当前位置:文档之家› ArcGIS 地统计克里金插值

ArcGIS 地统计克里金插值

ArcGIS 地统计克里金插值
ArcGIS 地统计克里金插值

评论(25)

ArcGIS 地统计学习指南(二)

huangyustar

2007-8-1 09:14

ArcGIS 地统计学习指南(三)

(4)Voronoi 图

用来发现离群值。Voronoi 图的生成方法:每个多边形内有一个样点,多变形内任一点到该点的距离都小于其他多边形到该点的距离,生成多边形后。某个样点的相邻样点便会与该样点的多边形有相邻边。至于多边形值的计算有多种方法,可以用生成多边形的样点值作为多边形的值(Simple 方法),也可以以相邻样点的平均值为多边形的值(Mean 方法),具体计算方法可以在Type 下拉菜单中选择。

huangyustar

2007-8-1 09:14

ArcGIS 地统计学习指南(四)

最后的两个图表是针对两个数据集而言的。 (6)普通Qqplot 分布图

评估两个数据集分布的相似程度。利用两个数据集中具有相同累积分布值的数据值来作图。

huangyustar

2007-8-1 09:14

ArcGIS 地统计学习指南(五)

第四步:半变异函数/协方差模型面板(Semivariogram/covariance Modeling )

此步的主要功能为半变异函数建模,是预测过程中的实质性阶段。在此面板中需要社定许多与拟合半变异函数相关的选项以及半变异函数的参数。是克里格预测中十分关键的部分。

Semivariogram/covariance 部分显示的是拟和的模型,黄线即半变异函数曲线。

Models 部分:model1,model2,model3表示可以用多个通用函数来拟和半变异函数模型。如果数据为各向异性,则需要选中Anisotropy (其实大多数空间数据是各向异性的,各向同性只是相对的),当选中此选项时,黄线变为多条,表示多个方向的拟合函数。

Show Search Direction 选项选中后,表示只搜索某个方向的半变异函数。

Nugget :块金值,函数参数之一,即函数与y 轴相交的y 值。

Error Modeling :如果数据中有测量误差(比如一起原因等)的话,则选中此项,预测表面将光滑许多。

huangyustar

2007-8-1 09:15

ArcGIS 地统计学习指南(六)

第六步:交叉验证面板(Cross Validation )

在此面板中查看预测的精度,有四个图表,现以最左边的"预测"图表进行说明。

图表的横坐标为测量制值,纵坐标为预测值,最理想的情况是数据呈1:!线,即图中的破折线。

左下方的预测误差(precited error )项是预测误差的一些统计值,可很好的体现预测的好坏。其中,Mean:0.0005718(预测误差的均值);Root-Mean-Square:0.01154(预测误差的均方根);Average Standard Error:0.01456(平均预测标准差)、Mean Standardized:0.02688(平均标准差);Root-Mean-Square Standardized:0.8463(标准均方根预测误差)。其中前四项越小越好,最后一项越接近1越好。

右下方的项含有每个点的误差、标准差等数据,

huangyustar

2007-8-1 09:15

ArcGIS 地统计学习指南(七)

1.5模型比较

一般情况下,有时候某些参数难以判断,因而会生成几个预测表面,然后比较不同表面的精度,选择精度最高的作为结果。(Ordinary Kriging 表面是用上述过程中的方法生成的预测表面,default 是用缺省的参数得到的预测表面)

huangyustar

2007-8-1 09:16

ArcGIS 地统计学习指南(八)

1.6最终成果展示

缺省情况下,生成的预测图按照采样数据的坐标范围显示成一个矩形。(如前面所示)现在要把它的范围显示到州界的范围。思路为先把预测表面外推,覆盖整个州界,然后再用州界进行限定,把表面限制在州界的范围。

第一步:外推。

在ArcMap 目录表中右键单击预测表面名,

在快捷菜单中选择Properties ,

在Layer Properties 面板中点击Extent 页;

arcgis空间内插教程(实例教程,超详细)

GIS空间插值(局部插值方法)实习记录 一、空间插值的概念和原理 当我们需要做一幅某个区域的专题地图,或是对该区域进行详细研究的时候,必须具备研究区任一点的属性值,也就是连续的属性值。但是,由于各种属性数据(如降水量、气温等)很难实施地面无缝观测,所以,我们能获取的往往是离散的属性数据。例如本例,我们现有一幅山东省等降雨量图,但是最终目标是得到山东省降水量专题图(覆盖全省,统计完成后,各地均具有自己的降雨量属性)。 空间插值是指利用研究区已知数据来估算未知数据的过程,即将离散点的测量数据转换为连续的数据曲面。利用空间插值,我们就可以通过离散的等降雨量线,来推算出山东省各地的降雨量了。 二、空间插值的几种方法及本次实习采用的原理和方法 –整体插值方法 ?边界内插方法 ?趋势面分析 ?变换函数插值 –局部分块插值方法 ?自然邻域法 ?移动平均插值方法:反距离权重插值 ?样条函数插值法(薄板样条和张力样条法) ?空间自协方差最佳插值方法:克里金插值 ■局部插值方法的控制点个数与控制点选择问题 局部插值方法用一组已知数据点(我们将其称为控制点)样本来估算待插值点(未知点)的值,因此控制点对该方法十分重要。 为此,第一要注意的是控制点的个数。控制点的个数与估算结果精确程度的关系取决于控制点的分布与待插值点的关系以及控制点的空间自相关程度。为了获取更精确的插值结果,我们需要着重考虑上述两点因素(横线所示)。 第二需要注意的是怎样选择控制点。一种方法是用离估算点最近的点作为控制点;另一种方法是通过半径来选择控制点,半径的大小必须根据控制点的分布来调整。 结合上述分析,在本次实习过程中,我们采用局部分块内插的这4种方法(上文中划横线的方法)进行插值,首先,我们按照默认参数进行插值,目的是粗略比较各种方法的优劣;然后选择出最好的一种方法,对该方法再尝试用不同的权重和点数参数来插值,得出最佳的效果。 三、目标 1、根据带坐标的山东省县域矢量地图(sd_county.shp),完成山东年平均降水量与矢量图的

ArcGIS中几种空间插值方法

ArcGIS 中几种空间插值方法 1. 反距离加权法(IDW) ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。可表示为: 1111() ()n n i p p i i i i Z Z D D ===∑∑ 其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。 2.多项式法 多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。 3.样条函数内插法 样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要

解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。 4.克里格插值法 克里格法是GIS 软件地理统计插值的重要组成部分。这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。 对于普通克里格法,其一般公式为 01()()n i i i Z x Z x λ==∑,其中,Z(x i )(i=1, Λ,n)为n 个样本点的观测值,Z(x 0)为待定点值,i λ为权重,权重由克立格方程组: 011 (,)(,)1n i i j i i n i i C x y C x x λμλ==?-=????=??∑∑ 决定,其中,C(x i ,x j )为测站样本点之间的协方差,C(x i ,x 0)为测站样本点与插值点之间的协方差,μ为拉格朗日乘子。 插值数据的空间结构特性由半变异函数描述,其表达式为: () 21 1()(()())2()N h i i i h Z x Z x h N h ν==-+∑ 其中,N(h)为被距离区段分割的试验数据对数目,根据试验变异函数的特性,选

克里格插值基础arcgis

克里格插值基础 来源:互联网 1. 克里格方法概述 克里格方法(Kriging)又称空间局部插值法,是以变异函数理论和结构分析为基础, 在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一。南非矿产工程师D.R.Krige(1951年)在寻找金矿时首次运用这种方法,法国著名统计学家G.Matheron随后将该方法理论化、系统化,并命名为Kriging,即克里格方法。 克里格方法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里格方法进行内插或外推;否则,是不可行的。其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计。无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小。也就是说,克里格方法是根据未知样点有限邻域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间位置关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。 克里格方法与反距离权插值方法类似的是,两者都通过对已知样本点赋权重来求得未知样点的值,可统一表示为: 式中,Z(x 0 )为未知样点的值,Z(x i )为未知样点周围的已知样本点的值,为第i个已知样本点对未知样点的权重,n为已知样本点的个数。 不同的是,在赋权重时,反距离权插值方法只考虑已知样本点与未知样点的距离远近,而克里格方法不仅考虑距离,而且通过变异函数和结构分析,考虑了已知样本点的空间分布及与未知样点的空间方位关系。 2. 克里格方法的具体步骤 用克里格方法进行插值的主要步骤如图1所示:

Arcgis地统计图绘制

ArcGIS 地统计学习指南(一) 1.1 地统计扩展模块简介 ArcGIS地统计分析模块在地统计学与GIS之间架起了一座桥梁。使得复杂的地统计方法可以在软件为本、可视化发展的趋势。 地统计学的功能在地统计分析模块的都能实现,包括: (1)ESDA:探索性空间数据分析,即数据检查; (2)表面预测(模拟)和误差建模; (3)模型检验与对比。 地统计学起源于克里格。当时他用此法预测矿产分布,后来经过别人改进修改发展成为现在所用的据分析还有其他方法,如IDW(反距离加权插值法)等,但克里格方法是最主要、最常用的空间分主进行。 1.2表面预测主要过程 ArcGIS地统计扩展模块的菜单非常简单,如下所示,但由此却可以完成完整的空间数据分析过程 一个完整的空间数据分析过程,或者说表面预测模型,一般为。拿到数据,首先要检查数据,发现正态分布、有没有趋势效应、各向异性等等(此功能主要由Explore Data菜单及其下级菜单完成进行表面预测,这其中包括半变异模型的选择和预测模型的选择;最后检验模型是否合理或几种模能主要由Geostatistical Wizard…菜单完成)。Create Subsets…菜单的作用是为把采样点数据

训练样本,一部分作为检验样本。 下面将按上述表面预测过程进行叙述。 (注:[1]文章示例中所使用的数据为ArcGIS扩展模块中所带的学习数据(某地测得的臭氧含量样数据;[2]文章以操作方法介绍为主,所涉及到的地统计方法和基本理论一般未进行解释,可查阅作中所用到的某些参数为地统计中的标准名称的也未进行解释。) 我们下面的任务是根据测量所得到的某地臭氧浓度数据进行全区的臭氧浓度预测。首先检查数据的用不同参数进行表面模型预测,随后比较不同模型的精确程序,选择最佳模型,最后制作成果图。 ArcGIS 地统计学习指南(二) 我们下面的任务是根据测量所得到的某地臭氧浓度数据进行全区的臭氧浓 度预测。首先检查数据的特点,然后根据数据特点用不同参数进行表面模型预测, 随后比较不同模型的精确程序,选择最佳模型,最后制作成果图。 1.3数据检查,即空间数据探索分析(ESDA) 此功能主要通过Explore Data菜单中实现。 扩展模块提供了多种分析工具,这些工具主要是通过生成各种视图,进行交 互性分析。如直方图、QQ plot图、半变异函数/协方差图等。 ?(1)直方图显示数据的概率分布特征以及概括性的统计指标。 下图中所展示的数据,中值接近均值、峰值指数接近3。从图中观察可认 为近似于正态分布。克里格方法对正态数据的预测精度最高,而且有些空间分析 方法特别要求数据为正态分布。

ArcGIS_6 克里格方法内插生成高程曲面

???д6?????????????? 1ˊ?? ???????????????????????????????????????ˊ???????? 2ˊ?? ?????Ё???????????????????ˊ?????????????д?c????ˊ??????????ˊ?????????????Ё?????3ˊ?? ??????????????????????????????????????????г??????????????????????????????4ˊ?? ??????????jyg.shp?? 5ˊ???? 1??ArcMapЁ??jyg.shp? 2??????????????Geostatistical Analyst? 3???Geostatistical Analyst??????????Create Subsets??? 4????????Ё?Input?-???????▊???jyp???Next???5??????????▊????▊?????Output Personal GeodatabaseЁ???▊?????????????????6-1?? ?6-1 ?????▊???????? 6????Ёjyg_training??????Geostatistical Analyst?????????Explore DataЁ?Histogram??????Geostatistical Analyst?????????Explore Data Ё?Normal QQPlot?????????6-2?????6-2?????????????????????????????

ArcGIS地统计分析总结

ArcGIS地统计分析总结 ArcGIS地统计分析(Geostatistical Analyst) 1 介绍 1.1为什么使用ArcGIS Geostatistical Analyst 人为判断总是会遗漏某些重要信息,同时也会无中生有。而ArcGIS Geostatistical Analyst提供客观的数据驱动方法,定量预测数据变化趋势和从空间数据中发掘特征模型。如果数据不够精确或者模型不够准确,这样势必影响输出的地图和从中得到的结论。而ArcGIS Geostatistical Analyst可以提供一个概率框架,来定量计算生成数据面时的不确定性。 元统计分析方法利用属性数据之间的相关来推断不同变量之间的联系,ArcGIS Geostatistical Analyst可以联合各种数据来做更精确的预测。 ArcGIS Geostatistical Analyst可以有效地推测一些空间现象的未知部分,因此,对采样计划的设计和优化非常关键。 1.2使用ArcGIS Geostatistical Analyst的各个领域 这个模块的应用对象不计其数,可以使用这个工具包开发任何一种地理数据集(比如坐标和属性),下面列出几个成功应用ArcGIS Geostatistical Analyst的典型领域: 气象学家和统计学家应用ArcGIS Geostatistical Analyst来进行气象数据分析。 采矿行业广泛的应用ArcGIS Geostatistical Analyst,涉及从最初的地质特征研究到产量控制的各个阶段。

石油工业成功的应用ArcGIS Geostatistical Analyst,来分析包括地震数据和油井数据集成的空间数据,并且用来研究物理特性和地震属性之间的相关关系。 在环境问题的研究中,ArcGIS Geostatistical Analyst的应用提供了一个分析空气、土壤和地下水污染高效和一致的模型。演示、个例研究和研究教育论文提供了大量的应用ArcGIS Geostatistical Analyst的例子。同时,ArcGIS Geostatistical Analyst也成为评估渔业产量的一个标准方法。 精细农业所应用的土壤特性的图形分析中,ArcGIS Geostatistical Analyst 也得到广泛应用。越来越多的农民或者农村顾问使用ArcGIS Geostatistical Analyst来增加作物产量、提高利润、减小对环境的不利影响。 2基本原理 地统计学与经典统计学的共同之处在于:它们都是在大量采样的基础上,通过对样本属性值的频率分布或均值、方差关系及其相应规则的分析,确定其空间分布格局与相关关系。但地统计学区别于经典统计学的最大特点即是:地统计学既考虑到样本值的大小,又重视样本空间位置及样本间的距离,弥补了经典统计学忽略空间方位的缺陷。 地统计分析理论基础包括前提假设、区域化变量、变异分析和空间估值。 2.1 前提假设 (1) 随机过程 与经典统计学相同的是,地统计学也是在大量样本的基础上,通过分析样本间的规律,探索其分布规律,并进行预测。地统计学认为研究区域中的所有样本值都是随机过程的结果,即所有样本值都不是相互独立的,它们是遵循一定的内在规律的。因此地统计学就是要揭示这种内在规律,并进行预测。 (2) 正态分布

arcgis空间内插值教程

GIS空间插值(局部插值方法)实习记录一、空间插值的概念和原理 当我们需要做一幅某个区域的专题地图,或是对该区域进行详细研究的时候,必须具备研究区任一点的属性值,也就是连续的属性值。但是,由于各种属性数据(如降水量、气温等)很难实施地面无缝观测,所以,我们能获取的往往是离散的属性数据。例如本例,我们现有一幅山东省等降雨量图,但是最终目标是得到山东省降水量专题图(覆盖全省,统计完成后,各地均具有自己的降雨量属性)。 空间插值是指利用研究区已知数据来估算未知数据的过程,即将离散点的测量数据转换为连续的数据曲面。利用空间插值,我们就可以通过离散的等降雨量线,来推算出山东省各地的降雨量了。 二、空间插值的几种方法及本次实习采用的原理和方法 –整体插值方法 ?边界内插方法 ?趋势面分析 ?变换函数插值 –局部分块插值方法 ?自然邻域法 ?移动平均插值方法:反距离权重插值 ?样条函数插值法(薄板样条和张力样条法) ?空间自协方差最佳插值方法:克里金插值 ■局部插值方法的控制点个数与控制点选择问题 局部插值方法用一组已知数据点(我们将其称为控制点)样本来估算待插值点(未知点)的值,因此控制点对该方法十分重要。 为此,第一要注意的是控制点的个数。控制点的个数与估算结果精确程度的关系取决于控制点的分布与待插值点的关系以及控制点的空间自相关程度。为了获取更精确的插值结果,我们需要着重考虑上述两点因素(横线所示)。 第二需要注意的是怎样选择控制点。一种方法是用离估算点最近的点作为控制点;另一种方法是通过半径来选择控制点,半径的大小必须根据控制点的分布来调整。 S6、按照不同方法进行空间插值,并比较各自优劣 打开ArcToolbox——Spatial Analyst 工具——插值,打开插值方法列表,如下图:A、采用反距离权重法(IDW)对降水量数据进行插值: 反距离权重法的特点是按照距离待插值点的远近核定已知数据点的权重,从而对待插值点进行插值的过程。一个已知数据点距离待插值点越远,权重就越低,它的值对待插值点的影响就越小。影响的程度用点之间距离乘方的倒数表示,通过“power”设置乘方。乘方为1意味着点之间数值变化率为恒定,称为线性插值法;乘方为2或更高则意味着越靠近已知点,数值的变化率越大。 这种插值方法的优点是对于数据分布均匀的区域,插值效果好;缺点是在数据分布不均地区插值容易出现小的封闭等值线(“球状突起”)和因数据缺乏而产生的不规则等值线。 双击ArcToolbox里面的“反距离权重法”,输入点要素选择“prec”,Z值字段选择“prec”,输出像元大小选择1000。点击确定,效果如下图:

ArcGIS中的空间插值和面积计算

说明:本文阐述了空间插值和污染面积估算的方法,供群内交流学习用,若要用于商业用途或转载,请与原作者联系。本文若有不正确之处,敬请指出! 一、空间插值 插值方法种类很多,每种插值方法里参数也很多,至于哪种最好,没有定论,只能根据需求以及制图的效果来选定。建议:插值效果图与网格图进行对比,哪种效果最接近网格图(能体现局部)而且又能反映整体趋势就取哪种。 1.1、 1.2、以“反距离权重法,1次方”为例:

请问:此处有可选smooth ,可以做进行平滑处理吗? 可以,但精度会受到影响,看平滑后的效果来决定是否进行平滑处理。建议不做

3、扩展研究区域 4、至此可以制作分层设色图filled contours/等值线图contours 为减少误差,还可以对分级进行设置 请问:此处分级该如何设置?有无相应依据? 含量图主要根据百分含量,如果作图效果不好,适当调整 评价图根据污染等级

5、这是采用“反距离权重法,1次方”来插值的。 可选用“局部多项式”或“普通克里格插值”方法来试试,看哪种和网格分级图更接近些。但无论哪种方法聚类误差可能都较大,一部分高值可能被掩盖。 二、下面转成栅格图层再进行分层设色图制作,这样精度较高,且图层可用来进行面积估算 2.1、导出成栅格图层

2.2、设置格网大小,一般在50到100左右(本次都设为100)

(2.3和2.4均非必要步骤,只是为了另外的处理或制图的美观性。如果是为了制图的美观性有可能这两个步骤会弄巧成拙,是否须要请根据具体需要和效果来定) 2.3、并可对栅格图层重分类,生成新的栅格图层如(ah_cd)

在ArcGIS 9 中进行空间统计

在ArcGIS 9中进行空间统计 作者:ESRI 中国(北京)培训中心 姜云鹏 随着GIS 在各个领域应用的不断扩展,有些特殊的行业,比如流行病学、生物学、气象、地质等行业,他们需要更深入的挖掘空间数据信息,这些信息的获得是与传统的GIS 分析结果不尽相同的。比如:传统的GIS 分析侧重于研究空间要素之间的关系,比如相邻、叠加、以及要素之间的距离、连通性等等。而这些特殊行业他们需要根据多种采样的数据来研究空间事物的变化信息,分布特征等信息,这些信息的获得,往往是一种统计分析的结果,而在空间上,事物的分布又 是相互关联的。所以,空间统计应运而生。所谓空间统计, 就是将空间信息与属性信息进行统一的考虑,研究特定属 性或属性之间与空间位置的关系。 空间统计主要的工作是研究空间自相关性(Spatial Autocorrelation ),分析空间分布的模式,例如聚类 (cluster )或离散(dispersed )。通过使用ArcGIS 9中的 空间统计工具,用户可以以一种非常直观而简单的方式获 得这些信息。 ArcGIS 9中的空间统计工具箱包括了一系列工具,用来分 析地理要素的空间分布形态。传统的统计并不考虑地理要 素的空间关系,而在空间统计中,要素的空间关系是分析 中需要考虑的必要的,处于绝对重要地位的。 因此,对于空间数据分析的目的来说,使用ArcGIS 9中 的空间统计工具比使用原来的不考虑空间信息而进行统 计的工具要更为合适。通过使用这些工具,GIS 用户可以 采用一种更高级的方法来解决空间数据分析中的问题。表一列出了主要的空间统计工具集以及它们的功能描述: 表一:空间统计工具集及其功能 工具集 功能 空间分布模式分析工具集 (Analyzing Patterns ) 确定要素的某些属性值在一个区域中是聚集分布,均匀分布,或者是随机分布状态 聚集分布制图工具集 (Mapping Clusters ) 确定统计量上重要的hot spots(最受关注地区),cold spots (不受关注地区)以及一些有特例的地区。 度量空间分布工具集 (Measuring Geographic Distributions ) 确定数据的中心位置,数据分布的形状及方向性,离散数据的离散程度 辅助工具集 (Utilities ) 对数据进行重新处理或符号化分析结果 说明:这些工具为ArcGIS 9中新增加的核心功能: 在ArcGIS 8版本中,空间统计中的许多工具已经以开发者例子程序提供给了用户。而在9版本中,这些工具都被包括进了核心的功能模块中,成为了ArcGIS 平台的组成部分。而且,ArcGIS 9的空间统计工具在

ArcGIS 地统计学习指南

ArcGIS 地统计学习指南 ArcGIS地统计分析模块在地统计学与GIS之间架起了一座桥梁。使得复杂的地统计方法可以在软件中轻易实现。体现了以人为本、可视化发展的趋势。 地统计学的功能在地统计分析模块的都能实现,包括: (1)ESDA:探索性空间数据分析,即数据检查; (2)表面预测(模拟)和误差建模; (3)模型检验与对比。 地统计学起源于克里格。当时他用此法预测矿产分布,后来经过别人改进修改发展成为现在所用的克里格方法。虽然空间数据分析还有其他方法,如IDW(反距离加权插值法)等,但克里格方法是最主要、最常用的空间分析方法,下面也以此法为主进行。 1.2表面预测主要过程 ArcGIS地统计扩展模块的菜单非常简单,如下所示,但由此却可以完成完整的空间数据分析过程。 一个完整的空间数据分析过程,或者说表面预测模型,一般为。拿到数据,首先要检查数据,发现数据的特点,比如是否为正态分布、有没有趋势效应、各向异性等等(此功能主要由Explore Data菜单及其下级菜单完成);然后选择合适的模型进行表面预测,这其中包括半变异模型的选择和预测模型的选择;最后检验模型是否合理或几种模型进行对比;(后两种功能主要由Geostatistical Wizard…菜单完成)。Create Subsets…菜单的作用是为把采样点数据分成两部分,一部分作为训练样本,一部分作为检验样本。 下面将按上述表面预测过程进行叙述。 (注:[1]文章示例中所使用的数据为ArcGIS扩展模块中所带的学习数据(某地测得的臭氧含量样本),整个过程均使用此数据;[2]文章以操作方法介绍为主,所涉及到的地统计方法和基本理论一般未进行解释,可查阅相关地统计理论资料;操作中所用到的某些参数为地统计中的标准名称的也未进行解释。) 我们下面的任务是根据测量所得到的某地臭氧浓度数据进行全区的臭氧浓度预测。首先检查数据的特点,然后根据数据特点用不同参数进行表面模型预测,随后比较不同模型的精确程序,选择最佳模型,最后制作成果图。 我们下面的任务是根据测量所得到的某地臭氧浓度数据进行全区的臭氧浓度预测。首先检查数据的特点,然后根据数据特点用不同参数进行表面模型预测,随后比较不同模型的精确程序,选择最佳模型,最后制作成果图。 1.3数据检查,即空间数据探索分析(ESDA) 此功能主要通过Explore Data菜单中实现。 扩展模块提供了多种分析工具,这些工具主要是通过生成各种视图,进行交互性分析。如直方图、QQ plot图、半变异函数/协方差图等。 (1)直方图显示数据的概率分布特征以及概括性的统计指标。

ArcGIS统计分析

统计分析 来源:互联网 一单元统计 当进行多层面栅格数据叠合分析时,经常需要以栅格单元为单位来进行单元统计(Cell Statistics)分析。ArcGIS 的单元统计分析功能提供了十种单元统计方法,分别为: 1. Minimum:找出各单元上出现最小的数值; 2. Maximum:找出各单元上出现最大的数值; 3. Range:统计各单元上出现数值的范围; 4. Sum:计算各单元上出现数值的和; 5. Mean:计算各单元上出现数值的平均数; 6. Standard Deviation:计算各单元上出现数值的标准差; 7. Variety:找出各单元上不同数值的个数; 8. Majority:统计各单元上出现频率最高的数值; 9. Minority:统计各单元上出现频率最低的数值; 10. Median:计算各单元上出现数值的中值; 如下图1 中的一组表格所示,表格中每一格子代表一个栅格单元,最后一个表格是基于前两个表格进行单元统计的最小值统计得到的结果。即将前两个表格中相对应栅格数值进行比较,找出各单元上出现的最小数值。 图1 最小值单元统计 单元统计功能常用于同一地区多时相数据的统计,通过单元统计得出所需分析数据。例如,同一地区不同年份的人口分析,同一地区不同年份的土地利用类型分析等。 单元统计的操作过程如下,图2 所示: 1. Spatial Analyst 下拉菜单中选择Cell Statistics; 2. 在Layer 列表框中选择你要用来计算的图层,在列表框中选择一个图层,点击Add 按钮将其加入Input rasters 列表框(也可用Browse 按钮从磁盘中选择要使用的栅格数据); 3. 在Overlay statistic 栏中选择你用来对输入图层进行计算的统计类型; 4. 为输出结果指定目录及名称; 5. 点击OK 按钮。

ARCGIS空间操作步骤讲解

ARCGIS空间分析基本操作 一、实验目的 1. 了解基于矢量数据和栅格数据基本空间分析的原理和操作。 2. 掌握矢量数据与栅格数据间的相互转换、栅格重分类(Raster Reclassify)、栅格计算-查询符合条件的栅格(Raster Calculator)、面积制表(Tabulate Area)、分区统计(Zonal Statistic)、缓冲区分析(Buffer) 、采样数据的空间内插(Interpolate)、栅格单元统计(Cell Statistic)、邻域统计(Neighborhood)等空间分析基本操作和用途。 3. 为选择合适的空间分析工具求解复杂的实际问题打下基础。 二、实验准备 预备知识: 空间数据及其表达 空间数据(也称地理数据)是地理信息系统的一个主要组成部分。空间数据是指以地球表面空间位置为参照的自然、社会和人文经济景观数据,可以是图形、图像、文字、表格和数字等。它是GIS所表达的现实世界经过模型抽象后的内容,一般通过扫描仪、键盘、光盘或其它通讯系统输入GIS。 在某一尺度下,可以用点、线、面、体来表示各类地理空间要素。 有两种基本方法来表示空间数据:一是栅格表达; 一是矢量表达。两种数据格式间可以进行转换。 空间分析 空间分析是基于地理对象的位置和形态的空间数据的分析技术,其目的在于提取空间信息或者从现有的数据派生出新的数据,是将空间数据转变为信息的过程。 空间分析是地理信息系统的主要特征。空间分析能力(特别是对空间隐含信息的提取和传输能力)是地理信息系统区别与一般信息系统的主要方面,也是评价一个地理信息系统的主要指标。 空间分析赖以进行的基础是地理空间数据库。 空间分析运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段。 空间分析可以基于矢量数据或栅格数据进行,具体是情况要根据实际需要确定。 空间分析步骤 根据要进行的空间分析类型的不同,空间分析的步骤会有所不同。通常,所有的空间分析都涉及以下的基本步骤,具体在某个分析中,可以作相应的变化。 空间分析的基本步骤: a)确定问题并建立分析的目标和要满足的条件 b)针对空间问题选择合适的分析工具 c)准备空间操作中要用到的数据。

arcgis实习之空间统计分析

空间统计分析实习报告 Spatial statistics tools 分析模式工具集中的工具采用推论式统计,以零假设为起点,假设要素与要素相关的值均表现随机分布。然后计算P 值说明,这种分布属于随机分布的概率。在应用中,返回Z 得分和P值判断是否可以接受或拒绝零假设,同时在不同的工具中,还表示分布是聚集,或分散 是标准差的倍 数,在0.5-P的概 率下接受随机分 布的接受域 Average Nearest Neighbor 最邻近分析 根据每个要素预期最近要素的平均距离来计算最邻近指数,当指数大于1,要素有聚集分布的趋势,对于趋势如何,还要依据z—value和P—value 来判断,小于1时,趋向分散分布 最近邻指数的表示方法为:平均观测距离与预期平均距离的比率,预期平均距离是假设随机分布中领域间的平均距离 这种方法对面积指值非常敏感(期望平均距离计算中需要面积参与运算),如果未指定

面积参数,则使用输入要素周围最小外接矩形的面积(不一定合坐标轴垂直)Spatial Autocorrelation (Morans I) 空间自相关分析 更具要素位置的属性使用Global Moran’s I 统计量量测空间自相关性 Moran’s I是计算所评估属性的均值和方差,然后将每个要素减去均值,得到与均值的偏差,将所有相邻要素的偏差相称,得到叉积。统计量的分子便是这些叉积之和。 如果相邻要素的值均大于均值,这叉积为正,如果以要素小于均值而一要素大于均值,则为负 如果数据集中的值倾向于在空间上集聚(高值聚集在高值附近,低值聚集在低值附近)则指数为正,如果高值排斥高值,倾向于低值,则指数为负 之后,将计算期望指数值,将之与其比较,在给定的数据集中的要素个数和全部熟知的方差下,将计算Z得分和P值,用来指示次差异是否具有统计学上的显著性 Multi-Distance Spatial Cluster Analysis K函数分析 确定要素(后与之有关连的值)是否显示某一距离范围内统计意义显著的聚类或离散 基于Ripley's K 函数的多距离空间聚类分析工具是另外一种分析事件点数据的空间模式的方法。该方法不同于此工具集中其他方法(空间自相关和热点分析)的特征是可汇总一定距离范围内的空间相关性(要素聚类或要素扩散) Ripley's K 函数可表明要素质心的空间聚类或空间扩散在邻域大小发生变化时是如何变化的。 如果特定距离的k观测值大于k预期值,则与该距离下的随机分布相比,该分布的聚集程度更高,反之亦可。如果,k观测值大于HIConfEnv,则该距离的空间聚类具有统计学上的显著性,如果k观测值小于LwConFEnv,则该距离的空间离散具有统计学上的显著性对于置信区间,点的每个随机分布称为“排列”将一组点随机分布多次,将对每个距离选择相对预期k值向下和向上最大的k值,作为置信区间 Anselin Local Moran’s I局部Moran’s I 分析 给定一组加权要素,使用局部Moran’s I统计量来识别具有统计显著性的热点,冷点和空间异常值。 Z得分和p值是统计显著性的指标,用于逐个要素判断是否拒绝零假设。他们可指示表面相似性和向异性 如果要素Z值是一个较高的正数,则表示周围的要素拥有相似值,输出要素Cotype字段会将具有统计显著性的高值聚类表示为HH,低值聚类表示为LL ?如果要素的z 得分是一个较低的负值,则表示有一个具有统计显著性的空间异常值。输出要素类中的COType 字段将指明要素是否是高值要素而四周围绕的是低值要素(HL),或者要素是否是低值要素而四周围绕的是高值要素(LH)。

Arcgis 做插值掩模示例(可用)

Arcgis 做插值掩模示例(可用) 打开arcgis—窗口-目录-依次打开qxz、qujie,打开编辑器工具条,可以对qxz、qujie,属性等进行修改。 插值方法:窗口-目录-搜索-克里金-克里金法(空间分析)-输入点要素(qxz)-Z值字段(例如:干旱)-选择输出表面栅格(文件名、储存地址kriging_shp1)-环境-栅格分析-掩膜-选取qujie-确定-确定。----完成克里金插值-形成kriging_shp1插值文件。在内容列表窗口-右击kriging_shp1-属性-可以对其色标等属性进行修改。(注:后续插入的图例标注在属性-符号系统-标注(修改数据或添加汉字即可)) DEM边界裁剪:方法1 窗口-搜索-掩膜提取-按掩模提取-输入栅格-选择DEM数据dem_all_84.img-输入栅格数据或掩膜数据-选择kriging_shp1--输出栅格(Extract_img1)。方法2 窗口-搜索-裁剪-裁剪(数据管理)-输入栅格(选择DEM数据dem_all_84.img)-输入范围(qujie)-将输入要素用于裁剪几何勾选上-确定—生成裁剪好的边界范围的dem数据 提取山体阴影:窗口-搜索-山体-山体阴影(空间分析)-输入栅格(Extract_img1)输出栅格 (Hillsha_dem1)-确定-形成山体阴影Hillsha_dem1栅格文 件。 插值图kriging_shp1与山体阴影Hillsha_dem1图叠加: 在内容列表窗口-勾选kriging_shp1与Hillsha_dem1-编辑器-开 始编辑Hillsha_dem1-自定义-工具条-效果-透明度。-输出图形 了。(插入图例、比例尺—视图-布局视图-插入-图形的比例 尺、指北针、文本等等) 乌鲁木齐地形高程图的制作:窗口-目录-打开DEM数据 dem_all_84.img文件-裁剪或者掩膜(方法如上)-得到乌鲁木 齐边界范围内的DEM高程文件-内容列表-选中高程文件-右击- 属性-可以对高程文件色彩进行调整-图形比例尺、指北针等要 素添加如上—输出地形高程图。(注站点的添加如插值图和山 体阴影的叠加)

ARCGIS重金属污染空间插值详细操作步骤

具体操作过程: 1、数据准备:将高斯点gaosidian35.xls另存为dbf格式,将重金属含量点也另存dbf; 2、导入数据:启动ArcMAP——Tools菜单——Add XY Data——导入高斯点和重金属点— —最好导入数据后,右击gaosidian35——Data——Export Data保存一下; Ps:安丘市地理坐标:东经118°44′10〃~119°27′10〃,北纬36°4′50〃~36°38′5〃,可以点击Edit按钮设置Coordinate System——Select高斯投影(Projected Coordinate Systems\Gauss Kruger\Beijing 1954目录中20N带),也可以不管; 3、属性链接:右击高斯点——Joins and Relations——Join(注意选两表中的公共字段如fid 才可以连接); 4、保存链接属性:右击链接后的高斯点——Data——Export保存——打开属性表查看链接 上了cr(镉)pb(铅)hg(汞)属性——start editing——stop editing,为了保存一下连接后的属性,否则只是显示属性连接,下次打开连接的属性可能不存在了; 5、添加安丘市范围xiangzhenjie.shp文件; 6、反距离加权IDW插值操作:工具箱——spatial analyst tools——interpolation——IDW、 Kriging、Natural Neighbor、Spline插值方法——需要插值的z value可以选铅镉汞——注意环境设置——output extent:选安丘市的范围shp——点OK就生成了栅格的插值结果图; 7、把安丘市的shp矢量转栅格——工具箱Conversion——to Raster——Features to Raster; 8、在工具栏空白处右击——添加spatial analyst工具条; 9、重分类:reclassify——点击classify——equal interval——分成1类(安丘市内为1,外 为no data,相当0)——OK; 10、栅格运算,把安丘市外的(0)裁剪掉:Raster calculator ——将重分类后的安丘栅 格图*插值后的重金属分布结果图——OK; 11、Layout 出图:制图修饰,右击安丘市xiangzhenqie图层——Lable Features,显示 各乡镇名——View——Layout——添加图名,制图人、时间,图例(重金属单位mg\kg),修改比例尺上的注记等,也可在Insert——新Data Frame,添加上安丘市在山东省的位置缩略图; 12、制图输出:File——Export Map—设置JPG格式及分辨率300pi——大功告成啦~

ArcGIS地统计分析总结

ArcGIS地统计分析(Geostatistical Analyst) 1 介绍 1.1为什么使用ArcGIS Geostatistical Analyst 人为判断总是会遗漏某些重要信息,同时也会无中生有。而ArcGIS Geostatistical Analyst提供客观的数据驱动方法,定量预测数据变化趋势和从空间数据中发掘特征模型。如果数据不够精确或者模型不够准确,这样势必影响输出的地图和从中得到的结论。而ArcGIS Geostatistical Analyst可以提供一个概率框架,来定量计算生成数据面时的不确定性。 元统计分析方法利用属性数据之间的相关来推断不同变量之间的联系,ArcGIS Geostatistical Analyst可以联合各种数据来做更精确的预测。 ArcGIS Geostatistical Analyst可以有效地推测一些空间现象的未知部分,因此,对采样计划的设计和优化非常关键。 1.2使用ArcGIS Geostatistical Analyst的各个领域 这个模块的应用对象不计其数,可以使用这个工具包开发任何一种地理数据集(比如坐标和属性),下面列出几个成功应用ArcGIS Geostatistical Analyst的典型领域:气象学家和统计学家应用ArcGIS Geostatistical Analyst来进行气象数据分析。 采矿行业广泛的应用ArcGIS Geostatistical Analyst,涉及从最初的地质特征研究到产量控制的各个阶段。 石油工业成功的应用ArcGIS Geostatistical Analyst,来分析包括地震数据和油井数据集成的空间数据,并且用来研究物理特性和地震属性之间的相关关系。 在环境问题的研究中,ArcGIS Geostatistical Analyst的应用提供了一个分析空气、土壤和地下水污染高效和一致的模型。演示、个例研究和研究教育论文提供了大量的应用ArcGIS Geostatistical Analyst的例子。同时,ArcGIS Geostatistical Analyst也成为评估渔业产量的一个标准方法。 精细农业所应用的土壤特性的图形分析中,ArcGIS Geostatistical Analyst也得到广泛应用。越来越多的农民或者农村顾问使用ArcGIS Geostatistical Analyst来增加作物产量、提高利润、减小对环境的不利影响。 2基本原理 地统计学与经典统计学的共同之处在于:它们都是在大量采样的基础上,通过对样本属性值的频率分布或均值、方差关系及其相应规则的分析,确定其空间分布格局与相关关系。但地统计学区别于经典统计学的最大特点即是:地统计学既考虑到样本值的大小,又重视样本空间位置及样本间的距离,弥补了经典统计学忽略空间方位的缺陷。 地统计分析理论基础包括前提假设、区域化变量、变异分析和空间估值。 2.1 前提假设

arcgis中七种插值方法的对比分析

反距离权重法的工作原理 反距离权重(IDW) 插值使用一组采样点的线性权重组合来确定像元值。权重是一种反距离函数。进行插值处理的表面应当是具有局部因变量的表面。 此方法假定所映射的变量因受到与其采样位置间的距离的影响而减小。例如,为分析零售网点而对购电消费者的表面进行插值处理时,在较远位置购电影响较小,这是因为人们更倾向于在家附近购物。 使用幂参数控制影响 反距离权重法主要依赖于反距离的幂值。幂参数可基于距输出点的距离来控制已知点对内插值的影响。幂参数是一个正实数,默认值为2。 通过定义更高的幂值,可进一步强调最近点。因此,邻近数据将受到最大影响,表面会变得更加详细(更不平滑)。随着幂数的增大,内插值将逐渐接近最近采样点的值。指定较小的幂值将对距离较远的周围点产生更大影响,从而导致更加平滑的表面。

由于反距离权重公式与任何实际物理过程都不关联,因此无法确定特定幂值是否过大。作为常规准则,认为值为30 的幂是超大幂,因此不建议使用。此外还需牢记一点,如果距离或幂值较大,则可能生成错误结果。 可将所产生的最小平均绝对误差最低的幂值视为最佳幂值。ArcGIS Geostatistical Analyst 扩展模块提供了一种研究此问题的方法。 1. 3 限制用于插值的点 也可通过限制计算每个输出像元值时所使用的输入点,控制内插表面的特性。限制经考虑的输入点数可加快处理速度。此外,由于距正在进行预测的像元位置较远的输入点的空间相关性可能较差或不存在,因此有理由将其从计算中去除。 可直接指定要使用的点数,也可指定会将点包括到插值内的固定半径。 2. 4 可变搜索半径 可以使用可变搜索半径来指定在计算内插像元值时所使用的点数,这样一来,用于各内插像元的半径距离将有所不同,而具体情况将取决于必须在各内插像元周围搜索多长距离才能达到指定的输入点数。由此将导致一些邻域较小而另一些邻域较大,这是由位于内插像元附近的测量点的密度所决定的。另外,也可指定搜索半径不得超出的最大距离(以地图单位为单位)。如果在获取指定点数之前特定邻域的半径达到最大距离,则会针对最大距离内的测量点数执行该位置的预测。通常,如果此现象产生的偏差较大,则应使用较小邻域或最少点数。

ArcGis地统计学

1.1 地统计扩展模块简介 ArcGIS地统计分析模块在地统计学与GIS之间架起了一座桥梁。使得复杂的地统计方法可以在软件中轻易实现。体现了以人为本、可视化发展的趋势。 地统计学的功能在地统计分析模块的都能实现,包括: (1)ESDA:探索性空间数据分析,即数据检查; (2)表面预测(模拟)和误差建模; (3)模型检验与对比。 地统计学起源于克里格。当时他用此法预测矿产分布,后来经过别人改进修改发展成为现在所用的克里格方法。虽然空间数据分析还有其他方法,如IDW(反距离加权插值法)等,但克里格方法是最主要、最常用的空间分析方法,下面也以此法为主进行。 1.2表面预测主要过程 ArcGIS地统计扩展模块的菜单非常简单,如下所示,但由此却可以完成完整的空间数据分析过程。 一个完整的空间数据分析过程,或者说表面预测模型,一般为。拿到数据,首先要检查数据,发现数据的特点,比如是否为正态分布、有没有趋势效应、各向异性等等(此功能主要由Explore Data菜单及其下级菜单完成);然后选择合适的模型进行表面预测,这其中包括半变异模型的选择和预测模型的选择;最后检验模型是否合理或几种模型进行对比;(后两种功能主要由Geostatistical Wizard…菜单完成)。Create Subsets…菜单的作用是为把采样点数据分成两部分,一部分作为训练样本,一部分作为检验样本。 下面将按上述表面预测过程进行叙述。 (注:[1]文章示例中所使用的数据为ArcGIS扩展模块中所带的学习数据(某地测得的臭氧含量样本),整个过程均使用此数据;[2]文章以操作方法介绍为主,所涉及到的地统计方法和基本理论一般未进行解释,可查阅相关地统计理论资料;操作中所用到的某些参数为地统计中的标准名称的也未进行解释。) 我们下面的任务是根据测量所得到的某地臭氧浓度数据进行全区的臭氧浓度预测。首先检查数据的特点,然后根据数据特点用不同参数进行表面模型预测,随后比较不同模型的精确程序,选择最佳模型,最后制作成果图。 我们下面的任务是根据测量所得到的某地臭氧浓度数据进行全区的臭氧浓度预测。首先检查数据的特点,然后根据数据特点用不同参数进行表面模型预测,随后比较不同模型的精确程序,选择最佳模型,最后制作成果图。

相关主题
文本预览
相关文档 最新文档