当前位置:文档之家› 量子力学教程-周世勋-第三章算符

量子力学教程-周世勋-第三章算符

量子力学教程-周世勋-第三章算符
量子力学教程-周世勋-第三章算符

量子力学答案完整版周世勋第三版

找了好久才找到的,希望能给大家带来帮助 量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比, 即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86' =? ?? ? ? ??-?+--?=-kT hc kT hc e kT hc e hc λλλλλπρ ? 011 5=-?+--kT hc e kT hc λλ ? kT hc e kT hc λλ=--)1(5 如果令x=kT hc λ ,则上述方程为 x e x =--)1(5 第一章绪论

这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ nm m m E c hc E h e e 71.01071.031051.021024.12296 6 2=?=????= ==--μμ 在这里,利用了 m eV hc ??=-61024.1 以及 eV c e 621051.0?=μ 最后,对 E c hc e 2 2μλ= 作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学导论习题答案(曾谨言)

第五章 力学量随时间的变化与对称性 5.1)设力学量A 不显含t ,H 为本体系的Hamilton 量,证明 [][]H H A A dt d ,,2 2 2 =- 证.若力学量A 不显含t ,则有[]H A i dt dA ,1 =, 令[]C H A =, 则 [][]H C H C i dt C d i dt A d ,1 ,112 22 -===, [][]H H A A dt d ,, 2 2 2 =-∴ 5.2)设力学量A 不显含t ,证明束缚定态,0=dt dA 证:束缚定态为::() () t iE n n n e t -=ψψ,。 在束缚定态()t n ,ψ,有()()()t E t t i t H n n n n ,,,ψψψ=?? = 。 其复共轭为()()()t r E e r t i t r H n n t iE n n n ,,** * * ψψψ=?? -= 。 ??? ??=n n dt dA dt dA ψψ,()??? ??-??? ??-=??n n n n n n A A A dt d ψψψψψψ,,, ?? ? ??-??? ??-= n n n n H i A A H i dt dA ψψψψ 1,,1 []()()n n n n AH i HA i H A i t A ψψψψ,1 ,1,1 -++??= []()()n n HA AH i H A i ψψ--= ,1,1 [][]() 0,,1=-=A H H A i 。 5.3)(){} x x iaP x a a D -=? ?? ??? ??-=exp exp 表示沿x 方向平移距离a 算符.证明下列形式波函数(Bloch 波函数)()()x e x k ikx φψ=,()()x a x k k φφ=+ 是()a D x 的本征态,相应的本征值为ika e - 证:()()()() ()a x e a x x a D k a x ik x +=+=+φψψ ()()x e x e e ika k ikx ika ψφ=?=,证毕。

量子力学第三章讲解

第三章 力学量用算符表达 §3.1 算符的运算规则 一、算符的定义: 算符代表对波函数进行某种运算或变换的符号。 ?Au v = 表示?把函数u 变成 v , ?就是这种变换的算符。 为强调算符的特点,常常在算符的符号上方加一个“^”号。但在不会引起误解的地方,也常把“^”略去。 二、算符的一般特性 1、线性算符 满足如下运算规律的算符?,称为线性算符 11221122 ???()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。 例如:动量算符?p i =-?, 单位算符I 是线性算符。 2、算符相等 若两个算符?、?B 对体系的任何波函数ψ的运算结果都相同,即??A B ψψ=,则算符?和算符?B 相等记为??A B =。 3、算符之和 若两个算符?、?B 对体系的任何波函数ψ有:?????()A B A B C ψψψψ+=+=,则???A B C +=称为算符之和。 ????A B B A +=+,??????()()A B C A B C ++=++ 4、算符之积 算符?与?B 之积,记为??AB ,定义为 ????()()AB A B ψψ=?C ψ= ψ是任意波函数。一般来说算符之积不满足交换律,即????AB BA ≠。 5、对易关系 若????AB BA ≠,则称?与?B 不对易。 若A B B A ????=,则称?与?B 对易。 若算符满足????AB BA =-, 则称?A 和?B 反对易。 例如:算符x , ?x p i x ?=-?不对易

证明:(1) ?()x xp x i x ψψ?=-?i x x ψ?=-? (2) ?()x p x i x x ψψ?=-?i i x x ψψ?=--? 显然二者结果不相等,所以: ??x x xp p x ≠ ??()x x xp p x i ψψ-= 因为ψ是体系的任意波函数,所以 ??x x xp p x i -= 对易关系 同理可证其它坐标算符与共轭动量满足 ??y y yp p y i - =,??z z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。 ??0??0y y z z xp p x xp p x -=??-=?,??0??0x x z z yp p y yp p y -=??-=?,??0??0x x y y zp p z zp p z -=???-=?? ????0x y y x p p p p -=,????0y z z y p p p p -=,????0z x x z p p p p -= ????0xy yx -=,????0y z z y p p p p -=,????0z x x z p p p p -= 写成通式(概括起来): ??x p p x i αββααβδ-= (1) ????0x x x x αββα-= ????0p p p p αββα-= 其中,,,x y z αβ=或1,2,3 量子力学中最基本的对易关系。 注意:当?与?B 对易,?B 与?对易,不能推知?与?对易与否。 6、对易括号(对易式) 为了表述简洁,运算便利和研究量子力学与经典力学的关系,人们定义了对易括号: ??????[,]A B AB BA ≡- 这样一来,坐标和动量的对易关系可改写成如下形式: ?[,]x p i αβαβδ= 不难证明对易括号满足下列代数恒等式: 1) ????[,][,]A B B A =- 2) ???????[,][,][,]A B C A B A C +=+ 3) ?????????[,][,][,]A BC B A C A B C =+ ,?????????[,][,][,]AB C A B C A C B =+,]?,?[]?,?[B A k B k A = 4) ?????????[,[,]][,[,]][,[,]]0A B C B C A C A B ++= ——称为 Jacobi 恒等式。

量子力学第三章算符

第三章算符与力学量算符 3、1 算符概述 设某种运算把函数u变为函数v,用算符表示为: (3、1-1) 称为算符。u与v中得变量可能相同,也可能不同。例如,,,,,,则,x,,,都就是算符。 1.算符得一般运算 (1)算符得相等:对于任意函数u,若,则。 (2)算符得相加:对于任意函数u,若,则。算符得相加满足交换律。 (3)算符得相乘:对于任意函数u,若,则。算符得相乘一般不满足交换律。如果,则称与对易。 2.几种特殊算符 (1)单位算符 对于任意涵数u,若u=u,则称为单位算符。与1就是等价得。 (2)线性算符 对于任意函数u与v,若,则称为反线性算符。 (3)逆算符 对于任意函数u,若则称与互为逆算符。即,。 并非所有得算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。 对于非齐次线性微分方程:,其中为与函数构成得线性算符,a为常数。其解u可表示为对应齐次方程得通解u。与非齐次方程得特解之与,即。因,所以不存在使。一般说来,在特解中应允许含有对应齐次方程得通解成分,但如果当a=0时,=0,则中将不含对应齐次方程得通解成分,这时存在使,从而由得:。从上述分析可知,就是否存在逆算符还与算符所作用得函数有关。 (4)转置算符 令,则称与得转置算符,就是一个向左作用得算符。若算符表示一般函数(或常数),由于函数得左乘等于右乘,所以函数得转置就等于它本身。 定义波函数与得标积为: (3、1-2) 与得标积以及与得标积为:

若上两式中得与都就是任意波函数,则称上两式中得与为任意标积中得算符。下面考虑在任意标积中得性质。 波函数与在无限远点也应满足连续性条件: [可都等于零],,所以得: 可见在任意标积中,。 (5)转置共轭算符(也称为厄密共轭算符)与厄密算符 转置共轭算符通常也就是向左作用得算符,同时算符本身要取共轭。以标记得转置共轭算符,则若在任意标积中,,则称为厄密算符。即厄密算符得定义为: 或写为(3、1-3) 可以证明,位置算符与动量算符都就是厄密算符。因x就是实数,而,所以。在任意标积中,因,所以。也可以直接从定义式(3、1-3)出发,来证明就是厄密算符。 ,所以就是厄密算符。 (6)幺正算符 若在任意标积中,,则称为幺正算符。设,若为厄密算符,则必为幺正算符。 (7)算符得函数 设函数F(A)得各阶导数都存在,则定义算符得函数F()为: (3、1-4) 其中表示n个得乘幂,即。例如 3、2 算符得对易关系 定义算符得泊松(Poisson)括号为: (3、2-1) 一般说来,例如,这样得关系或称为对易关系式。就是对易关系式中得特例,这时,称与就是对易得。 1.量子力学中基本对易关系 在位置表象中,,即,此式对任意得都成立,所以得: 在动量表象中 ,即,此式对任意得都成立,所以得: 可见在位置表象中与动量表象中都得:

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学(周世勋)课后答案-第一二章

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 如果令x=kT hc λ ,则上述方程为 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 把x 以及三个物理常量代入到上式便知 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:根据德布罗意波粒二象性的关系,可知 λ h P =。 所考虑的粒子是非相对论性的电子(动能eV c m E e k 621051.0?=<<),满足 e k m p E 22 =, 因此利用非相对论性的电子的能量—动量关系式,有 在这里,利用了 m eV hc ??=-61024.1, eV c m e 621051.0?=。 最后,对 E m h e 2= λ 作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。 自然单位制: 在粒子物理学中,利用三个普适常数(光速c ,约化普朗克常数,玻耳兹曼常数 k )来减少独立的基本物理量的个数,从而把独立的量纲减少到只有一种(能量量纲,常用单位eV )。例:1nm=5.07/keV ,1fm=5.07/GeV , 电子质量m=0.51MeV . 核子(氢原子)质量M=938MeV ,温度5 18.610K eV -=?.

曾谨言《量子力学导论》习题解答

曾谨言《量子力学导论》习题解答第三章一维定态问题 3.1)设粒子处在二维无限深势阱中, ,,,,0, 0xa,0yb,V(x,y), ,,, 其余区域, a,b求粒子的能量本征值和本征波函数。如,能级的简并度如何, 解:能量的本征值和本征函数为 2222nn,,yx(,)E, nn22xy2mab ny,nx,2yx,sinsin, n,n,1,2,? ,nnxyxyabab 22,,22a,bE,(n,n)若,则 nnxy2xy2ma ny,nx,2yx,sinsin ,nnxyaaa n,10,n,5这时,若n,n,则能级不简并;若n,n,则能级一般是二度简并的(有偶然简并情况,如xyxyxy ''n,11,n,2与) xy 3.2)设粒子限制在矩形匣子中运动,即 ,,,,,,0, 0xa,0yb,0zc,,V(x,y,z) ,,, 其余区域, a,b,c求粒子的能量本征值和本征波函数。如,讨论能级的简并度。 解:能量本征值和本征波函数为 22222nnn,,yxzE, ,(,,)222nnnm2abcxyz ny,nxnz,,8yxz,sinsinsin,,nnn abcabcxyz n,n,n,1,2,3,?xyz a,b,c当时, 22,,222 E,(n,n,n)xyz2nnn2maxyz 32ny,nxny,,2,,yxz ,sinsinsin,,,nnnaaaaxyz,,

n,n,n时,能级不简并; xyz n,n,n三者中有二者相等,而第三者不等时,能级一般为三重简并的。 xyz 三者皆不相等时,能级一般为6度简并的。 n,n,nxyz 222222,5,6,8,3,4,10(1,7,9),(1,3,11)如 ,22222210,12,16,6,8,20(1,5,10),(3,6,9), 3.3)设粒子处在一维无限深方势阱中, 0, 0,x,a,V(x,y), ,,, x,0,x,a, 证明处于定态的粒子 ,(x)n 2aa62x,,,, (x-x)(1) 22212n,讨论的情况,并于经典力学计算结果相比较。n , , 证:设粒子处于第n个本征态,其本征函数 ,2n(x),sinx. ,naa 2aa2n,a分部2 (1) ,,sin xxdxxxdx,n,,002aa 2a2a2222(,),,,,, xxxxxdxn,04 2a212n,xa2,,(1,cos), xdx ,024aa 2a6,,(1) (2) 22n,12 在经典情况下,在区间粒子除与阱壁碰撞(设碰撞时间不计,且为弹性碰撞,即粒子碰撞后仅运动方向改,,0, a dxxxdx,,变,但动能、速度不变)外,来回作匀速运动,因此粒子处于范围的几率为,故 a adxa , (3) ,,,xx,02a 2adxa22,,,xx, ,03a 222aa22() (4) x,x,x,x,,34 当时,量子力学的结果与经典力学结果一致。 n,,

量子力学教程(周世勋)课后答案详解-第一二章

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(| |5 2-?=?===kT hc v v e hc c d c d d dv λνλ λ πλλρλ λλρλ ρρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

量子力学导论习题答案(曾谨言)

第三章一维定态问题 3.1)设粒子处在二维无限深势阱中, ?? ?∞<<<<=其余区域 ,0,0 ,0),(b y a x y x V 求粒子的能量本征值和本征波函数。如b a = ,能级的简并度如何? 解:能量的本征值和本征函数为 m E y x n n 222π = )(2 22 2b n a n y x + ,2,1, ,sin sin 2== y x y x n n n n b y n a x n ab y x ππψ 若b a =,则 )(22 22 22y x n n n n ma E y x +=π a y n a x n a y x n n y x ππψsin sin 2= 这时,若y x n n =,则能级不简并;若y x n n ≠,则能级一般是二度简并的(有偶然简并情况,如5,10==y x n n 与2,11' ' ==y x n n ) 3.2)设粒子限制在矩形匣子中运动,即 ? ??∞<<<<<<=其余区域 ,0,0,0 ,0),,(c z b y a x z y x V 求粒子的能量本征值和本征波函数。如c b a ==,讨论能级的简并度。 解:能量本征值和本征波函数为 )(222 2 222 22c n b n a n m n n n E z y x z y x + +=π , ,3,2,1,, , sin sin sin 8 == z y x z y x n n n c z n b y n a x n abc n n n z y x πππψ 当c b a ==时, )(2222222z y x n n n ma n n n E z y x ++=π a y n a y n a x n a n n n z y x z y x πππψsin sin sin 22 3 ??? ??= z y x n n n ==时,能级不简并; z y x n n n ,,三者中有二者相等,而第三者不等时,能级一般为三重简并的。

量子力学第三章算符

第三章 算符和力学量算符 算符概述 设某种运算把函数u 变为函数v ,用算符表示为: ?Fu v = () ? F 称为算符。u 与v 中的变量可能相同,也可能不同。例如,11du v dx =,22xu v =3 v =, (,) x t ?∞ -∞ ,(,)x i p x h x e dx C p t -=,则d dx ,x dx ∞ -∞ ,x i p x h e -?都是算符。 1.算符的一般运算 (1)算符的相等:对于任意函数u ,若??Fu Gu =,则??G F =。 (2)算符的相加:对于任意函数u ,若???Fu Gu Mu +=,则???M F G =+。算符的相加满足交换律。 (3)算符的相乘:对于任意函数u ,若???FFu Mu =,则???M GF =。算符的相乘一般不满足交换律。如果????FG GF =,则称?F 与?G 对易。 2.几种特殊算符 (1)单位算符 对于任意涵数u ,若?I u=u ,则称?I 为单位算符。?I 与1是等价的。 (2)线性算符 对于任意函数u 与v ,若**1212 ???()F C u C v C Fu C Fv +=+,则称?F 为反线性算符。 (3)逆算符 对于任意函数u ,若????FGu GFu u ==则称?F 与?G 互为逆算符。即1??G F -=,111??????,1F G FF F F ---===。 并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。 对于非齐次线性微分方程:?()()Fu x af x =,其中?F 为d dx 与函数构成的线性算符,a 为常数。

量子力学答案-周世勋

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量) ; 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86' =???? ? ?? -?+--?=-kT hc kT hc e kT hc e hc λλλλλπρ ? 011 5=-?+--kT hc e kT hc λλ ? kT hc e kT hc λλ=--)1(5 如果令x=kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ

量子力学周世勋习题解答第四章

第四章习题解答 4.1.求在动量表象中角动量x L 的矩阵元和2x L 的矩阵元。 解:? ??'-'-=τπd e p z p y e L r p i y z r p i p p x )??()21()(3 ? ??'--=τπd e zp yp e r p i y z r p i )()21(3 ???'-??-??-=τπd e p p p p i e r p i z y y z r p i ))(()21(3 ? ?'-??-??-=τπd e p p p p i r p p i z y y z ) (3)21)()(( )()(p p p p p p i y z z y '-?? -??= δ ?''=τψψd L x L p x p p p x 2 *2)()( ? ??'--=τπd e p z p y e r p i y z r p i 23)??()21( ???'---=τπd e p z p y p z p y e r p i y z y z r p i )??)(??()21(3 ?''-??-??-=τπd e p p p p i p z p y e r p i y z z y y z r p i ))()(??()21(3 ???'--??-??=τπd e p z p y e p p p p i r p i y z r p i y z z y )??()21)()((3 ??'-??-??-=τπd e p p p p r p p i y z z y )(322 )21()( )()(22p p p p p p y z z y '-??-??-= δ # 4.2 求能量表象中,一维无限深势阱的坐标与动量的矩阵元。 解:基矢:x a n a x u n π sin 2)(= 能量:2 2 222a n E n μπ = 对角元:2sin 202 a xdx a m x a x a mm ==?π 当时,n m ≠ ???=a mn dx a x x a m a x 0)(sin )(sin 2π

最新量子力学导论习题答案(曾谨言)(3)

第九章 力学量本征值问题的代数解法 9—1) 在8.2节式(21)中给出了自旋(2 1)与轨迹角动量(l )耦合成总角动量j 的波函数j ljm φ,这相当于2 1,21===s j l j 的耦合。试由8.2节中式(21)写出表9.1(a )中的CG 系数 jm m m j 21121 解:8.2节式(21a )(21b ): ()21),0( 21+=≠-=m m l l j j j ljm φ???? ??-+++=+11121 lm lm Y m l Y m l l () ????? ??-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a ) ()21-= j l j ljm φ???? ??++---=+11121 lm lm Y m l Y m l l () ????? ??+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b ) ()21++j l 此二式中的l 相当于CG 系数中的1j ,而2 12==s j ,21,~,,~21±=m m m m j 。 因此,(21a )式可重写为 jm ∑=222112 211m jm m j m j m j m j 2 12121212121212111111111--+=m j jm m j m j jm m j ??????? ? ??-???? ??++-???? ??++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m 时 , 21111112212121??? ? ??++=+j m j jm m j 而2 12-=m 时,

第三章 量子力学导论

闽江学院 教案 课程名称:原子物理 课程代码: 21100430 授课专业班级: 2010级物理学(师范类)授课教师:翁铭华 系别:电子系 2012年8 月30 日

第三章量子力学导论 教学目的和要求: 1.了解量子化物质波粒二象性的概念。 2.理解测不准原理; 3.掌握波函数及物理意义; 4.了解薛定谔方程;了解量子力学问题的几个简例; 5.了解氢原子的薛定谔方程;了解量子力学对氢原子的描述。 教学重点和难点: 1. 教学重点:波函数及统计解释 2.教学难点:波函数及统计解释 教学内容: 1. 玻尔理论的困难 2. 波粒二象性 3. 不确定关系 4. 波函数及其统计解释 5. 薛定谔方程及应用 19世纪末的三大发现(1896年发现放射性,1897年发现电子,1900年提出量子化概念)为近代物理学的序幕。1905年爱因斯坦在解释光电效应时提出光量子概念,1913年玻尔将普朗克-爱因斯坦量子概念用于卢瑟福模型,提出量子态观念,成功地解释了氢光谱。此外,利用泡利1925年提出的不相容原理和同年乌仑贝克、古兹米特提出的电子自旋假说,可很好地解释元素周期性、塞曼效应的一系列实验事实。至此形成的量子论称为旧量子论,有严重的缺陷。 在“物质粒子的波粒二象性”思想的基础上,于1925-1928年间由海森堡、玻恩、薛定谔、狄拉克等人建立了量子力学,它与相对论成了近代物理学的两大理论支柱。 量子力学的本质特征在1927年海森堡提出的不确定关系中得到明确的反映,它是微观客体波粒二象性的必然结果。量子力学的主要内容:1)相关的几个重要实验;2)有别于经典物理的新思想; 3)解决具体问题的方法。 §3-1玻尔理论的困难 玻尔理论将微观粒子视为经典力学中的质点,把经典力学的规律用于微观粒子,使其理论中有难以解决的内在矛盾,故有重大缺陷。如:为什么核与电子间的相互作用存在,但处于定态的加速电子不辐射电磁波?电子跃迁时辐射(或吸收)电磁波的根本原因何在?……(薛定谔的非难“糟透的跃迁”:在两能级间跃迁的电子处于什么状态?) 玻尔理论在处理实际问题时也“力不从心”,如无法解释氢光谱的强度及精细结构,无法解释简单程度仅次于氢原子的氦光谱,无法说明原子是如何组成分子及构成液体和固体。…… §3-2波粒二象性 1.经典物理中的波和粒子 经典物理学中,波和粒子各自独立,在逻辑上不允许同时用这两个概念描写同一现象。粒子可视为质点,具有定域性,有确定的质量、动量、速度和电荷等,波可以在空间无限扩展,波有确定

量子力学 第三章习题与解答

第三章习题解答 3.1 一维谐振子处在基态t i x e x ωαπ αψ2 2 22)(-- =,求: (1)势能的平均值222 1 x U μω= ; (2)动能的平均值μ 22 p T =; (3)动量的几率分布函数。 解:(1) ?∞∞--==dx e x x U x 2 222222121απ αμωμω μωμωππαμω ?==?=2 2 22221111221 ω 41= (2) ?∞∞-==dx x p x p T )(?)(2122 *2ψψμμ ?∞∞ ----=dx e dx d e x x 2 22 221 22 221)(21ααμπα ?∞ ∞ ---=dx e x x 2 2)1(22222αααμ πα ][22 2222222??∞∞ --∞∞---=dx e x dx e x x ααααμ πα ]2[23222απ ααπαμ πα?-= μω μαμαπαμ πα? ===442222222 ω 4 1 = 或 ωωω 414121=-= -=U E T (3) ?=dx x x p c p )() ()(*ψψ 21 2 221 ?∞ ∞ ---=dx e e Px i x απ απ ? ∞ ∞ ---= dx e e Px i x 222 1 21απ απ

? ∞ ∞--+-=dx e p ip x 2222)(21 21 αααπ απ ? ∞ ∞ -+-- =dx e e ip x p 2222 22)(212 21 αααπαπ πα π απα2 2122 p e - = 2 2221 απ αp e - = 动量几率分布函数为 2 22 1 )()(2 απ αωp e p c p - == # 3.2.氢原子处在基态0/30 1 ),,(a r e a r -=π?θψ,求: (1)r 的平均值; (2)势能r e 2 -的平均值; (3)最可几半径; (4)动能的平均值; (5)动量的几率分布函数。 解:(1)?θθπτ?θψππd rd d r re a d r r r a r sin 1),,(0 220 /230 2 0??? ?∞ -= = ?∞-=0 /233004dr a r a a r 04 03 023 2!34a a a =??? ? ??= 22 03020 /23 20 20 /23 2 20 2/23 2 2214 4 sin sin 1)()2(0 00a e a a e dr r e a e d drd r e a e d drd r e r a e r e U a r a r a r -=??? ? ??-=-=-=-=-=? ??? ??? ∞ -∞ -∞ -ππππ?θθπ?θθπ

量子力学(周世勋)课后答案-第一二章电子版本

量子力学(周世勋)课后答案-第一二章

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(|| 5 2 -?=?===kT hc v v e hc c d c d d dv λνλλ πλλρλ λλρλ ρρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λ ρ

对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 01151186=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ ? 0115=-?+ --kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

量子力学导论第8章答案

第八章 自旋 8.1) 在z σ表象中,求x σ的本征态。 解:在z σ表象中,x σ的矩阵表示为:x σ ??? ? ? ?=0110 设x σ的本征矢(在z σ表象中)为??? ? ??b a ,则有??? ? ??=???? ?????? ??b a b a λ0110 可得a b λ=及b a λ= 1,12±==∴λλ 。 ,1=λ 则; b a = ,1-=λ 则b a -= 利用归一化条件,可求出x σ的两个本征态为 ,1=λ ;1121???? ?? ,1-=λ ??? ? ??-1121 。 8.2) 在z σ表象中,求n ?σ的本征态,()??θ?θcos ,sin sin ,cos sin n 是()?θ,方向的单位矢. 解:在z δ表象中,δ的矩阵表示为 x σ ??? ? ? ?=0110, y σ??? ? ? ?-=00 i i , z σ??? ? ? ?-=1001 (1) 因此, z z y y x x n n n n n σσσσσ++=?= ??? ? ??-=???? ?? -+-=-θθθθ ?? cos sin sin cos i i z y x y x z e e n in n in n n (2) 设n σ的本征函数表示为Φ??? ? ??=b a ,本征值为λ,则本征方程为 ()0=-φλσn ,即 0cos sin sin cos =? ??? ?????? ??----b a e e i i λθθθλ θ? ? (3) 由(3)式的系数行列式0=,可解得1±=λ。 对于1=λ,代回(3)式,可得 x y x y x x i i n in n in n n e e b a --=++==-=--112sin 2cos cos 1sin ?? θθ θθ 归一化本征函数用()?θ,表示,通常取为 ()???? ? ?=? θθ ?θφi e 2sin 2cos ,1或??? ? ? ? ?-222sin 2cos ? ? θθi i e e (4)

量子力学导论第12章答案

第十二章 散射 12-1)对低能粒子散射,设只考虑s 波和p 波,写出散射截面的一般形式。 解: ()()()2 2 c o s s i n 121∑∞ =+= l l l i P e l k l θδθσδ 只考虑s 波和p 波,则只取1,0=l ,于是 ()()()2 11002 cos sin 3cos sin 11 θ δθδθσδδP e P e k i i += ()1cos 0=θP , (),c o s c o s 1θθ=P 代入上式,得 ()2 102 cos sin 3sin 11 θ δδθσδδi i e e k += ()2 2 12 101002 2cos sin 9cos cos cos sin 6sin 1θ δθδδδδδ+-+=k 2 2 2102 cos cos 1θ θA A A k ++= 其中 020sin δ=A ,()10101cos cos sin 6δδδδ-=A ,122sin 9δ=A 。 12-2)用波恩近似法计算如下势散射的微分截面: (a ) ()?? ?><-=. , 0;,0a r a r V r V (b ) ()2 0r e V r V α-= (c ) ()r e r V αγ κ-= (d ) ()().r r V γδ= 解:本题的势场皆为中心势场,故有 ()() ? ∞ - =0 ' '' ' 2 sin 2dr qr r V r q u f θ ,2 sin 2θ k q = (1) ()() () 2 ' ' ' ' 2 4 22sin 4? ∞ = =dr qr r V r q u f θθσ (1) (a )()()qa qa qa q V dr qr V r a cos sin sin 2 00 ' ' 0' -- =-? ()()2 6 4 2 02cos sin 4 qa qa qa q V u -= ∴ θσ (b )()? ? ∞ --∞ --= ??? ??0 ' '00 ''0' ' ' 2 '2'2sin dr e e e r i V dr qr e V r iqr iqr r r αα

相关主题
文本预览
相关文档 最新文档