生在体细胞。 第一节、基因突变的类型

医学免疫学简答题论述题大题

1 、简述补体系统的组成与主要生物学功能。 组成: ①补体系统的固有成分 ②补体调节蛋白 ③补体受体 功能:补体旁路途径在感染早期发挥作用,经典途径在感染中、晚期发挥作用。 ①、细胞毒作用:参与宿主抗感染、抗肿瘤; ②、调理作用: C3b/C4b 可作为非特异性调理素介导调理作用; ③、免疫复合物清除作用:将免疫复合物随血流运输到肝脏,被吞噬细胞清除; ④、炎症介质作用:C3a/C5a 的过敏毒素作用、 C5a 的趋化和激活作用、 C2a 的激肽样作用,引起炎症性充血和水肿; ⑤、参与特异性免疫应答。 2 、补体激活的三个途径: 经典途径: ①激活物为抗原或免疫复合物, C1q 识别 ② C3 转化酶和 C5 转化酶分别是 C4b2a 和 C4b2a3b ③其启动有赖于特异性抗体产生,故在感染后期或恢复期才能发挥作用,或参与抵御相同病原体再次感染机体 旁路途径: ①激活物为细菌、真菌或病毒感染细胞等,直接激活 C3 ② C3 转化酶和 C5 转化酶分别是 C3bBb 和 C3bBb3b ③其启动无需抗体产生,故在感染早期或初次感染就能发挥作用 ④存在正反馈放大环 MBL (凝激素)途径: ①激活物非常广泛,主要是多种病原微生物表面的 N 氨基半乳糖或甘露糖,由MBL 识别 ②除识别机制有别于经典途径外,后续过程基本相同

③其无需抗体即可激活补体,故在感染早期或对免疫个体发挥抗感染效应 ④对上两种途径具有交叉促进作用 3 、三条补体激活途径的过程及比较: 经典途径 / 旁路途径 /MBL 途径 激活物:抗原抗体复合物 / 内毒素、酵母多糖、凝聚 IgA/ 病原微生物、糖类配体 参与成分: C1-C9/ C3 、 C5-C9 、 B 、 D 、 P/ C2-C9 、 MBL 、 MASP C3 转化酶: C4b2a/ C3bBb/C4b 2a 、 C3bBb C5 转化酶: C4b 2a 3b/ C3bBb3b/ C4b 2a 3b 、 C3bBb3b 作用:特异性免疫 / 非特异性免疫 / 非特异性免疫 4 、试述补体经典激活途径的全过程。 经典激活途径指主要由 C1q 与激活物( IC )结合后,顺序活化 C1r 、 C1s 、 C4 、C2 、 C3 ,形成 C3 转化酶( C4b2b )与 C5 转化酶( C4b2b3b )的级联酶促反应过程。它是抗体介导的体液免疫应答的主要效应方式。 5 、补体系统可通过以下方式介导炎症反应 激肽样作用: C2a 能增加血管通透性,引起炎症性充血; 过敏毒素作用: C3a 、 C4a 、 C5a 可使肥大细胞、嗜碱性粒细胞脱颗粒,释放组胺等介质,引起炎症性充血、水肿; 趋化作用: C3a ,C5a 能吸引中性粒细胞和单核巨噬细胞等向炎症部位聚集,引起炎性细胞侵润。 6 、简述补体参与宿主早期抗感染免疫的方式。 第一,溶解细胞、细菌和病毒。通过三条途径激活补体,形成攻膜复合体,从而导致靶细胞的溶解 第二,调理作用,补体激活过程中产生的 C3b 、 C4b 、 iC3b 能促进吞噬细胞的吞噬功能。 第三,引起炎症反应。补体激活过程中产生了具有炎症作用的活性片断,其中,C3a C5a 具有过敏毒素作用, C3a C5a C567 具有趋化作用。 7.简述I g生物学功能。 一、V区功能

遗传学复习考试思考题重点汇总及答案

1、医学遗传学概念 答:是研究人类疾病与遗传关系的一门学科,是人类遗传学的一个组成部分。 2、遗传病的概念与特点 答:概念:人体生殖细胞(精子或卵子)或受精卵细胞,其遗传物质发生异常改变后所导致的疾病叫遗传病。 特点:遗传性,遗传物质的改变发生在生殖细胞或受精卵细胞中,包括染色体畸变和基因突变,终生性,先天性,家族性。 3、等位基因、修饰基因 答:等位基因:是位于同源染色体上的相同位置上,控制相对性状的两个基因。 修饰基因:即次要基因,是指位于主要基因所在的基因环境中,对主要基因的表达起调控作用的基因,分为加强基因和减弱基因。 4、单基因遗传病分哪五种?分类依据? 答:根据致病基因的性质(显性或隐性)和位置(在染色体上的),将单基因遗传病分为5种遗传方式。常染色体显性遗传病,常染色体隐性遗传病,X连锁隐性遗传病,X连锁显性遗传病,Y连锁遗传病。 5、什么是系谱分析?什么是系谱? 答:指系谱绘好后,依据单基因遗传病的系谱特点,对该系谱进行观察、分析和诊断遗传方式,进而预测发病风险,这种分析技术或方法称为系谱分析。 6、为什么AD病多为杂合子? 答:1遗传:患者双亲均为患者的可能性很小,所以生出纯合子的概率就很小2突变:一个位点发生突变的概率很小,两个位点都突变的概率更小 7、AD病分为哪六种?其分类依据?试举例。 答:①完全显性遗传:杂合子(Aa)表现型与患病纯合子(AA)完全一样。例:家族性多发性结肠息肉,短指 ②不完全显性遗传:杂合子(Aa)表现型介与患病纯合子(AA)和正常纯合子(aa)之间。例:先天性软骨发育不全(侏儒) ③共显性遗传:一对等位基因之间,无显性和隐性的区别,在杂合子时,两种基因的作用都表现出来。例:人类ABO血型,MN血型和组织相容性抗原 ④条件显性遗传:杂合子在不同条件下,表型反应不同,可能显性(发病),也可隐性(不发病),这种遗传方式叫显性遗传,这种遗传现象叫不完全外显或外显不全。例:多指(趾) ⑤延迟显性遗传: 基因型为杂合子的个体在出生时并不发病,一定年龄后开始发病。例:遗传性小脑性运动共济失调综合征,遗传性舞蹈病 ⑥从(伴)性显性遗传:位于常染色体上的致病基因,由于性别差异而出现男女分布比例或基因表达程度上的差异。例:遗传性斑秃 8、试述不完全显性遗传和不完全外显的异同。 相同点:1、都属于AD,具有AD的共同特点; 2、患者主要为杂合子; 不同点:1、不完全显性遗传是一种遗产方式;不完全外显是一种遗传现像; 2、不完全显性遗传中杂合子全部都发病,但病情轻于患病纯合子; 不完全外显中杂合子部分发病,只要发病,病情与患病纯合子一样; 9、试述AR病的特点 答:1、患者多为Aa婚配所出生的子女,患者的正常同胞中2/3为携带者; 2、病的发病率虽不高,但携带者却有相当数量;

表观遗传学(总结)资料

1.表观遗传学概念 表观遗传是与DNA 突变无关的可遗传的表型变化,且是染色质调节的基因转录水平的变化,这种变化不涉及DNA 序列的改变。表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传学内容包括DNA 甲基化、组蛋白修饰、染色质重塑、遗传印记、随机染色体失活及非编码RNA 等调节。研究表明,这些表观遗传学因素是对环境各种刺激因素变化的反映,且均为维持机体内环境稳定所必需。它们通过相互作用以调节基因表达,调控细胞分化和表型,有助于机体正常生理功能的发挥,然而表观遗传学异常也是诸多疾病发生的诱因。因此,进一步了解表观遗传学机 制及其生理病理意义,是目前生物医学研究的关键切入点。 别名:实验胚胎学、拟遗传学、、外遗传学以及后遗传学 表观遗传学是与遗传学(genetic)相对应的概念。遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。 2.表观遗传学现象 (1)DNA甲基化 是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分每1 Mb就有5—15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。 (2)基因组印记 基因组印记是指来自父方和母方的等位基因在通过精子和传递给子代时发生了修饰,使带有亲代印记的等位基因具有不同的表达特性,这种修饰常为DNA甲基化修饰,也包括组蛋白乙酰化、甲基化等修饰。在形成早期,来自父方和母方的印记将全部被消除,父方等位基因在精母细胞形成精子时产生新的甲基化模式,但在受精时这种甲基化模式还将发生改变;母方等位基因甲基化模式在卵子发生时形成,因此在受精前来自父方和母方的等位基因具有不同的甲基化模式。目前发现的大约80%成簇,这些成簇的基因被位于同一条链上的所调控,该位点被称做印记中心(imprinting center, IC)。印记基因的存在反映了性别的竞争,从目前发现的印记基因来看,父方对的贡献是加速其发育,而母方则是限制胚胎发育速度,亲代通过印记基因来影响其下一代,使它们具有性别行为特异性以保证本方基因在中的优势。印记基因的异常表达引发伴有复杂突变和表型缺陷的多种人类疾病。研究发现许多印记基因对胚胎和胎

相关主题
文本预览
相关文档 最新文档