当前位置:文档之家› 影响蒸汽涡街流量计计量准确性的因素有哪些

影响蒸汽涡街流量计计量准确性的因素有哪些

影响蒸汽涡街流量计计量准确性的因素有哪些

影响蒸汽涡街流量计计量准确性的因素有哪些

如何正确的使用好蒸汽涡街流量计仪表这个是一个非常有复杂性的问题,蒸汽一种环保能源,到如今的发展是一种很好的利用资源得到了广泛的使用。当然随着蒸汽使用量的不断增加,那幺各种类型的蒸汽涡街流量计也是不断的研究生产,以满足企业的需求。我们要如何做好蒸汽涡街流量计的使用工作呢?以保证它的使用价值。

?由于涡街流量计输出的脉冲频率信号不受流体物性和组分变化的影响,即仪表系数在一定雷诺数范围内仅与旋涡发生体及管道的形状尺寸等有关,所以测量的体积流量比较精确。但是作为流量计在物料平衡及能源计量中需检测质量流量,这时流量计的输出信号应同时监测体积流量和流体密度,流体物性和组分对流量计质量流量还是有直接影响的。用于测量蒸汽流量的涡街流量计为体积流量计,首先测得体积流量,然后通过蒸汽的密度计算质量流量,也就是假定蒸汽为完全干燥。但是,蒸汽并非完全干燥,如果不考虑蒸汽干度的影响,得出的数据会低于实际的流量。因此流量计的二次仪表(流量积算仪)应该具有设置饱和蒸汽干度的功能。但实际上几乎没有可以设置干度这个参数的二次表,因为在实际工况下确定蒸汽的干度非常困难。所以如果能够改进蒸汽流量计入口处的蒸汽品质(提高蒸汽干度值,尽量使蒸汽为过热蒸汽),则能改进蒸汽流量计的测量精度。

?蒸汽涡街流量计安装示意图

?1、蒸汽流量计zhanfengdesign是使用的测量范围的影响:每一个产品有的他的使用范围和承受压力,蒸汽涡街流量计也是如此,在合适的地点、合适的范围选择合适是的流量计才能够产生最大的使用价值。在使用中要准确的

简述各种流量计原理及特点

简述各种流量计原理及特点(1) 1. 简述 目前工程实际中,流量测量方法及流量仪表的种类繁多,至今为止,可供工业用的流量仪表种类多达数十余种。在流量仪表的家族中,每种产品都有它特定的适用性及使用局限性。按测量对象划分就有封闭管道和明渠两大类:按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。 本文简要介绍目前最常用流量计分类法,主要有:差压式流量计、容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计质量流量计等分别简述各种流量计的原理及特点。 2. 差压式流量计 差压式流量计是通过安装于是工业管道中流量检测元件产生的差压,将已知流体条件和检测件与管道的几何尺寸来计差压式流量计算流量计。 差压式流量计由一次检测件及二次仪表(差压转换器或变送器和流量显示仪表)组成。以检测件形式划分差压式流量计分类,有孔板流量计、文丘里流量计、均速管流量计等。二次仪表为各种机械、电子、机电一体式差压式流量计、差压变送器及流量显示仪表。差压式流量仪表是流量仪表大家族中应用最广泛的一中流量仪表,目前国内外已系列化、通用化、标准化,差压式流量计既可单独测量流量参数,也可测量其它参数(压力、物位、密度)等。差压式流量计的检测件按其作用原理可分为:节流装置、水利阻力、动压头式、动压头增益及射流式、以及离心式等几大类。 检测件有标准化型式或非标准两大类。标准型检测元件是以标准文件设计、制造、安装和使用,无需经实流标定即可确定其流量值和估算测量误差。而非标型检测元件一般尚未列入国际标准中检测元件。差压式流量计也是应用最广泛的一种流量仪表,在各种流量计使用量中占据首位。 主要优点是:(1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;(2)应用范围广泛,至今尚无任何一流量计可与之比拟;(3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。 主要缺点是:(1)测量精度普遍偏低:(2)范围度窄,一般仅3:1~4:1; (3)现场安装条件要求高;(4)压损大(指孔板、喷嘴等)。

浅谈流量计的发展和现状

浅谈流量计的发展和现状 一、概述 传统的流体整流器经长期的研究与实践已趋于成熟,它一般采用阻隔体分隔流道来调整管道内的速度分布,以达到整流的目的;这一类整流器主要用于实验室和流量标定系统。但这种方法易引起污物堵塞和增加阻力损失,所以在工业管道上很少采用。涡街流量计由于其独特的性能,一直受到人们重视,并己到了广泛的应用,但仍有两个方面的问题困扰着人们,一是由于仪表上游管道阻流件的干扰,流场发生畸变,影响旋涡正常拨离。为了克服流场扰动,仪表前需要配装较长直管道(一般为15~40倍的工艺管内径的长度),而在实际现场是很难满足的。二是,涡街流量计主要特点之一是量程宽,一般在10:1左右,应该说这样宽的测量范围应属比较优良的性能,但在实际工业应用中,最大流量远低于仪表的上限值,最小流量又往往会低于仪表的下限值,一些仪表经常工作在下限流量附近,造成仪表的计量准确度下降,这时信号较弱,仪表的抗干扰能力也下降。为了测量小流量,人们往往采用内腔形状为园台的传统变径管,经过缩径提高测量处的流速。使涡街流量计工作在正常流速范围内,但这种变径方式,结构尺寸大(一般长度为工艺管内径的3~5倍),同时,由于流体流经变径管,在变径处产生大量旋转流团,增大局部阻力损失,也使流场发生畸变。所以必须在变径管与仪表之间加装大于15倍工艺管内径长度的直管道进行整流,且增加了沿程阻力损失(如图1所示),这种方法增加施工成本,也给加工、安装带来不便。 (图1)纵端面采用特殊形线的变径整流器(己申报国家专利),具有整流,提高流速及改变流速分布的多重作用,其结构尺寸小,长度仅为工艺管内径的1/3,可以直接卡装在仪表的两端,不仅不需要另外附加直管道,而且可以降低仪表对上游直管道的要求。实验表明:仪表上游阻力件为一个平面内的两个90°弯头在一般情况下,涡街流量计上游侧应加装大于20倍管道内径长度的直管道,而涡街流量计加装了变径整流器大大降低了对上游测直管道长度的要求,其阻力远远小于传统的变径管。更主要的是,可使下限流速降为原来的1/3,量程比提高到15:1以上。’

各种流量计的原理

一、按测量原理分类 (1)力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。 (2)电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。 (3)声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。 (4)热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。 (5)光学原理:激光式、光电式等是属于此类原理的仪表。 (6)原于物理原理:核磁共振式、核幅射式等是属于此类原理的仪表。 (7)其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。 二、按流量计结构原理分类 按当前流量计产品的实际情况,根据流量计的结构原理,大致上可归纳为以下几种类型: 1. 容积式流量计 容积式流量计相当于一个标准容积的容器,它接连不断地对流动介质进行度量。流量越大,度量的次数越多,输出的频率越高。容积式流量计的原理比较简单,适于测量高粘度、低雷诺数的流体。根据回转体形状不同,目前生产的产品分:适于测量液体流量的椭圆齿轮流量计、腰轮流量计(罗茨流量计)、旋转活塞和刮板式流量计;适于测量气体流量的伺服式容积流量计、皮膜式和转简流量计等. 2.叶轮式流量计 叶轮式流量计的工作原理是将叶轮置于被测流体中,受流体流动的冲击而旋转,以叶轮旋转的快慢来反映流量的大小。典型的叶轮式流量计是水表和涡轮流量计,其结构可以是机械传动输出式或电脉冲输出式。一般机械式传动输出的水表准确度较低,误差约±2%,但结构简单,造价低,国内已批量生产,并标准化、通用化和系列化。电脉冲信号输出的涡轮流量计的准确度较高,一般误差为±0.2%一0.5%。 3.差压式流量计(变压降式流量计) 差压式流量计由一次装置和二次装置组成.一次装置称流量测量元件,它安装在被测流体的管道中,产生与流量(流速)成比例的压力差,供二次装置进行流量显示。二次装置称显示仪表。它接收测量元件产生的差压信号,并将其转换为相应的流量进行显示.差压流量计的一次装置常为节流装置或动压测定装置(皮托管、均速管等)。二次装置为各种机械式、电子式、组合式差压计配以流量显示仪表.差压计的差压敏感元件多为弹性元件。由于差压和流量呈平方根关系,故流量显示仪表都配有开平方装置,以使流量刻度线性化。多数仪表还设有流量积算装置,以显示累积流量,以便经济核算。这种利用差压测量流量的方法历史悠久,比较成熟,世界各国一般都用在比较重要的场合,约占各种流量测量方式的70%。发电厂主蒸汽、给水、凝结水等的流量测量

智能涡街流量计说明书

一、概述 涡街流量计是根据卡门涡街理论,利用了流体的自然振动原理,以压电晶体或差动电容作为检测部件而制成的一种速度式流量仪表。 该仪表采用独特的差动技术,配合隔离、屏蔽、滤波等措施,克服了同类产品抗震性差、小信号数据紊乱等问题,并采用了独特的检测探头封装新技术和防护措施,保证了产品的可靠性。产品有管道式和插入式两种结构型式,每种型式都有高温、高压、防腐、防爆、温压补偿一体型等规格,又有整体和分体结构,以适应不同的测量介质和安装环境。 该仪表具有量程比宽,精度高,安装维护方便和介质适应性广等一系列优点。可广泛应用于石油化工、冶金机械、食品、造纸,以及城市管道供热、供水、煤气等行业的各种低黏度液体、气体、蒸汽等单相流体的工艺计量和节能管理。 二、工作原理 涡街流量计根据卡门涡街理论,在流体中设置旋涡发生体,当流体流经旋涡发生体时,它的两侧就形成了交替变化的两排旋涡,这种旋涡被称为卡门涡街。斯特罗哈尔在卡门涡街理论的基础上又提出了卡门涡街的频率与流体的流速成正比,并给出了频率与流速的关系式: f = St × V/d 式中: f 涡街发生频率 (Hz) St 斯特罗哈尔系数(常数) d 旋涡发生体迎流面宽度 V旋涡发生体两侧的平均流速(m/s ) 图1 这些交替变化的旋涡就形成了一系列交替变化的负压力,该压力作用在检测探头上,便产生一系列交变电信号,经过检测放大器转换、整形、放大处理后,输出脉冲频率信号,或进一步转换成与流量成正比的4 ~ 20mA.DC标准电流信号。 三、基本特点 ●安装简便,维护十分方便。 ●应用范围广,压力损失小,运行费用低。 ●结构简单牢固,无可动部件,使用寿命长。 ●采用抗机械振动,抗冲击和抗脏污的结构新设计。 ●从检测探头到运放电路实现了高度的互换性和通用性。 ●可现场显示,也可远距离传输,还可与计算机控制系统联网。 ●检测元件不直接接触测量介质,尤其适合恶劣环境下的流量测量。 ●操作简单,全部参数设定和调试在出厂前已完成,一般通电后即可正常工作。

智能涡街流量计使用说明书(三线制)

智能涡街流量计使用说明书

目录 一,产品概述 二,测量原理 三,结构与技术参数 四,流量计的选型 五,流量计的安装 六,流量计的电气连接 七,故障排除与日常维护

一、 产品概述 1. 概述 涡街流量仪表是根据卡门涡街理论,利用了流体的自然振动原理,以压电晶体或差动电容作为检测部件而制成的一种速度式流量仪表。 该仪表具有无可动部件、测量范围度大、介质适应性广、测量精度高、检定周期长、 传输信号距离远、压力损失小、结构简单、运行可靠、使用寿命长、安装维护方便等许多显著优点。可广泛应用于石油化工、治金机械、食品、造纸,以及城市管道供热、供水、煤气等行业的各种液体、气体、蒸气等单相流体的工艺计量和节能管理。 2. 产品特点 ● 采用抗机械震动,抗冲击和抗脏污的结构新设计。 ● 采用最先进的集成电路,信号处理精度高,高抗干扰性,可靠性高。 ● 可选用加宽量程型号,获得优越的小流量性能和扩宽的流量范围。 ● 可选用电容式流量计,抗震性能好,最高测量温度达到400 ℃。 二、 测量原理 涡街流量计是由设计在流场中的旋涡发生体、检测探头及相关的电子线路等组成。当液体流经三角柱形旋涡发生体时,它的两侧就成了交替变化的两排旋涡,这种旋涡被称为卡门涡街(图1),在此基础上得出了频率与流体的流速的关系: F= St ×V/d 式中:f ————————————涡街发生频率(Hz ) V ————————旋涡发生体两测的平均流速(m/s )St-----------------------斯特罗哈尔系数(常数) 这些交替变化的旋涡就形成了一系列替变化的负压力,该压力作用在检测深头上,便产生一系列交变电信号,经过前置放大器转换、整形、放大处理后,输出与旋涡同步成正比的脉冲频率信号(或标准信号) 旋涡发生体 探头 交变力 图1 三、 结构与技术参数 1. 流量计的结构形式 流量计是由表体与检测放大器及连接这两部分的连接杆组成,表体及其组成部件和连接杆均由1Cr18Ni9Ti 不锈钢材质制成,具有防腐耐用之优点;仪表根据安装方式不同分三种结构形式,分别是满管式、简易插入式、球阀插入式,结构形式如下图所示:

流量计原理及特点

各种流量计原理及特点. 简述 目前工程实际中,流量测量方法及流量仪表的种类繁多,至今为止,可供工业用的流量仪表种类多达数十余种。在流量仪表的家族中,每种产品都有它特定的适用性及使用局限性。按测量对象划分就有封闭管道和明渠两大类:按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。 本文简要介绍目前最常用流量计分类法,主要有:差压式流量计、容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计质量流量计等分别简述各种流量计的原理及特点。 2. 差压式流量计 差压式流量计是通过安装于是工业管道中流量检测元件产生的差压,将已知流体条件和检测件与管道的几何尺寸来计差压式流量计算流量计。 差压式流量计由一次检测件及二次仪表(差压转换器或变送器和流量显示仪表)组成。以检测件形式划分差压式流量计分类,有孔板流量计、文丘里流量计、均速管流量计等。二次仪表为各种机械、电子、机电一体式差压式流量计、差压变送器及流量显示仪表。差压式流量仪表是流量仪表大家族中应用最广泛的一中流量仪表,目前国内外已系列化、通用化、标准化,差压式流量计既可单独测量流量参数,也可测量其它参数(压力、物位、密度)等。差压式流量计的检测件按其作用原理可分为:节流装置、水利阻力、动压头式、动压头增益及

射流式、以及离心式等几大类。 检测件有标准化型式或非标准两大类。标准型检测元件是以标准文件设计、制造、安装和使用,无需经实流标定即可确定其流量值和估算测量误差。而非标型检测元件一般尚未列入国际标准中检测元件。差压式流量计也是应用最广泛的一种流量仪表,在各种流量计使用量中占据首位。 主要优点是:(1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;(2)应用范围广泛,至今尚无任何一流量计可与之比拟; (3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。 主要缺点是:(1)测量精度普遍偏低:(2)范围度窄,一般仅3:1~4:1;(3)现场安装条件要求高;(4)压损大(指孔板、喷嘴等)。 3. 容积式流量计 容积式流量计,又称定排量流量计,简称PD流量计,在流量仪表中是精度最高的一类。它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体体积总量。 容积式流量计按其测量元件分类:有椭圆齿轮流量计、旋转活塞流量计、往复活塞流量计、圆盘流量计、湿式气体计及膜盒式气体计、液封转筒式流量计等。 主要优点:(1)计量精度高;(2)安装管道条件对计量精度没有影响; (3)可用于高粘度液体的测量;(4)范围度宽;(5)直读式仪表无需外部

2020全球与中国尿流量计行业发展现状分析及前景展望

2020全球与中国尿流量计行业发展现状分析及前景展望 1 2020全球与中国尿流量计行业发展现状分析及前景展望

报告摘要 2019年全球尿流量计市场总值达到了xx亿元,预计2026年可以增长到xx亿元,年复合增长率(CAGR)为xx%。 本报告研究全球与中国尿流量计的发展现状及未来发展趋势,分别从生产和消费的角度分析尿流量计的主要生产地区、主要消费地区以及主要的生产商。重点分析全球与中国的主要厂商产品特点、产品产品类型、不同产品类型产品的价格、产量、产值及全球和中国主要生产商的市场份额。 主要生产商包括: MMS Medical Measurement Systems Schippers-Medizintechnik Tic Medizintechnik MEDICA EV.ServiceItalia Andromeda Aymed CellSonic Medical MCube Technology Mediwatch EMD Medical Technologies LABORIE NOVAmedtek

Foresight T echnology BestMedical Dantec Medical Medispec 按照不同产品类型,包括如下几个类别: 无线连接类型 电缆连接类型 按照不同应用,主要包括如下几个方面: 前列腺良性增生(+可选的膀胱测压) 前列腺炎 膀胱憩室 遗尿症(+膀胱测压术) 自发性尿失禁(+强制性膀胱测压) 压力性尿失禁(+膀胱测压) 膀胱神经肌肉功能障碍(必要时+膀胱测压)膀胱颈梗阻 创伤后尿道狭窄 重点关注如下几个地区: 北美 欧洲 日本 东南亚

流量仪表的现状与发展趋势

《流量仪表的现状与发展趋势》 摘要:流量仪表是一种重要的计量仪表,广泛用应于现代化建设、国防及科研,对节约资源 保护环境起到至关重要的作用。本文从工农业生产和科研的实际应用出发,重点介绍了几种常用的流量仪表,重点介绍了各自的优缺点及应用范围。随着新技术、新材料的应用,分析了今后流量仪表的主流发展趋势及方向。 关键词:流量仪表;应用范围;发展趋势 近年来,随着科学技术及工业自动化水平的发展,科技人员不断改进现有的测量方法和运用数字化信号处理方法,提高了流量仪表的可靠性、稳定性、精准性。随着我国对节能环保的要求越严,流量仪表是一种重要的计量仪表,流量仪表应用会更加广泛,现就对流量仪表的应用现状发展趋势做如下论述。 1 流量仪表定义及种类 流量分为瞬时流量及累积流量,瞬时流量是指在单位时间内流过管道截面积流体的量,可分为体积流量及质量流量。累积流量是指一段时间内,流过管道截面积液体的总和。用来测量流量的仪表为流量仪表。就目前工业生产中应用情况看,检测方法多样,但还没有统一的分类,一般可分为体积流量计量、质量流量计量。 2 体积计量仪表 体积计量可分为速度式测量仪表、容积式测量仪表。速度式测量仪表又分为液体力学法、电学法、声学法、执学法、光学法等。容积式流量仪表有刮板、双转子等,速度式流量仪表有孔板、阿牛吧、涡街、涡轮、电磁等流量仪表,下面就目前国内工业生产中几种常用的流量仪表简单介绍如下: 2.1 孔板流量计 孔板流量计是差压式流量计。根据能量守恒定律和流动连续性方程,当充满管道的流体流经管道内的节流装置,流速将在节流件处流速增加,静压力降低,在节流件前后产生压力差(差压)。流体的流速愈大,在节流件前后产生的差压也愈大,因此通过测量差压来测量流体流过节流装置时的流量大小。

蒸汽流量测量

蒸汽流量测量的常用方法 提 要:叙述目前蒸汽流量测量中使用最广泛的差压式流量计和涡街流量计工作原理及应用,并对标准节流装置差压式流量 计存在的范围度较窄的缺陷进行分析,介绍一体化双量程差压流量计和线性孔板差压流量计工作原理、特点和现场使用。重点强调C 在线补偿、1ε在线校正和防止差压信号传递失真的意义。 关键词:蒸汽 流量测量 差压式流量计 双量程流量计 线性孔板 涡街流量计 蒸汽是工业生产和采暖制冷各行各业使用最为广泛的载热工质,是重要的二次能源,蒸汽流量的测量量大面广,对加强管理、公平贸易、节约能源、提高经济效益等方面都有重要意义。蒸汽流量测量方法如果按工作原理细分,可分为直接式质量流量计和推导式(也称间接式)质量流量计两大类。前者直接检测与质量流量成函数关系的变量求得质量流量;后者用体积流量计和其他变量测量仪表,或两种不同测量原理流量计组合成的仪表,经计算求得质量流量。 现在人们广泛使用的蒸汽质量流量计绝大多数仍为推导式。其中,以节流式差压流量计和涡街流量计为核心组成的蒸汽质量流量计是主流,这两种方法有各自的优点和缺点,而且具有良好的互补性。在差压式流量计中,线性孔板以其范围度广,稳定性好的优势占有一定市场份额。双量程差压流量计也因其简单、便宜,范围度得以扩展而得到推广。除此之外,科氏力质量流量计、均速管流量计、超声流量计等在蒸汽流量测量中也有应用。 1 用标准节流装置差压流量计测量蒸汽质量流量 节流式差压流量计的一般表达式为[1] (1) 式中 q m ── 质量流量,kg / s ; C ── 流出系数; β ── 直径比,β= d / D ; D ── 管道内径,m ; ε1 ── 节流件正端取压口平面上的可膨胀性系数; d ── 工作条件下节流件的开孔直径,m ; Δp ── 差压,P a ; ρ1 ── 节流件正端取压口平面上的流体密度,kg / m 3。 在式(1)中,β和d 为常数,因此式可简化为 (2) 从式(2)可清楚看出,仪表示值同ρ1密切相关。而蒸汽工况(温度t ,压力p )的变化,必然使ρ1产生相应的变化。因此,差压式流量计在对差压进行测量的同时,必须对蒸汽密度进行直接或间接的测量。 在实际应用系统中,常用测量点附近的流体温度、压力,经查表和计算后求得相应的密度,再经演算求得瞬时质量流量,通常称作温度、压力补偿。由于水蒸气的性质和特点,在过热状态和饱和状态时可有不同的补偿方法。 (1)过热蒸汽质量流量测量 当流体为过热蒸汽时,ρ1取决于流体压力p 1和流体温度t 1。图1所示为测量系统图。 (2) 饱和蒸汽质量流量测量 12 14241ρπεβ??????=p d C q m p kC q m ??=11ρε

常见流量计的应用

常见流量计的应用 测量流体流量的仪表统称为流量计或流量表,流量计是工业测量中重要的仪表之一,它被广泛适用于冶金、电力、煤炭、化工、石油、交通、建筑、轻纺、食品、医药、农业、环境保护及人民日常生活等国民经济各个领域,是发展工农业生产,节约能源,改进产品质量,提高经济效益和管理水平的重要工具,在国民经济中占有重要的地位。为了适应各种用途,各种类型的流量计相继问世。目前已投入使用的流量计已超过60 多种。按照目前最流行、最广 泛的分类法,即分为:差压式流量计、涡街流量计、涡轮流量计、浮子流量计、数字靶式流量计、电磁流量计、超声波流量计。1 差压式流量计 1.1 差压式流量计差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。差压式流量计是工业上使用最多的流量计之一,其测量精度是由其测量原理、结构、制造工艺水平、被测流体的性质和使用条件等决定的差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。通常以检测件形式对差压式流量计分类,如孔板流量计、V 锥流量计等。 1.1.1 孔板流量计孔板流量计的工作原理:在流体的流动管道上装有一个节流装置,其内装有一个孔板,中心开有一个圆孔,其孔径比管道内径小,在孔板前流体稳定的向前流动,流体流过孔板时由于孔径变小,截面积收缩,使稳定流动状态被打乱,因而流速将发生变化,速度加快,气体的静压随之降低,于是在孔板前后产生压力降落,即差压(孔板前截面大的地方压力大,通过孔板截面小的地方压力小)。差压的大小和流 体流量有确定的数值关系,即流量大时,差压就大,流量小时,差压就小。流量与差压的平方根成正比 1.1.2 V 锥流量计V 形锥流量计源于美国MCROMETER,是一种极具优势的新型差压式流量仪表。从二十几年前诞生开

LUGB涡街流量计说明书

LUGB系列涡街流量计使用说明书

录目 - - - - - - - - - - - - - - - (3)工作原理一. 概述二. 技术参数 - - - - - - - - - - - - - - - - - - - (4) 三. 流量范围- - - - - - - - - - - - - - - - - - - (4) 四. 安装结构图- - - - - - - - - - - - - - - - - - (5) 五. 安装及接线 - - - - - - - - - - - - - - - - - - (6) 六. 流量计参数整定 - - - - - - - - - - - - - - - - (9) 七. 流量计信号检测、调整和校验方法 - - - - - - - - - (10) 八. 维护及故障排除 - - - - - - - - - - - - - - - - (10) 九. 订货须知 - - - - - - - - - - - - - - - - - - - (11) 十. 智能流量计操作说明 - - - - - - - - - - - - - - (12)

一概述 LUGB系列涡街流量计是一种采用压电晶体作为检测元件,输出与流量成正比的标准信号的流量仪表。该仪表可以直接与DDZ-Ⅲ型仪表系统配套,也可以与计算机及集散系统配套使用,对不同介质的流量参数进行测量。该仪表根据流体涡街的检测原理,其检测涡街的压电晶体不与介质接触,仪表具有结构简单、通用性好和稳定性高的特点. LUGB系列涡街流量计可用于各种气体、液体和蒸汽的流量检测及计量。 LUGB 系列涡街流量计可以与本公司生产的智能流量积算仪配套使用,也可以和其它仪表厂商生产的智能仪表配套使用,具有通用性强的特点。 二工作原理 涡街流量计的基本原理是卡门涡街原理,?即“涡街旋涡分离频率与流速成正比”。 流量计流通本体直径与仪表的公称口径基本相同。如图一所示,?流通本体内插入有一个近似为等腰三角形的柱体,柱体的轴线与被测介质流动方向垂直,底面迎向流体。 当被测介质流过柱体时,在柱体两侧交替产生旋涡,旋涡不断产生和分离,?在柱体下游便形成了交错排列的两列旋涡,即“涡街”。理论分析和实验已证明,?旋涡分离的频率与柱侧介质流速成正比。 式中: f──柱体侧旋涡分离的频率(Hz); V──柱侧流速(m/s); d──柱体迎流面宽度(m); Sr ──斯特劳哈尔数。是一个取决于柱体断面形状而与流体性质和流速大小基本无关的常数。 圆管内的涡街图一 三产品特点

均速管流量计的现状与发展

均速管流量计的现状与发展 王力勇 (哈尔滨市质量技术监督局开发区技术检测服务中心,150090) 摘要:针对均速管流量计的总压及背压检测孔的数量和位置,检测杆的剖面形状等问题进行了讨论。详细介绍了均速管的几种结构形式,给出了使用流量测量的计算公式,分析了各种因素对测量精度的影响,最后对该产品的发展提出了一个构想。 关键词:流量测量均速管影响因素应用 均速管流量计的测量元件——均速管(国外称Annubar,直译阿牛巴),是基于早期皮托管测速原理发展起来的,是60年代后期开发的一种新型差压流量测量元件,并开始应用与我国的工业现场,70年代中期已有30余家厂家进行了研制生产。均速管的优点是;结构上较为简单(如图1所示),压力损失小,安装、拆卸方便,维护量小。 该流量计由于生产成本低,价格低廉,因此在市场较为畅销,在众多的流量仪表中占有了一席之地。特别是由于其压力损失小(与孔板相比较,仅为孔板的5%以下),大大减少了动力消耗,节能效果显著,这在能源紧张的今天,有着其特殊的意义。由于该流量计适应范围宽,长期稳定性好(如图2所示)近年来有了较大的发展,出现了几种结构形式不同的流量计。但因使用不当,在应用中产生了一些问题,使得客观要求与发展现状产生了很大的矛盾,许多人期望其应用问题能得到解决,为此人们做了大量的不懈努力,使得均速管流量计这一既古老而又年轻的流量计,在能源、环保等计量测试中得到了较为广泛的应用。 1 均速管流量传感器的测量原理 均速管流量传感器,由其结构示意图所知,它是一根沿直径插入管道中的中空金属杆,在迎向流体流动方向有成对的测压孔,一般说来是两对,但也有一对或多对的,其外形似笛。迎流面的多点测压孔测量的是总压,与全压管相连通,引出平均全压p1,背流面的中心处一般开有一只孔,与静压管相通,引出静压p2。均速管是利用测量流体的全压与静压之差来测量流速的。均速管的输出差压(△p)和流体平均速度(v),

流量计的分类和工作原理

流量计的分类和工作原理 一.流量计的分类 按测量原理分有:力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。 按流量计的结构原理进行分类,即分为:容积式流量计、压差式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计、探针式流量计。 二.常用流量计的工作原理及应用 1.压差式流量计 差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的集合尺寸来计算流量的仪表。 应用:差压式流量计应用范围特别广泛,在封闭管道的流量测量中各种对象都有应用,如流体方面:单相、混相、洁净、脏污、粘性流等;工作方面:常压、高压、真空、常温、高温、低温等;管径方面:从几毫米到几米;流动方面:亚音速、音速、脉动流等。它在各工业部门的用量约占流量计全部用量的1/4~1/3。 2.浮子流量计 浮子流量计又称转子流量计,是变面积式流量计的一种,在一根由下向上扩大的垂直锥管中,圆形横截面的浮子的重力式由液体动力承受的,从而使浮子可以在锥管内自由地上升和下降。 应用:浮子流量计是仅次于差压式流量计应用范围最宽广的一类流量计,特别在小、微流量方面有举足轻重的作用 3.容积式流量计 容积式流量计,又称定排量流量计,简称PD流量计,在流量仪表中是精度最高的一类,它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体体积总量。 应用:容积式流量计与差压式流量计、浮子流量计并列为三类使用量最大的流量计,常应用于昂贵介质(油品、天然气等)的总量测量。 4.涡轮流量计 涡轮流量计是速度式流量计中的主要种类,它采用多叶片的转子(涡轮)感受流体平均流速,从而且推导出流量或总量的仪表。一般它由传感器和显示仪器两部分组成,也可做成整体式。 应用:涡轮流量计在测量石油、有机液体、无机液、液化气、天然气和低温流体获得广泛应用。 5.电磁流量计 电磁流量计是根据法拉第电磁感应定律制成的一种测量导电性液体的仪表。 应用:电磁流量计有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。电磁流量计应用领域广泛,大口径仪表较多应用于给排水工程;中小口径常用于高要求或难测场合,如钢铁工业高炉风口冷却水控制,造纸工业测量纸浆和黑液,化学工业的强腐蚀液,有色冶金工业的矿浆;小口径、微小口径常用于医药工业、食品工业、生物化学等有卫生要求的场所。 6.涡街流量计 涡街流量计是在流体中安放一根非流线型游涡发生体,流体在发生体两侧交替地分离释放出两串规则地交错排列的游涡的仪表。当通过流截面一定时,流速与导容积流量成正比。因此,测量振荡频率即可测得流量。

涡街流量计使用说明书

一、使用时的注意事项 1.1、确认收货时 1.1.1、在您拿到本产品时,请确认运输途中有没有磕碰划伤等。 1.1.2、根据产品铭牌的标注,请确认与您要买的型号是否相符。 1.2、运输与储存时 1.2.1、尽可能的利用本公司的包装,将流量计直接运送到安装现场。 1.2.2、运送过程中不要强烈碰撞、也不要让雨水淋湿。 1.2.3、保管时尽量利用本公司的原包装进行保管,保管的地方应符合下列条件要求: 1不会有淋雨水的地方 2振动或碰撞尽量少的地方 3温度:-40℃—+55℃ 4湿度:5%—90% 1.2.4、使用过的流量计保管时,要将内部的残留液体及粘附物完全清洗干净,另外注意在电源接口处要密封,以防潮湿。 1.3、安装时 1.3.1、使用时要在流量计规定的条件下使用,超出这个规定使用是不可行的,如果因此而造成流量计损坏,维修的费用会由您自己承担。 1.3.2、流量计出现问题以后,尽可能的与我们或维修商联系,以便尽快的把问题解决。 1.3.3、安装之前必须认真阅读说明书,由于没有按照说明书操作造成的流量计损坏,维修费用自己承担。 二、产品用途及工作原理 2.1、用途 LUGB涡街流量计广泛用于石油、化工、电力、轻工等部门工业管道中测量

液体或气体的流量。由于传感器材料为1Cr18Ni9Ti,也可用于城市供水、供热、锅炉供水、医疗行业流体管道的流量测量。 防爆型涡街流量传感器,采用的是本安防爆技术。电池供电的涡街流量计其防爆标志为“Ex iaⅡBT4”,适合不高于Ⅱ类B级的0区、1区、2区含有T1~T4组的危险场所使用;靠安全栅供电的涡街流量计其防爆标志为“ExiaⅡBT5”,适于Ⅱ类B级的0区、1区、2区含有T1~T5组的危险场所使用。 2.2、工作原理 图一:卡门涡街工作原理图 LUGB涡街流量计是利用卡门涡街原理,用来测量蒸汽、气体及低粘度的液体的流量仪表。当流体流过与被测介质流向垂直放置的旋涡发生体时,在其后方两侧交替地产生两列旋涡,称之为卡门涡街,如上图1所示。在一定雷诺数范围内(2×104~7×106),旋涡所产生的频率f与介质的平均速度V及旋涡发生体的迎流面宽度d之间有下列关系: f=St式中St为斯特劳哈尔数,它是无量纲常数,当R =2×104~7×106 eD 时约为0.15~0.22,通过压电元件检测出旋涡产生的频率f,就可计算出平均流 =A*V,,其中A为管道横截面积。 速V,从而确定管道内的体积流量:Q V 三、产品的特点 我公司生产的涡街流量计是借鉴日本OVAL公司的产品设计理念结合国内企业的使用特点,经过多年的研发而推出的产品。本产品是按照日系国家标准JIS Z8766:2002《涡街流量计—流量测定方法》,进行生产的,因此我公司的涡街流量计有这国内同类产品没有的精确性和稳定性,除具备普通涡街流量计的特点外,还具有下述突出特点:

几种常用流量计的基础知识

几种常用流量计的基础知识 流量测量是四大重要过程参数之一(其他的是温度、压力和物位)。闭合管道流量计以其采用的技术分类,如下: 差压流量计(DP) 这是最普通的流量技术,包括孔板、文丘里管和音速喷嘴。DP流量计可用于测量大多数液体、气体和蒸汽的流速。DP流量计没有移动部分,应用广泛,易于使用。但堵塞后,它会产生压力损失,影响精确度。流量测量的精确度取决于压力表的精确度。 容积流量计(PD) PD流量计用于测量液体或气体的体积流速,它将流体引入计量空间内,并计算转动次数。叶轮、齿轮、活塞或孔板等用以分流流体。PD流量计的精确度较高,是测量粘性液体的几种方法之一。但是它也会产生不可恢复的压力误差,以及需装有移动部件。 涡轮流量计 当流体流经涡轮流量计时,流体使转子旋转。转子的旋转速度与流体的速度相关。通过转子感受到的流体平均流速,推导出流量或总量。涡轮流量计可精确地测量洁净的液体和气体。像PD流量计,涡轮流量计也会产生不可恢复的压力误差,也需要移动部件。 电磁流量计 具有传导性的流体在流经电磁场时,通过测量电压可得到流体的速度。电磁流量计没有移动部件,不受流体的影响。在满管时测量导电性液体精确度很高。电磁流量计可用于测量浆状流体的流速。 超声流量计 传播时间法和多普勒效应法是超声流量计常采用的方法,用以测量流体的平均速度。像其他速度测量计一样,是测量体积流量的仪表。它是无阻碍流量计,如果超声变送器安装在管道外测,就无须插入。它适用于几乎所有的液体,包括浆体,精确度高。但管道的污浊会影响精确度。 涡街流量计 涡街流量计是在流体中安放一根非流线型游涡发生体,游涡的速度与流体的速度成一定比例,从而计算出体积流量。涡街流量计适用与测量液体、气体或蒸汽。它没有移动部件,也没有污垢问题。涡街流量计会产生噪音,而且要求流体具有较高的流速,以产生旋涡。 热质量流量计 通过测量流体的温度的升高或热传感器降低来测量流体速度。热式质量流量计没有移动部件或孔,能精确测量气体的流量。热质量流量计是少数能测量质量流量的技术之一,也是少数用于测量大口径气体流量的技术。 科里奥利流量计 这种流量计利用振动流体管产生与质量流量相应的偏转来进行测量。科里奥利流量计可用于液体、浆体、气体或蒸汽的质量流量的测量。精确度高。但要对管道壁进行定期的维护,防止腐蚀。

质量流量计的测量原理和应用

质量流量计的应用优势 (一) 质量流量计的应用优势 1)高精度流量测量:目前世界各处所应用的cmf其精度(或称不确定度)都优于±0.2%(o、r)、±0.015%(o、f、s),重复性优于±0.1%(o、r)、±0.01%(o、f、s)。 2)同时测量多种参数:cmf不仅可以测量出流体的瞬时质量流量和累积的总质量,同时还可以指示出流体的密度、温度,并由此派生出测量溶液中溶质所含的浓度。 ①密度测量 ②温度测量 3)应用范围广泛: 包括高粘度的各种液体、含有固形物的浆液、含有微量气体的液体、有足够密度的中高压气体。cmf还能测量出双组份流中每种已知组份各自的质量流量,这是其它流量仪表难以实现的。 质量流量计的应用优势 例如油—水双组份流体,只要知道水和油的密度—温度函数关系,就不难从测出的混合质量流量混合密度中计算出各自的质量流量来。 质量流量计的应用优势 4)cmf检测器没有可动部件和密封件,从而结构简单、可靠性高、维护简便。 5)由于流场分布对cmf正常测量没有影响,所以对仪表上下游没有直管段的长度要求。 6)可以用于双向流的测量,能指出流向和质量流量等物理参数。 各种参数对流量计的影响 (二)各种参数对流量计的影响 1、温度影响 当被测流体温度增加时,cmf的振动管系统的刚性减小,这是由于测量管材料的固有弹性常数(包括弹性模量e和泊松比μ)产生变化的缘故。从下式可以看出: qm=ks/8r2 ×?t 弹性刚性ks减小,则流量qm减小。此外,温度还会影响管子的几何尺寸和振动系统的结构尺寸,这也将对流量产生影响。目前在所有cmf中都加了温度补偿系统,对温度变化作了有效的补偿,但还存在补偿过度或不足的问题,残留较小的温度影响。 2、压力影响 最初一般认为流体压力变化不会影响cmf的性能,事实上经试验研究表明,在中等和高压(p≥1.5mpa)下,流体压力对cmf精确度的影响是不可忽略的。流体压力的作用使测量管变硬,流体压力和测量管的刚度成正比,由于刚度增加,从式上中可看出,在同样的变形条件下,流量将增大,这同温度的影响作用正好相反。 此外,压力的变化也会引起管子尺寸的变化,从而影响流量计的灵敏度。在意大利furiocascetta的一份研究报告里,提供了用一台某种型号的dn80的cmf的试验情况,在标准条

流量计国内外研究应用现状与发展趋势

信息技术在各行各业的广泛渗透,深刻地改变着经济和社会面貌。在过去的20 年间,信息技术广泛应用于环境保护的各个领域,环境信息已发展为一个复杂的多学科交叉的新学科[1 ] 。在环境领域,信息技术主要应用在环境质量监测与管理、污染源监控与管理、环境统计、环境评价、生态建设与管理、核安全与管理以及环境信息发布等业务中,为环境管理和辅助决策提供环境信息技术支持与服。环境信息化作为国民经济和社会信息化的重要组成部分,是环境保护工作的基础和关键支撑,它对提高环境与发展的综合决策能力、提升环境监管的现代化水平、加强政府的公共服务能力、构建资源节约型和环境友好型社会、实现环境保护的战略目标具有重要的作用。 1 发展现状 我国的环境信息化在“九五”以来得到了较快的发展,取得了明显的成效:初步建立了国家、省、市三级环境信息管理体系,配备了一批软、硬件设备,奠定了基础工作条件;开展了多项环境信息应用工作,提高了环保政务和业务工作的效率,积累了大量环境信息资源;为政府部门和社会公众提供了多种技术支持和信息服务,提高了行政效率,促进了政务公开;制定了一系列法规、标准,培养了一支专业人才队伍,保障了环境信息化的良性发展。同时,环境信 息资源和信息技术手段还能够为重大环境污染事故和生态灾难的应急响应提供必需的技术支持①。通过一系列国内及国外援助项目的开展,信息技术的发展取得了以下的成果:(1) 制度方面。国家环保总局信息中心已经发布了《环境信息化“九五”规划和2010 年远景目标》、《环境信息管理办法》(暂行) 、《国家环境信息“十五”指导意见》、《总局电子政务职责分工》、《国家环保总 局应用软件开发项目管理暂行办法》、《环境信息标准化手册》等环境信息文件。 (2) 硬件方面。应用亚洲开发银行援助、世行贷款B21 项目、世行贷款B21 扩项目、日本政府无偿援助等建成了总局信息中心、32 个省级环境信息中心和110 个城市环境信息中心,并配备了先进的计算机软、硬件和网络设备。 (3) 人员方面。依托日援二国研修项目,组织了环境信息中心,人员培训1 000 多人次,初步建立了一支具有较强业务能力和管理水平的人才队伍。 (4) 网络方面。已建成覆盖全国省级环保局和121 个城市环保局的卫星通信专网,连接至全国87个自动水质监测站,实现了总局与各省级环保局之间电子公文无纸化传输②。 2 信息技术在环境数据采集中的应用 环境数据包括环境元数据、环境法规与标准数据、环境文献与公报数据、环境质量数据、环境统计数据、环境背景数据、生态环境保护数据、生物多样性保护数据、辐射环境数据、其他环境管理相关数据等(社会经济信息及计划、规划等) 。而按照数据特征,环境数据可分为4 种形式:空间数据、属性数据、关系数据、时间数据[2 ] 。在环境业务中,环境数据的核心是环境质量监测信息和污染源数据两大部分[3 ] 。根据环境管理的需要,我国环保部门已设计出了一系列数据收集报表。环境数据的收集可分为手工操作和自动操作两种,自动操作一般与相关环境信息管理软件相对应,设计相应的基础数据收集报表和上报统计汇总表。 2. 1 环境质量监测数据的采集 我国环境监测发展相对完善,建立了一整套数据收集系统,主要包括自动监测和手工监测两种,并正随着信息技术的进步而逐步向智能化监测发展。环境质量自动监测的范围主要包括大气、水、噪声以及生物要素的监测等。目前全国环保系统共有各级环境监测站2 389 个,已初步形成了全国性的环境监测地面网络系统(见表1) 。 表1 环境监测地面网络系统 Table 1 Net systems of environmental monitoring 监测站类型数量/ 个

(整理)蒸汽流量计涡街说明书

概述 1.1 原理及适用范围 涡街流量计是目前国际上主要流量仪表产品之一,广泛应用于石油、化工、冶金、供热等部门。对液体、气体、蒸汽的流量进行检测和计量。 在流体中设置三角柱型旋涡发生体,从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡门旋涡,如图1.1所示,旋涡列在旋涡发生体下游非对称地排列。设旋涡的发生频率为f,被测介质的平均流速为V,旋涡发生体迎流面宽度为d,表体通径为D,即可得到关系式: 在旋涡发生体中装入检测探头及相应电路即构成了涡街流量传感器,LUGB—2型涡街流量传感的探头,采用特殊结构及材质,是改进型涡街流量传感器。 1.2 特点 检测元件不接触流体,可靠性高,介质适应性强 无可动部件,耐磨损,结构牢固、简单 良好的抗震性能

允许工作温度范围宽,-40℃~+350℃ 测量范围宽,准确度高 脉冲信号输出或二线制4~20mA电流信号输出2、基本参数 测量介质液体、气体、蒸汽(单相介质或可以认为是单相介质) 饱和蒸汽在干度≥85%时,可以认为是单相介质 介质温度-40℃~+350℃ 介质压力 1.6MPa 2.5MPa 4.0MPa(压力4.0MPa以上,需特殊定做) 准确度 1.0级 1.5级 量程比1:8~1:30(参比标况下空气) 1:8~1:40(参比常温水) 流量范围液体0.4~7.0m/s 气体4.0~60.0m/s 蒸汽5.0~70.0m/s 规格Φ25Φ40 Φ50Φ65Φ80 Φ100Φ125Φ150 Φ200 Φ250 Φ300 材质1Crl8Ni9Ti 雷诺数正常2x104~7x106 阻力系数Cd≤2.6 允许振动加速度LUGB型≤0.2g 防护等级IP65 防爆等级(ia) ⅡCT6 环境条件环境温度-40~+55℃(非防爆场所) -20~+55℃(防爆场所) 相对湿度≤85% 大气压力86~106kPa 供电电源非防爆型脉冲型+12VDC 20mA 电流型+24VDC 20mA 输出信号频率脉冲信号2~3000Hz 低电平≤1V 高电平≥6V 二线制4~20mA信号(隔离输出) 负载≤500Ω

超声波流量计的测量原理及优缺点

超声波流量计的测量原理及优缺点 超声波流量计是基于超声波在流动介质中传播的速度等于被测介质的平均流速和声波本身速度的几何和的原理而设计的。它也是由测流速来反映流量大小的。超声波流量计虽然在70年代才出现,但由于它可以制成非接触型式,并可与超声波水位计联动进行开口流量测量,对流体又不产生扰动和阻力,所以很受欢。 超声波流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,它是发展迅速的一类流量计之一。 超声波流量计按测量原理分可分为时差式和多普勒式 利用时差式原理制造的时差式超声流量计近年来得到广泛的关注和使用,是目前企事业使用多的一种超声波流量计。 利用多普勒效应制造的超声多普勒流量计多用于测量介质有一定的悬浮颗粒或气泡介质,使用有一定的局限性,但却解决了时差式超声波流量计只能测量单一清澈流体的问题,也被认为是非接触测量双相流的理想仪表。 超声波流量计的优点: (1)超声波流量计是一种非接触式测量仪表,可用来测量不易接触、不易观察的流体流量和大管径流量。它不会改变流体的流动状态,不会产生压力损失,且便于安装。 (2)可以测量强腐蚀性介质和非导电介质的流量。 (3)超声波流量计的测量范围大,管径范围从20mm~5m。 (4)超声波流量计可以测量各种液体和污水流量。 (5)超声波流量计测量的体积流量不受被测流体的温度、压力、粘度及密度等热物性参数的影响。可以做成固定式和便携式两种形式。 超声波流量计的缺点: (1)超声波流量计的温度测量范围不高,一般只能测量温度低于200℃的流体。 (2)抗干扰能力差。易受气泡、结垢、泵及其它声源混入的超声杂音干扰、影响测量精度。 (3)直管段要求严格,为前20D,后5D。否则离散性差,测量精度低。 (4)安装的不确定性,会给流量测量带来较大误差。

相关主题
文本预览
相关文档 最新文档