当前位置:文档之家› 2021年浙江中考数学总复习方法技巧专题(02) 数形结合思想训练

2021年浙江中考数学总复习方法技巧专题(02) 数形结合思想训练

2021年浙江中考数学总复习方法技巧专题(02) 数形结合思想训练
2021年浙江中考数学总复习方法技巧专题(02) 数形结合思想训练

方法技巧专题(二)数形结合思想训练

数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质解决几何问题(以数助形)的一种数学思想.

1.为了证明数轴上的点可以表示无理数,老师给学生设计了如下材料:如图F2-1,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点由原点(记为点O)到达点A,点A对应的数是多少?从图中可以看出OA的长是这个圆的周长π,所以点A对应的数是π,这样,无理数π可以用数轴上的点表示出来,上述材料体现的数学思想是()

图F2-1

A.方程思想

B.从特殊到一般

C.数形结合思想

D.分类思想

2.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图F2-2①),把余下的部分拼成一个长方形(如图

②),根据两个图形中阴影部分的面积相等,可以验证()

图F2-2

A.(a+b)2=a2+2ab+b2

B.(a-b)2=a2-2ab+b2

C.(a+2b)(a-b)=a2+ab-2b2

D.a2-b2=(a+b)(a-b)

3.甲、乙两车从A地出发,匀速驶向B地.甲车以80 km/h的速度行驶1 h后,乙车才沿相同路线行驶.乙车先到达B地并停留1 h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图F2-3所示.下列说法:①乙车的速度是120 km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()

图F2-3

A.4个

B.3个

C.2个

D.1个

4.已知二次函数y=(x-h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()

A.1或-5

B.-1或5

C.1或-3

D.1或3

5.方程x2+2x-1=0的根可看成函数y=x+2的图象与函数y=1

的图象交点的横坐标,用此方法可推断方程x3+x-1=0

x

的实数根有()

A.0个

B.1个

C.2个

D.3个

6.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:

x-10234

y50-4-30

下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当00;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上两点,则x1

A.2

B.3

C.4

D.5

7.已知m>0,关于x的一元二次方程(x+1)(x-2)-m=0的解为x1,x2(x1

A.x1<-1<2

B.-1

C.-1

D.x1<-1

8.已知实数a,b在数轴上的位置如图F2-4所示,化简:√(a-b)2-|a+b|的结果为.

图F2-4

9.已知关于x 的不等式组{x -a >0,

3-x >0

的整数解共有2个,则a 的取值范围为 .

10.如图F2-5,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b >ax +3的解集为 .

图F2-5

11.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图F2-6.

图F2-6

由图易得:1

2+1

22+1

23+…+1

2n = .

12.当x =m 和x =n (m ≠n )时,代数式x 2-2x +3的值相等,则x =m +n 时,代数式x 2-2x +3的值为 .

13.如图F2-7,在平面直角坐标系中,点P (-1,a )在直线y =2x +2与直线y =2x +4之间,则a 的取值范围是 .

图F2-7

14.已知函数y ={(x -1)2+1(x <2),

(x -4)2

-2(x ≥2),使y =k 成立的x 的值恰好只有3个时,k 的值为 . 15.已知☉O 的直径AB =2,过点A 有两条弦,AC =√2,AD =√3,则∠CAD 的度数为 .

16.如图F2-8,矩形纸片ABCD 的长AD =9 cm,宽AB =3 cm,将其折叠,使点D 与点B 重合,则折叠后DE 的长为

cm,折痕EF 的长为 cm .

图F2-8

17.在平面直角坐标系中,☉A的半径为2,点A的坐标为(5,12),P(m,n)是☉A上的一个动点,则m2+n2的最大值为.

18.如图F2-9,四边形ABCD是一个正方形,已知A(1,2),B(5,2).

(1)求点C,D的坐标;

(2)若一次函数y=kx-2的图象过C点,求k的值;

(3)若直线y=kx-2与正方形ABCD有交点,求k的取值范围.

图F2-9

19.已知函数y=x2+bx+c(b,c为常数)的图象经过点(-2,4).

(1)求b,c满足的关系式;

(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;

(3)若该函数的图象不经过第三象限,当-5≤x≤1时,函数的最大值与最小值之差为16,求b的值.

【参考答案】

1.C

2.D

3.B [解析] 甲、乙两车最开始相距80 km,0到2 h 是乙在追甲,并在2 h 时追上,设乙的速度为x km/h,可得方程2x -2×80=80,解得x =120,故①正确;

在2 h 时甲、乙两车相距0 km,在6 h 时乙到达B 地,此时甲、乙之间的距离=(6-2)×(120-80)=160(km),故②正确; H 点是乙在B 地停留1 h 后开始原路返回,6 h 时甲、乙之间的距离是160 km,后面1 h 中只有甲在行驶,所以1 h 后甲、乙相距80 km,所以点H 的坐标是(7,80),故③正确;

最后一段是乙原路返回,直到在n h 时与甲相遇,初始距离80 km,所以相遇时间=80÷(120+80)=0.4(h),所以n =7.4,故④错误

.

综上所述,①②③正确,④错误,正确的有3个,故选B .

4.B [解析] 由二次函数的顶点式y =(x -h )2+1,可知当x =h 时,y 取得最小值1. (1)如图①,当x =3,y 取得最小值时,{?>3,(3-?)2+1=5,

解得h =5(h =1舍去);

(2)如图②,当x =1,y 取得最小值时,{?<1,

(1-?)2+1=5,解得h =-1(h =3舍去).故选B .

5.B [解析] 把方程x 3+x -1=0变形为x 2+1=1

x ,

方程x 3+x -1=0的实数根可看成函数y =x 2+1图象与函数y =1

x

图象交点的横坐标,

函数y =x 2+1的图象与函数y =1

x 的图象如图所示:

∵两个函数图象的交点只有1个,∴方程x 3+x -1=0的实数根有1个.故选B . 6.B [解析] 根据表中数据画出大致图象如下,

观察图象易知①②④正确,③错误.⑤中,A ,B 点的位置各有两种情况,由于其位置关系不能确定,∴x 1,x 2的大小关系无法确定.故选B .

7.A [解析] 关于x 的一元二次方程(x +1)(x -2)-m =0的解x 1,x 2可以看作二次函数m =(x +1)(x -2)的图象与x 轴交点的横坐标.如图,二次函数m =(x +1)(x -2)的图象与x 轴交点的坐标为(-1,0),(2,0), 当m>0时,抛物线位于x 轴上方,此时x<-1或x>2. 又∵x 1

∴x 1<-1<2

8.2a [解析] 由实数a ,b 在数轴上的位置可知:b<0,a>0,|b|>|a|,∴a -b>0,a +b<0, ∴√(a -b )2-|a +b|=a -b +a +b =2a.

9.0≤a<1 [解析] 不等式组整理得{x >a ,

x <3,

解得a

由整数解共有2个,得到整数解为1,2,则a 的取值范围是0≤a<1.

10.x>1 [解析] 由图知:当直线y =x +b 在直线y =ax +3的上方时,不等式x +b>ax +3成立;由于两直线的交点横坐标为x =1,观察图象可知,当x>1时,x +b>ax +3. 11.1-1

2n 12.3

13.0

14.1或2 [解析] 画出函数的图象,要使y =k 成立的x 的值恰好只有3个,即函数图象与直线y =k 有3个交点.函数y ={(x -1)2+1(x <2),

(x -4)2-2(x ≥2)

的图象如图.

根据图象知道,当y =1或2时,对应成立的x 值恰好有3个,∴k =1或2.故答案为1或2.

15.75°或15° [解析] ①当弦AC ,AD 在圆心两侧时,如图①,作OE ⊥AC 于点E ,OF ⊥AD 于点F ,

则cos ∠CAO =√2

2,cos ∠DAO =√3

2,

所以∠CAO =45°,∠DAO =30°,从而得∠CAD =∠CAO +∠DAO =75°;

②当弦AC ,AD 在圆心同侧时,如图②,同理可得: ∠CAD =∠CAO -∠DAO =15°. 所以∠CAD 的度数为75°或15°.

16.5√10[解析] 设DE长为x cm,则AE=(9-x)(cm),BE=x cm.∵四边形ABCD是矩形,∴∠A=90°.根据勾股定理得:AE2+AB2=BE2,即(9-x)2+32=x2,解得x=5,即DE长为5 cm.

作EG⊥BC于G,如图所示,则四边形ABGE是矩形,∠EGF=90°,

∴EG=AB=3,BG=AE=4,∵∠DEF=∠BEF,∠DEF=∠BFE,∴∠BEF=∠BFE,即BE=BF,∴GF=1,

∴EF2=EG2+GF2=32+12=10,∴EF=√10.

17.225[解析] ∵P(m,n),∴OP=√m2+n2,

∴m2+n2的最大值即OP的最大值的平方.

连结OA并延长与圆交于点P,此时OP最大,

∵点A的坐标为(5,12),∴OA=13,

又☉A的半径为2,

∴OP=15,m2+n2的最大值为225.

18.解:(1)∵A(1,2),B(5,2),∴AB=5-1=4,AB∥x轴,

∵四边形ABCD是正方形,∴AD=BC=AB=4,AD∥BC∥y轴,∴C(5,6),D(1,6).

.

(2)把C(5,6)的坐标代入y=kx-2,得5k-2=6,解得k=8

5

(3)把D(1,6)的坐标代入y=kx-2得k-2=6,解得k=8;把B(5,2)的坐标代入y=kx-2得5k-2=2,解得k=4

5

,∴k的取值范

围为4

5

≤k≤8.

19.解:(1)将(-2,4)代入y=x2+bx+c,

得4=(-2)2-2b+c,∴c=2b,

∴b,c满足的关系式是c=2b.

(2)把c=2b代入y=x2+bx+c,

得y=x2+bx+2b,

∵顶点坐标是(m,n),∴n=m2+bm+2b,

且m=-b

2

,即b=-2m,∴n=-m2-4m.

∴n关于m的函数解析式为n=-m2-4m.

(3)由(2)的结论,画出函数y=x2+bx+c和函数y=-x2-4x的图象.

∵函数y=x2+bx+c的图象不经过第三象限,

∴-4≤-b

2

≤0.

①当-4≤-b

2

≤-2,即4≤b≤8时,如图①所示,

当x=1时,函数取到最大值y=1+3b,当x=-b

2时,函数取到最小值y=8b-b

2

4

,

∴(1+3b)-8b-b 2

4

=16,

即b2+4b-60=0,

∴b1=6,b2=-10(舍去);

②当-2<-b

2

≤0,即0≤b<4时,如图②所示,

当x=-5时,函数取到最大值y=25-3b,当x=-b

2时,函数取到最小值y=8b-b

2

4

,

∴(25-3b)-8b-b 2

4

=16,

即b2-20b+36=0,∴b1=2,b2=18(舍去).综上所述,b的值为2或6.

初中数学思想方法大全

一、宏观型思想方法 数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。 (一)、转化(化归)思想 解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。 不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。 “转化”的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。 可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。把实际问题转化为数学问题。结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题; g、化综合为单一;h、化一般为特殊。 有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,首先要认识到常用的很多数学方法实质就是转化的方法 应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。 例子:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形; (二)、数形结合思想 数学的研究对象是现实世界中的数量关系(“数”)和空间形式(“形”),而“数”和“形”是相互联系、相互渗透的,一定条件下也是可以互相转化的,因此,在解决问题时,常需把同一问题的数量关系与空间形式结合起来考查,利用数的抽象严谨和形的直观表意,把抽象思维和形象思维结合起来,把数量关系问题通过图形性质进行研究,或者把图形性质问题通过数量关

淄博地区2018中考数学总复习专题四整体思想试题

整体思想 1.(2017·淄博)若a +b =3,a 2+b 2 =7,则ab 等于( ) A .2 B .1 C .-2 D .-1 2.已知抛物线y =x 2-x -1与x 轴的一个交点是(m ,0),则代数式m 2-m +2 017的值为( ) A .2 015 B .2 016 C .2 017 D .2 018 3.(2016·济宁)已知x -2y =3,那么代数式3-2x +4y 的值是( ) A .-3 B .0 C .6 D .9 4.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是( ) A .-2a +b B .2a -b C .-b D .b 5.如图,边长为a 的正六边形内有两个三角形(数据如图),则S 阴影S 空白 =( ) A .3 B .4 C .5 D .6 6.(2017·淄博)已知α,β是方程x 2-3x -4=0的两个实数根,则α2+αβ-3α的值为______. 7.(2016·烟台)已知|x -y +2|+x +y -2=0,则x 2-y 2 的值为________. 8.(2017·烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA =6,取 OA 的中点C ,过点C 作CD⊥OA 交AB ︵于点D ,点F 是AB ︵上一点,若将扇形BOD 沿OD 翻折,点B 恰好与点F 重合.用剪刀沿着线段BD ,DF ,FA 依次剪下,则剪下的纸片(形状同阴影图形)面积之和为____________. 9.已知当x =3时,代数式ax 5+bx 3 +cx +1的值是5,求当x =-3时,代数式ax 5+bx 3+cx -1的值. 10.已知x 2+x -1=0,求代数式2x 3+4x 2+3的值.

数学的转化思想

中考数学专题复习之三:数学的转化思想 【中考题特点】: 转化思想要求我们居高临下地抓住问题的实质,在遇到较复杂的问题时,能够辩证地分析问题,通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。具体地说,比如把隐含的数量关系转化为明显的数量关系;把从这一个角度提供的信息转化为从另一个角度提供的信息。转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机..。 【范例讲析】: 例1:已知:n m ,满足13,132 2 =-=-n n m m , 求 n m m n +的值。 例2:已知:一元二次方程x 2+x+m=0,x 2-(m -1)x+4 1 =0中至少有一个方程有实数根,求m 的取值范围。 例3:已知:如图,平行四边形ABCD 中,DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F ,AB ∶BC=6∶5,平行四边形ABCD 的周长为110,面积为600。 求:cos ∠EDF 的值。 A B C D E F

例4:已知方程组 kx 2-x -y+ 2 1=0 y=k(2x -1) (x 、y 为未知数) 有两个不同的实数解 x=x 1 或 x=x 2 y=y 1 y=y 2 ⑴求实数k 的取值范围;⑵如果3x 1 x 1y y 2 121=++,求实数k 的值。 例5:如图,AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,∠APB 的平分线分别交BC 、AB 于点D 、E ,交⊙O 于点F ,∠A=60°,并且线段AE 、BD 的长是一元二次方程x 2-kx+23=0的两个根(k 为正的常数)。 ⑴求证:PA ·BD=PB ·AE ; ⑵求证:⊙O 的直径为常数k ; ⑶求tan ∠FPA 的值。 【练习】: 1.已知:m, n 是方程x 2-3x+1=0的两根,求代数式2m 2+4n 2-6n+1999的值。 2.已知:ab ≠1,且5a 2+1995a+8=0,8b 2+1995b+5=0。求 b a 的值。 3.如图,在直角坐标系中,点B 、C 在x 轴的负半轴上,点A 在y 轴的负半轴上,以AC 为直径的圆与AB 的延长线交于点D ,弧CD =弧AO ,如果AB=10AO>BO ,且AO 、BO 是关于x 的二次方程x 2+kx+48=0的两个根。 ⑴求点D 的坐标;⑵若点P 在直径AC 上,且AC=4AP ,判断点 (-2,-10)是否在过D 、P 两点的直线上,并说明理由。 A B C D E F P

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

中考数学专题一 整体思想复习题及答案

第四部分 中考专题突破 专题一 整体思想 1.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( ) A .-1 B .1 C .-5 D .5 2.(2012年江苏无锡)分解因式(x -1)2-2(x -1)+1的结果是( ) A .(x -1)(x -2) B .x 2 C .(x +1)2 D .(x -2)2 3.(2012年山东济南)化简5(2x -3)+4(3-2x )结果为( ) A .2x -3 B .2x +9 C .8x -3 D .18x -3 4.(2011年浙江杭州)当x =-7时,代数式(2x +5)(x +1)-(x -3)(x +1)的值为________. 5.(2012年江苏苏州)若a =2,a +b =3,则 a 2+ab =______. 6.已知? ???? x +2y =4k +1,2x +y =k +2,且0

初中数学中的“转化思想”

初中数学中的“转化思想” [摘要]:随着课程改革的深入展开,培养学生的能力越来越重要,数学学习更应重视数学思想方法的渗透和培养。本文从几方面论述了转化思想在数学学习中的重要作用:转化思想可以使学生经历探索的学习过程,改变学生的学习方式,转化思想能培养学生创新思维能力及逻辑思维能力,是一种很重要的思维方法;转化思想可以增强学生的数学应用意识,提高解决问题的能力,从而,大大加强学生学习数学的兴趣。 [关键词]:转化思想数学学习逻辑思维应用意识学习兴趣 [引言]:人们在长期的数学实践中总结了许多解决数学问题的方法,形成了许多光辉的数学思想,每种数学思想都有它一定的应用范围,但笔者在数学实践中体会到,在学生的数学学习过程中,决不能忽视转化数学思想所起的重要作用,在教学中必须重视转化思想的渗透和培养。 转化是解数学题的一种重要的思维方法,转化思想是分析问题和解决问题的一个重要的基本思想,不少数学思想都是转化思想的体现。就解题的本质而言,解题既意味着转化,既把生疏问题转化为熟习问题,把抽象问题转化为具体问题,把复杂问题转化为简单问题,把一般问题转化为特殊问题,把高次问题转化为低次问题;把未知条件转化为已知条件,把一个综合问题转化为几个基本问题,把顺向思维转化为逆向思维等,因此学生学会数学转化,有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。 数学转化思想、方法无处不在,它是分析问题、解决问题有效途径,它包含了数学特有的数、式、形的相互转换,又包含了心理达标的转换。转化的目的是不断发现问题,分析问题和最终解决问题。在数学中,很多问题能化复杂为简单,化未知为已知,化部分为整体,化一般为特殊,……等等,下面就“转化思想”在初中数学的应用通过举例作个简单归纳。

专题讲座(数学思想方法与初中数学教学)

专题讲座(数学思想方法与初中数学教学)

数学活动的机会,帮助学生在自主探索和合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。因此,在初中数学教学中,教师必须重视对学生进行数学思想方法的渗透与培养。 二、几种常见的数学思想方法在初中数学教学中的应用 (一)渗透转化思想,提高学生分析解决问题的能力 所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。转化思想是初中数学中常见的一种数学思想,它的应用十分广泛,我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。数学问题的解决过程就是一系列转化的过程,转化是化繁为简,化难为

易,化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析解决问题的能力有积极的促进作用。 我们对转化思想并不陌生,中学数学中常用的化高次为低次、化多元为一元,都是转化思想的体现。在具体内容上,有加减法的转化、乘除法的转化、乘方与开方的转化、数形转化等等。例如:初中数学“有理数的减法”和“有理数的除法”这两节教学内容中,教材是通过“议一议”的形式,使学生在自主探究和合作交流的过程中,经历把有理数的减法转化为加法、把有理数的除法转化为乘法的过程,“减去一个数等于加上这个数的相反数”,“除以一个数等于乘以这个数的倒数”,这个地方虽然很简单,但却充分体现了把“没有学过的知识”转化为“已经学过的知识”来加以解决,学生一旦掌握了这种解决问题的策略,今后无论遇到多么难、多么复杂的问题,都会自然而然地想到把“不会的”转化为“会的”、“已经掌握的”知识来加以解决,这符合学生原有认知规律,作为教师,我们不能因为简单而忽视它的教学,实践告诉我们,往往是越简单、越浅显的例子,越能引起学生的认同,

常见的数学思想方法

x y 2= 常见的数学思想方法 一、中考考点: 1.方程(组)是解决应用题、实际问题和许多方面数学问题的重要基础知识。在解决问题时,把某个未知量设为未知数,根据有关的性质、定理或公式,建立起未知数和已知数间的等量关系,列出方程(组)来解决,这就是方程思想。 2. 数形结合思想是一种重要的数学思想方法。通过图形,探究数量关系,再由数量关系研究图形特征,使问题化难为易,由数想形、由形知数,这就是一种数形结合思想。 3. 所谓化归思想就是化未知为已知、化繁为简、化难为易.通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机。 二、基础练习: (一)整体思想 1.如果代数式 1322+-x x 的值为2, 那么代数式x x 322 -的值等于( )A .2 1 B .3 C .6 D .9 2.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿( ) A .图(1)需要的材料多 B .图(2)需要的材料多 C .图(1)、图(2)需要的材料一样多 D .无法确定 (二)方程思想 的图象在第一象限内的交点, 3.如图,已知点A 是一次函数x y =的图象与反比例函数 点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为( )A .2 B .2 2 C .2 D .22 (三)数形结合思想 4.如图,A 是硬币圆周上一点,硬币与数轴相切于原点OA (A 与O 点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A′重合,则点A′对应的实数是___________. 5.函数)0(≠= k x k y 的图象如图所示,那么函数k kx y -=的图象大致是( ) (四)化归思想 6.如图,当半径为30cm 的转动轮转过60°角时,传送带上的物体A 移动的距离为________cm .(计算结果不取近似值) 7.将边长为8cm 的正方形ABCD 的四边沿直线l 向右滚动(不滑动),当正方形滚动两面三刀周时,正方形的顶点A 所经过的路线的长是__________cm . 8.在图中,所有多边形的每条边的长都大于2,每个扇形的半径都是1.则第n 个多边形中,所有扇形的面积之和是__________. (五)数学建模思想 9.如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角.在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长.(结果保留根号) (六)函数思想 10.某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品.生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表: 煤的价格为400元/吨.生产1吨甲产品除原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生 产甲产品x 吨,乙产品m 吨,公司获得的总利润为y 元.(1)写出m 与x 之间的关第式; (2)写出y 与x 的函数表达式(不要求写自变量的范围); (3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大最大利润是多少 (七)统计思想 11.某地区有一条长100千米,宽千米的防护林.有关部门为统计该防护林的树木量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木树量如下(单位:棵):65100、63200、64600、64700、67400.那么根据以上数据估算这一防护林总共约有_________棵树. 12.甲袋中放着19只红球和6只黑球、乙袋则放着170只红球、67只黑球和13只白球,这些球

2020中考数学复习突破与提升专题提升练习(五类常用数学思想分类汇编)(无答案)

2020中考数学复习突破与提升专题提升练习 (五类常用数学思想分类汇编) 类型一整体思想 1. (2019·宁波)小慧去花店购买鲜花,若买5枝玫瑰和3枝百合,则她所带的钱还剩下10元;若买3枝玫瑰和5枝百合,则她所带的钱还缺4元.若只买8枝玫瑰,则她所带的钱还剩下( ) A.31元 B.30元 C.25元 D.19元 2.(2019·内江)若x,y,z为实数,且{x+2y-z=4, x-y+2z=1,则代数式x2-3y2+z2的 最大值是. 3.(2019·厦门思明区模拟)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长的直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为. 4. .(2018·常德)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是.

类型二转化思想 1. (2019·河南开封模拟)运用图形变化的方法研究下列问题:如图,AB是☉O的直径,CD,EF是☉O的弦,且AB∥CD∥EF,AB=10, CD=6,EF=8,则图中阴影部分的面积是( ) A. π B.10π C.24+4π D.24+5π 2. (2018·上海)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度. 3.(2019·十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为. 4. 如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋 = . 转,当∠ABF最大时,S △ADE 5.(2019·宝安模拟)如图,已知圆柱的底面周长为6,高AB=3,小虫在圆柱表面爬行,从C点爬到对面的A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为.

中考数学复习专题 转化思想(含答案)

转化思想 一. 选择题:(本题10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分;共40分) 1、用换元法解方程x x x x + =++222 1时,若设x 2+x=y, 则原方程可化为( ) A 、y 2+y+2=0 B 、y 2-y -2=0 C 、y 2-y+2=0 D 、y 2+y -2=0 2、如图,已知ABC ?外有一点,P 满足PC PB PA ==,则( ) A 、22 3 1∠= ∠ B 、21∠=∠ C 、221∠=∠ D 、2,1∠∠的大小无法确定 3、小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数2 3.5 4.9h t t =-(t 的单位:s , h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( ) A 、0.71s B 、 0.70s C 、0.63s D 、0.36s 4、已知如图:ΔABC 中,∠C=90°,BC=AC ,以AC 为直 径的圆交AB 于D ,若AD=8cm ,则阴影部分的面积为 ( ) A 、64πcm 2 B 、64 cm 2 C 、32 cm 2 D 、48 πcm 2 5、已知实数x 满足0112 2 =+++ x x x x ,那么x x 1+的值为( ) A 、1或-2 B 、-1或2 C 、1 D 、-2 6、如图,在半圆的直径上作4个正三角形,如这半圆周长为1C ,这4个正三角形的周长和为2C ,则1C 和2C 的大小关系是( ) 第2题 第3题 第4题 第6题

A 、1C >2C B 、1 C <2C C 、1C =2C D 、不能确定 7.如图,点A 、D 、G 、M 在半圆O 上,四边形 ABOC 、DEOF 、HMNO 均为矩形,设BC=aEF=b ,NH=c ,则下列各式中正确的是 A 、a >b >c B 、a=b=c C 、c >a >b D 、b >c >a 8. 如图,梯形ABCD 中,AB//DC ,AB =a ,BD =b ,CD =c , 且a 、b 、c 使方程ax bx c 220-+=有两个相等实数根,则∠DBC 和∠A 的关系是( ) A. ∠=∠DBC A B. ∠≠∠DBC A C. ∠>∠DBC A D. ∠<∠DBC A 9. 如图,圆锥的母线长是3,底面半径是1,A 是底面圆周 上从点A 出发绕侧面一周,再回到点A 的最短的路线长是( ) (A) 36 (B) 2 3 3 (C) 33 (D) 3 10. 已知a 、b 、c 是?ABC 三边的长,b>a =c ,且方程 ax bx c 220-+=两根的差的绝对值等于2,则?ABC 中 最大角的度数是( ) A. 90? B. 120? C. 150? D. 60? 二、填空题:(本大题共4小题,每小题5分,共20分,) 11、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为 1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为__________ 12、某同学在电脑中打出如下排列的若干个圆(图中●表示实心圆, ○表示空心圆): ● ○●●○●●●○●●●●○●●●●●○●●●●●●○ 若将上面一组圆依此规律复制得到一系列圆,那么前2007个圆中有 个空心圆; 13、二次函数y=ax 2+bx+c (a ≠0)的部分对应值如下表,则不等式ax 2+bx+c>0的解集为 . H N O F C A D G M c a b E B 第7题 第8题 D C 1 2 A B 第9题 第11题

中考数学复习分类讨论思想

分类讨论 【知识要点】 分类是基本逻辑方法之一.依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做分类的思想。“物以类聚,人以群分”。将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做分类讨论的方法。 分类的思想是自然科学乃至社会科学研究中经常用到的,又叫做逻辑划分。不论从宏观上还是从微观上对研究对象进行分类,都是深化研究对象、发展科学必不可少的思想。因此分类讨论既是一种逻辑方法,也是一种数学思想。 需要运用分类讨论的思想解决的数学问题,就其引起分类的原因,可归结为:①涉及的数学概念是分类定义的;②运用的数学定理、公式或运算性质、法则是分类给出的;③求解的数学问题的结论有多种情况或多种可能;④数学问题中含有参变量,这些参变量的取值会导致不同结果的。 应用分类讨论思想解决问题,必须保证分类科学、统一,不重复,不遗漏,并力求最简。运用分类的思想,通过正确的分类,可以使复杂的问题得到清晰、完整、严密的解答。 1命题动态: 分类讨论思想是中考的必考内容,历年来,备受全国各省市命题者的青睐,题型多样,主要考察学生数学思维和逻辑推理能力,经常与分类讨论相关的题目有绝对值的化简与计算,三角形边角关系,等边三角形,实际问题以及动点问题中,难度系数较大,对学生能力要求很强,纵观广州近几年考卷,几乎都在动点问题和实际问题中,平均分值16分左右。 2 突破方法: a.牢固掌握概念,掌握概念间的区别与联系。 b.动点问题中的分类讨论是难点,需要同学们认真、细致的分析运动过程,依据动点某时刻所处的位置,化动为静,再利用平面几何知识去处理。 c.实际问题主要是考察学生对数学的驾驭能力以及一些常识性问题,比如人数不能为小数,时间不能为负数等等。 【考点精析】 考点1. 许多定义,定理,公式是分类的。 例1. 化简a 32a ---。 例2. 求11+--=x x y 的最大值与最小值 【举一反三】 1.化简:1x 2x --+

中考专题复习专题五 数学思想方法(一)

2019-2020年中考专题复习专题五数学思想方法(一) 一、中考专题诠释 数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。 抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 二、解题策略和解法精讲 数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。 三、中考考点精讲 考点一:整体思想 整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。 例1 (xx?吉林)若a-2b=3,则2a-4b-5= . 思路分析:把所求代数式转化为含有(a-2b)形式的代数式,然后将a-2b=3整体代入并求值即可. 解:2a-4b-5=2(a-2b)-5=2×3-5=1. 故答案是:1. 点评:本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a-2b)的值,然后利用“整体代入法”求代数式的值. 对应训练 1.(xx?福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3?(a-b)3的值是.1.1000 考点二:转化思想 转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。 例2 (xx?东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).

2018年中考数学方法技巧:专题五-转化思想训练(含答案)

2.[2016·扬州]已知M=a-1,N=a2-a(a为任意实数),则M、N的大小关系为() 方法技巧专题五转化思想训练 转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等. 一、选择题 1.[2015·山西]我们解一元二次方程3x2-6x=0时,可以运用因式分解法,将此方程化为3x(x-2)=0,从而 得到两个一元一次方程:3x=0或x-2=0,进而得到原方程的解为x 1 =0,x 2 =2.这种解法体现的数学思想是() A.转化思想B.函数思想 C.数形结合思想D.公理化思想 27 99 A.M<N B.M=N C.M>N D.不能确定 3.[2016·十堰]如图F5-1所示,小华从A点出发,沿直线前进10m后左转24°,再沿直线前进10m,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是() A.140m B.150m C.160m D.240m 图F5-1 4.[2016·徐州]图F5-2是由三个边长分别为6,9,x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是() 图F5-2 A.1或9B.3或5 C.4或6D.3或6 二、填空题 5.[2017·烟台]运行程序如图F5-3所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x的取值范围是________. 图F5-3

2.A [解析] ∵N -M =a 2 - a -( a -1)=a 2-a +1=(a - )2+ >0,∴M <N .故选 A . 6.[2016·达州] 如图 F 5-4,P 是等边三角形 ABC 内一点,将线段 AP 绕点 A 顺时针旋转 60°得到线段 AQ ,连结 BQ .若 PA =6,PB =8,PC =10,则四边形 APBQ 的面积为________. 图 F 5-4 7.[2016·宿迁] 如图 F 5-5,在矩形 ABCD 中,AD =4,点 P 是直线 AD 上一动点,若满足△PBC 是等腰三角形的 点 P 有且只有 3 个,则 AB 的长为________. 图 F 5-5 三、解答题 8.如图 F 5-6①,点 O 是正方形 ABCD 两条对角线的交点.分别延长 O D 到点 G ,OC 到点 E ,使 OG =2OD ,OE =2OC , 然后以 OG 、OE 为邻边作正方形 OEFG ,连结 AG ,DE . (1)求证:DE ⊥AG ; (2)正方形 ABCD 固定,将正方形 OEFG 绕点 O 逆时针旋转 α 角(0°<α <360°)得到正方形 OE ′F ′G ′,如图②. ①在旋转过程中,当∠OAG ′是直角时,求 α 的度数; ②若正方形 ABCD 的边长为 1,在旋转过程中,求 AF ′长的最大值和此时 α 的度数,直接写出结果,不必说明理 由. 图 F 5-6 参考答案 1.A 7 2 1 3 9 9 2 4 注:此题把比较两个式子的大小转化为比较两个代数式的差的正负. 3.B [解析] ∵多边形的外角和为 360°,这里每一个外角都为 24°,∴多边形的边数为 360°÷24°=15.

中考数学“分类讨论”专题复习

中考数学“分类讨论”专题复习 学校:东区五校联合体主备人:刘少山审核人:刘天申时间: 3.26 第一课时 第一大类:分类讨论在数与代数中的应用 一.目标导航: 1.通过分类讨论专题复习能够区分数学对象的相同点和差异点,掌握分类的 方法,掌握将数学对象区分为不同种类的思想方法。 2.掌握分类思想在代数中的应用,领会其实质,加深对基础知识的理解、 提高分析问题、解决问题的能力。 二.考点动向: 分类讨论是一种重要的数学思想,也是各地近年来中考命题的热点,因此我 们在解数学题时,一是要准确,二是要全面,要尽可能地对问题作出全面的解答, 全面、深入、严谨、周密地思考问题,使解答没有纰漏。中考“分类讨论”题一 般分为两大类,一是分类讨论在数与代数中的应用;一是在空间与图形中的应用。 常见分类讨论在代数中的题型有:按数分类(绝对值概念,实数的分类等);按 字母的取值分类(二次根式的化简,一元二次方程概念等);考查的方式有填空 题,选择题,综合题,特别是中考压轴题中,往往涉及分类讨论思想。 【例题解析】 考点1:按数分类讨论问题 【例题1】已知直角三角形两边、的长满足,则 第三边长为。 解:由已知易得 ⑴若是三角形两条直角边的长,则第三边长为。 ⑵若是三角形两条直角边的长,则第三边长为, ⑶若是一直角边的长,是斜边,则第三边长为。 ∴第三边长为。

考点2:方程、函数中的分类讨论问题 方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况. 【例题2】:如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标; (2)设顶点为F 的抛物线交y 轴正半轴... 于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 【解析】①解决翻折类问题,首先应注意翻折前后的两个图形是全等图,找出相等的边和角.其次要注意对应点的连线被对称轴(折痕)垂直平分.结合这两个性质来解决.在运用分类讨论的方法解决问题时,关键在于正确的分类,因而应有一定的分类标准,如E 为顶点、P 为顶点、F 为顶点.在分析题意时,也应注意一些关键的点或线段,借助这些关键点和线段来准确分类.这样才能做到不重不漏.③解决和最短之类的问题,常构建水泵站模型解决. 【答案】(1)(31) E ,;(12) F ,. (2)在Rt EBF △中,90B ∠=o , 2222125EF EB BF ∴+=+= 设点P 的坐标为(0)n ,,其中0n >, Q 顶点(12)F ,, ∴设抛物线解析式为2(1)2(0)y a x a =-+≠.

初中数学解题思想方法全部内容

初中数学解题思想方法全部内容 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法

2021年中考数学总复习:专题43 整体思想运用

2021年中考数学总复习:专题43 整体思想运用 1.整体思想的含义 整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。 2.整体思想方法具体应用范围 (1)在代数式求值中的应用 (2)在因式分解中的应用 (3)在解方程及其方程组中的应用 (4)在解决几何问题中的应用 (5)在解决函数问题中的应用 【例题1】(2020?成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2 的值为 . 【对点练习】(2019内蒙古呼和浩特)若x 1,x 2是一元二次方程x 2+x ﹣3=0的两个实数根,则x 22﹣4x 12+17的值为( ) A .﹣2 B .6 C .﹣4 D .4 【例题2】(2020?衢州)定义a ※b =a (b +1),例如2※3=2×(3+1)=2×4=8.则(x ﹣1)※x 的结果 为 . 【对点练习】分解因式:a 2﹣2a (b +c )+(b +c )2 【例题3】(2020?天水)已知a +2b =103,3a +4b =163,则a +b 的值为 . 【对点练习】(2019辽宁本溪)先化简,再求值(﹣)÷,其中a 满足a 2 +3a ﹣2=0.

一、选择题 1.(2020?无锡)若x+y=2,z﹣y=﹣3,则x+z的值等于() A.5 B.1 C.﹣1 D.﹣5 2.(2020?泰州)点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b+1的值等于() A.5 B.3 C.﹣3 D.﹣1 3.一个六边形ABCDEF的六个内角都是120°,连续四边的长依次为AB=1,BC=3,CD=3,DE=2,那么这个六边形ABCDEF的周长是() A.12 B.13 C.14 D.15 4.如图所示,正方形ABCD的边长为2,H在CD的延长线上,四边形CEFH也为正方形,则△DBF的面积为() A.4 B.√2C.2√2D.2 二、填空题 5.(2020?杭州)设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=. 6.(2020?枣庄)若a+b=3,a2+b2=7,则ab=. 7.若+=2,则分式的值为. 8.已知x=2y+3,则代数式4x﹣8y+9的值是___________.

专题二 中考数学转化思想(含答案)-

第2讲 转化思想 概述:在解数学题时,所给条件往往不能直接应用,?此时需要将所给条件进行转化,这种数学思想叫转化思想,在解题中经常用到. 典型例题精析 例1.(2002,上海)如图,直线y= 1 2 x+2分别交x ,y 轴于点A 、C 、P?是该直线上在第一象限内的一点,PB ⊥x 轴,B 为垂足,S △ABP =9. (1)求P 点坐标; (2)设点R 与点P 在同一反比例函数的图象上,且点R 在直线PB 右侧.作RT ⊥x 轴,?T 为垂足,当△BRT 与△AOC 相似时,求点R 的坐标. 分析:(1)求P 点坐标,进而转化为求PB 、OB 的长度,P (m ,n )?再转为方程或方程组解,因此是求未知数m ,n 值. ∵S △ABP =9,∴涉及AO 长,应先求AO 长,由于A 是直线y= 1 2 x+2与x 轴的交点,∴令y=0,得0= 1 2x+2, ∴x=-4, ∴AO=4. ∴(4)2 m n =9…① 又∵点P (m ,n )在直线y=1 2 x+2上, ∴n=1 2 m+2…② 联解①、② 得m=2,n=3, ∴P (2,3).

(2)令x=0,代入y=1 2 x+2中有y=2, ∴OC=2,∴△AOC∽△BRT,设BT=a,RT=b. 分类讨论: ①当2 4 b a =…① 又由P点求出可确定反比例函数y=6 x 又∵R(m+a,b)在反比例函数y=6 x 上 ∴b= 6 m a + ……② 联解①、②可求a,b值,进而求到R点坐标. ②当2 4 a b =时,方法类同于上. 例2.(2002,南京)已知:抛物线y1=a(x-t-1)2+t2(a,t是常数,a≠0,t≠0)?的顶点是A,抛物线y2=x2-2x+1的顶点是B. (1)判断点A是否在抛物线y2=x2-2x+1上,为什么? (2)如果抛物线y1=a(x-t-1)2+t2经过点B, ①求a的值;②这条抛物线与x轴的两个交点和它的顶点A能否构成直角三角形??若能,求出t的值;若不能,请说明理由. 分析:(1)∵y1的顶点为(t+1,t2),代入y2检验 x2-2x+1=(t+1)2-2(t+1)+1=t2+2t+1-2t-2+1=t2, ∴点A在y2=x2-2x+1的抛物线上. (2)①由y2=x2-2x+1=(x-1)2+0, ∴y2顶点B(1,0),因为y1过B点, ∴0=a(1-t-1)2+t 2?at2+t2=0. ∵t≠0,∴t2≠0,∴a=-1. ①当a=-1时,y=-(x-t-1)2+t2, 它与x轴的两个交点纵坐标为零,即y1=0,有0=-(x-t-1)2+t2?x-t-1=±t ∴x1=t+t+1=2t+1, x2=-t+t+1=1. 情况一:两交点为E(2t+1,0),F(1,0).

相关主题
文本预览
相关文档 最新文档