当前位置:文档之家› ZPW-2000站内预叠加电码化

ZPW-2000站内预叠加电码化

ZPW-2000站内预叠加电码化
ZPW-2000站内预叠加电码化

站内25HZ相敏轨道电路预叠加ZPW-2000A电码化

一预叠加电码化的范围

(一)自动闭塞区段

1、正线

正线正方向:电码化范围包括正线接车进路和正线发车进路

正线反方向:电码化范围仅为反方向正线接车进路。

2、侧线

侧线电码化范围仅为股道占用发码。

(二)半自动闭塞区段

站内电码化范围:正线接车进路。侧线接车时电码化范围仅为股道。

二、发送器发送范围

复线自动闭塞站内电码化正线发送器发码范围为XJM下行正线接车进路、XFM下行正线发车进路、SJM上行正线接车进路、SFM上行正线发车进路、XFJM下行反向正线接车进路、SFJM上行反向正线接车进路。侧线股道发送器上下行方向各设一个发送器每一股道设置使用两个发送器。

下行I道接车时,XJM发送器移频信息经过FTU1-U匹配单元后分两路、分别向IAG、1DG、7DG、IG发送移频信息。

下行I道发车时,XFM发送器经过FTU1-U匹配单元后分两路别向4DG、2-8DG、IBG发送移频信息。

电码化发码简图

(三)电码化电路原理

1、下行接车电码化电路

当下行I道接车时,下行接车进路X进站信号开放XLXJ↑ XZXJ ↑开通正线XJMJ↑列车进入三接近时X3JGJ↓---1AG的GCJ↑后1AG 预先发码,当列车进入1AG时1DG的GCJ↑后1DG预先发码,当列车进入1DG时7DG的GCJ↑后7DG预先发码的同时断开1AG的GCJ 电路并停止向1AG发码…………当列车占用本区段的接近区段时本区段预先发码当列车进入本区段时下一区段预先发码,并停止接近区段发码复原接近区段发码电路。当列车完全到达股道后,XJMJ以及进路上所有的GCJ恢复原状。

X行接车正线发车正线示意图

2、下行发车电码化电路

当下行一道发车X1开放出站信号时X1LXJ↑.列车占用1道 1GJ ↓..XFMJ↑--4DG的GCJ↑后4DG预先发码,当列车出发进入4DG时2-8DG的GCJ↑后2-8DG预先发码, 当列车进入2-8DG时1BG的GCJ ↑后1BG预先发码的同时断开4DG的GCJ电路并停止向4DG发码。当列车出清最后一个区段1BG时XFMJ以及进路上所有的GCJ恢复原状。

3、上行反方向接车电码化电路

当上行反方向一道正线接车时,开放SF进站信号SFLXJ↑SFZXJ↑开通正线SFJMJ↑-同时使SFGPJ↑--SFJM发送器的载频频率改变为1700-1列车进入X1LQ时1LQJ↓---1BG的GCJ↑后1BG预先

发码,当列车进入1BG时2-8DG的GCJ↑后2-8DG预先发码,当列车进入2-8DG时4DG的GCJ↑后4DG预先发码的同时断开1BG的GCJ 电路并停止向1BG发码。…………当列车完全到达股道后,XJMJ以及进路上所有的GCJ恢复原状。(反向正线接车机车所收的载频频率为1700-1)直至列车从1道出发出清股道后,SFGPJ↓电路全部复原.

SF接车正线示意图

上述原理本区段GCJ的供电始于上一区段轨道占用,止于下一段轨区段道占用,最多同一时刻只有相邻的两个区段GCJ↑,一个是本区段的,另一个是下一个区段的。分别由移频发送设备匹配单元的两路输出通过相应的GCJ发往轨道区段,对于下一个区段来说实现了“预先叠加发码”列如:下行正线接车进路内共有1AG、1DG、7DG、1G、四段正线轨道电路。移频发送设备匹配单元分两路独立输出,分别通过各自区段的GCJ条件向1AG、7DG和1DG、1G进行预叠加发码。移频发送设备匹配单元的某一路输出在任一时刻向只一个区段发码(只带一

个轨道区段的负载)。

4、侧线电码化

侧线股道只要有车占用该股道该股道两端上就发码列车进入3G 3GJFJ↓---S3发送器向3G的S3端发送移频信息,同时X3发送器向3G的X3端发送移频信息。

列车出清3G

3GJFJ↑---切断向3G两端发送移频信息。

站内电码化工作原理示意图

(四)电码化测试与调整:

1、电码化测试每年一次入口电、出口流测试移频信号短路电流值应满足1700 Hz、2000 Hz、2300Hz ≥500mA;2600 Hz≥450mA电码化区段,入口分路采用0.15Ω分路线,出口短路采用0.06Ω分路线分路(出口电流≤6A)

股道上除了入口端出口端测试,对安装补偿电容的股道测试从第一个电容开始向第二个电容每隔10米测试一次(共4次),采用0.15

Ω分路线,测试短路电流,寻找电码化信息最不利处所,调整室内发送调整器和电码化调整电阻,使上述测得4次的最小短路电流满足: 1700、2000、2300Hz ≥500mA;2600 Hz≥450mA

一级测试在发送检测器上测试电源电压、功出电压、继电器电压2、调整出入口电流应首先调整室内R3电阻,如电码化还不达标应同步调整R1、R2电阻。室内NGL-T隔离器选型连接1700-1 AT13-AT17连接2000-1 AT13-AT16连接

ZPW-2000电码化调整标准、方法介绍

ZPW-2000电码化调整标准、方法介绍 一、技术标准 1、二元二位轨道继电器:北京全路通信信号研究设计院“ZPW-2000 系列站内电码化预发码技术”介绍:轨道继电器电压:15~18V有效值,调整电压18~26V。据有的电务段介绍:调整状态时,轨道继电器线圈上的有效电压应不小于18V。结合《维规》调整表对于电压参考范围:股道:18~21V;小于200m的无岔区段:15.5~18V;一送多受道岔区段:16~18V最大不超过20V。(相关电务段有要求的按电务段有要求调) 2、残压。用0.06Ω标准分路线在轨道送受端分路时,轨道继电器残压≤7.4v。 3、轨道电路的限流电阻: (1)送电端限流电阻(Rx): 一送一受区段,送受均设扼流变压器:Rx=4.4Ω 一送一受区段,送受均无扼流变压器:Rx=0.9Ω 一送多受道岔区段,送受均设扼流变压器:Rx=4.4Ω 一送多受道岔区段,送受均无扼流变压器:Rx=1.6Ω (2)受电端限流电阻(Rs):一送多受道岔区段设扼流变压器时用:Rs=4.4Ω,无扼流变压器的区段不用限流电阻。

4、入口电流:在电码化轨道区段,于机车入口端用0.15Ω标准分路线分路时的短路电流,1700Hz、2000Hz、2300Hz不小于500ma,2600Hz不小于450ma。 5、轨道电路长度大于350m时,应设补偿电容。 载频1700Hz、2000Hz补偿电容容量80uf,载频2300Hz、2600Hz 补偿电容容量60uf。补偿电容间距为100m,均匀设置, 补偿电容设置:以股道长度1010m 为例,电容个数11个,等距离长度△=L/Nc=1010/11=92m ,股道两头△/2=46m 。 二、 25Hz相敏轨道电路调整 一)室外轨道变压器采用 BG2-130/25: 1、变压器和钢轨间有扼流变压器,送、受电端变压器一、二次侧输出电压固定在一定电压档: 一次侧使用Ⅰ1、Ⅰ4连接Ⅰ2、Ⅰ3(220V档), 二次侧使用Ⅲ1、Ⅲ3 (15.84V档)。 在室内对调整变压器输出电压进行调整,保证GJ正常工作。 2、变压器和钢轨间无扼流变压器,受电端变压器一、二次侧输出电压固定在一定电压档:一次侧使用Ⅰ1、Ⅰ4连接Ⅰ2 、Ⅰ3(220V档),二次侧使用Ⅲ1、Ⅱ3 连接Ⅱ4、Ⅲ2(4.4V档)。 送电端输出调整按照区段类型的长度编制调整表,再根据调整表连接调试送电端输出电压,保证 GJ 正常工作。 三、电码化轨道区段室内调整:

25Hz相敏轨道电路预叠加ZPW-2000A站内电码化

25H z相敏轨道电路预叠加Z P W-2000A站内电码化摘要:随着铁路的大发展,站内电码化技术作为保证行车安全的基础设备已被广泛采用。本文介绍电码化的基本原理,分析接发车进路预叠加电码化电路,对电化区段25HZ相敏轨道电路预叠加ZPW-2000A 电码化系统进行阐述。 关键词:电码化、轨道电路、预叠加 在信号系统设备中,车站电码化是一个重要的组成部分,它对于加强站内行车安全以及机车信号的发展起着重要的作用。 随着铁路跨越式发展的不断深入,列车运行速度越来越快,提速区段越来越多,提速区段对机车信号有了更高的要求。为确保机车信号的正确显示,与之配套的地面信号设备需要进行改造。 在自动闭塞区段,区间设备通常采用ZPW-2000A无绝缘轨道电路。而站内轨道电路采用交流连续式轨道电路、25Hz 相敏轨道电路。机车在区间和站内运行,需要接收相应的地面信息,保证列车运行安全。为了使机车信号不间断地接收站内与区间的信息,站内正线上的各个轨道电路区段和侧线股道,均应实现电码化。 1 相关术语 电码化:由轨道电路转发或叠加机车信号信息技术的总称。 车站股道电码化:车站内到发线的股道及正线实施的电码化。 车站接发车进路电码化:车站内按列车进路实施的电码化。 预叠加电码化:列车进入本区段时,不仅本区段且其运行前方相邻区段也实施的电码化。 2 实施车站闭环电码化的范围 列车占用的股道区段; 经道岔直向的接车进路,为该进路中的所有区段; 半自动闭塞区段,包括进站信号机的接近区段; 自动闭塞区段,经道岔直向的发车进路,为该进路中的所有区段。 3 电码化主要设备 (1)ZPW-2000A电码化发送设备:载频为1700Hz、2000Hz、2300Hz、2600Hz。 (2)ZPW-2000系列闭环电码化调制频率为10.3 Hz、11.4 Hz、12.5 Hz、13.6 Hz、14.7 Hz、15.8Hz、16.9Hz、18Hz、19.1Hz、20.2Hz、21.3Hz、22.4Hz、23.5Hz、24.6Hz、

24-站内轨道电路电码化

第24讲站内轨道电路电码化 一、系统功能描述 1)为主体化机车信号提供安全信息传输设备。 2)地对车安全信息传输设备是实现主体化机车信号的关键设备,设备除满足信 息传输的功能需求外,还必须符合信号故障-安全的设计原则,达到可靠性、可用性和稳定性。 3)实现监测、故障报警的功能。 4)系统设置维护终端,可实现对系统设备状态的监测、故障报警功能。根据需 要,还可为集中监测系统提供必要的监测信息。 二、主要工作原理 采用冗余的电码化控制系统,实时监测电码化的完好,不影响站内轨道电路正常工作。为机车信号设备提供安全可靠的地面信息。 集中检测维护机:监测各模块或单元板的故障,故障记录,站内报警,构成局域网,向远端维护站工区,段站传送数据。 三、术语和定义 1)电码化:由轨道电路转发或叠加机车信号信息技术的总称。 2)车站股道电码化:车站内到发线的股道及正线实施的电码化。 3)车站接发车进路电码化:车站内按列车进路实施的电码化。 4)预叠加电码化:列车进入本区段时,不仅本区段且其运行前方相邻区段也 实施的电码化。 5)闭环电码化:具有闭环检查功能的电码化。 6)电码化轨道电路:具有轨道电路和电码化双重功能的轨道电路。 7)入口电流:机车第一轮对进入轨道区段时,钢轨内传输机车信号信息的电流。 8)出口电流:机车在电码化轨道电路发送端短路时,钢轨内传输机车信号信息 的电流。 9)机车信号钢轨最小短路电流值:地面信号设备发送的机车信号信息被列车轮 对短路时的最小电流值。 10)机车信号灵敏度:使机车信号设备工作(稳定译码)的最小的钢轨短路电流 值。 11)机车信号应变时间:车载信号设备从钢轨线路接收到机车信号新信息开始, 到给出相应机车信号显示所需要的时间。 12)机车信号邻线干扰:相邻线路上的机车信号信息对本线机车信号设备的干 扰。 13)机车信号信息:由地面向机车上传递反映线路空闲与进路状况的信息。

四线制ZPW-2000站内及闭环电码化应用分析

第一章基本原理概述 1.1 站内电码化的概念 列车在区间运行时,机车信号都能不间断地反映地面信号机的显示状态。当列车通过车站时,机车信号将无法正常工作。为了使机车通过站内时机车信号不间断地工作,就必须对站内轨道电路实施电码化,即站内到发线及正线上的轨道电路能够传输根据列车运行前方信号机的显示所编制的各种信息。 站内电码化设备的主要任务是保证机车信号在站内正线上能够连续显示,在站内到发线也能够显示地面信号信息。 站内电码化设备在列车进入站内正线或到发线股道后,按照列车接近的地面信号显示,通过轨道电路向列车发送信息,在列车出清该区段后,恢复站内轨道电路的正常工作。 1.2 站内电码化的分类 目前国内轨道电路电码化大致分为四类:切换式、叠加式、预发码式、闭环式站内电码化。在设计电码化时,可根据轨道电路制式及运营需要,确定实施何种类型的电码化。 所谓“切换式”,即钢轨通过发码的接点条件,平时固定接向轨道电路设备,当需要向轨道发码时,切换到发码设备,轨道电路设备停止工作;当发码结束后,自动转接到轨道电路设备,恢复正常轨道电路状态。 当列车以较高速度通过站内较短的轨道电路区段时,由于传输继电器有0.6s的落下时间,因此经常造成“掉码”,使机车信号不能连续工作,不利于行车安全。因此又出现了叠加方式的站内电码化,即当发码条件构成后,将移频轨道电路叠加在原轨道电路上,两种类型的轨道电路由隔离器隔离而互不影响。

机车信号连续显示的要求,所以站内正线采用预发码方式,即当列车压入前方区段本区段即向轨道发送信息。 为了及早发现和解决电码化电路存在的问题,保证电码化电路的完整性,需要对电码化电路实行闭环检查,即采用闭环电码化。 1.3 站内电码化的范围及技术要求 1.3.1 经道岔直向的接车进路和自动闭塞区段经道岔直向的发车进路中的所有轨道电路区段、经道岔侧向的接车进路中的股道区段,应实施股道电码化。 1.3.2 在最不利条件下,入口电流应满足机车信号可靠工作的要求。 1.3.3 在最不利条件下,出口电流不损坏电码化轨道电路设备。 1.3.4 已发码的区段,当区段空闲后,轨道电路应能自动恢复到调整状态。 1.3.5 列车冒进信号时,其占用的所有咽喉区段不应发码。 1.3.6 与电码化轨道电路相邻的非电码化区段,应采取绝缘破损防护措施,当绝缘破损时不导向危险侧。 1.3.7 电码化应采取机车信号邻线干扰防护措施。 1.3.8 机车信号机显示除按《铁路技术管理规程》执行外,还应满足TB/T3060《机车信号信息定义及分配》的规定。 1.4 切换式站内电码化电路的特点 轨道电路的送、受电端的电缆都引到车站机械室,发码传输继电器全部设在机械室里,便于维修。一般小站继电集中轨道电路送电端电缆都使用共用干线电缆,当采用送电端发码时传输继电器放在室外采取就地控制。 电路中没有使用第一离去和第二离去表示继电器的条件。因为电路中的离去条件,是用离去区段的轨道继电器XLQGJ的接点,通过电缆控制车站机械室中一个反复示继电器XLQGCJ,再由XLQGCJ控制译码器,这样就将

站内轨道电路及25Hz相敏轨道电路预叠加ZPW一A电码化

站内轨道电路及25Hz 相敏轨道电路 预叠加ZPW一2000A电码化 站内轨道电路预叠加ZPW一2000A电码化 一、叠加 在交流电气化牵引区段,通常采用与25Hz相敏轨道电路“叠加”移频机车信号信息的电码化方式。所谓“叠加”即在轨道电路传输通道内,轨道电路信息和机车信号信息同时存在。传输继电器的作用是在发码时机到来之际,将发码设备与轨道电路设备并联,两者同时向轨道传输通道发送信息。 二、预叠加 随着铁路运输的发展,提速区段对机车信号和超速防护有了更高的需求(即在发码区段内,保证机车信号在时间和空间上二均连续)。目前的“切换和叠加”电码化技术已不满足提速要求,必须在原有电码化“叠加发码”方式的基础上进行改进,采用“叠加预发码”方式,才能保证列车接收地面信息在“时间和空间”上的连续。“预”就是在列车占用某一区段时,其列车运行前方,与本区段相邻的下一个区段也开始发码。 三、预叠加原理 电码化系统的设计原则为:正线区段(包括无岔和道岔区段)为“逐段预先发码(简称:“预叠加”)”,保证列车在正线区段行驶的全过程,地面电码化能不间断地发送机车信号。侧线区段为占用发码叠加发码。

我们以下行正线接发车为例(站场示意见图LC9-3),略述正线区段逐 段预先发码的应用原理。接车进路、发车进路ZPW--2000A电码化发送设备采用“N+l”冗余方式设计。图l中粗线表示的是站内电码化范围。与 下行电码化方向相对应,迎着列车行驶方向进行发码,进路内每一轨道区段均设置一台传输继电器CJ。发送的I 、Ⅱ路输出分别与相邻轨道区段的CJ相连,即I路输出若连A、C、E.G区段的C J,Ⅱ路输出则连 B、D、F、H区段的CJ. (1)列车进入YG区段时,接车进路已排通,即正线继电器ZXJ↑,进站信号开放,LXJ↑,则接车电码化继电器JMJ↑。直到列车进入D股道, DGJF↓,切断JMJ的KZ电源,JMJ才落下,表明接车电码化已结束。

25Hz相敏轨道电路预叠加ZPW 2000A站内电码化资料

25Hz相敏轨道电路预叠加ZPW-2000A站内电码化 摘要:随着铁路的大发展,站内电码化技术作为保证行车安全的基础设备已被广泛采用。本文介绍电码化的基本原理,分析接发车进路预叠加电码化电路,对电化区段25HZ相敏轨道电路预叠加ZPW-2000A 电码化系统进行阐述。 关键词:电码化、轨道电路、预叠加 在信号系统设备中,车站电码化是一个重要的组成部分,它对于加强站内行车安全以及机车信号的发展起着重要的作用。 随着铁路跨越式发展的不断深入,列车运行速度越来越快,提速区段越来越多,提速区段对机车信号有了更高的要求。为确保机车信号的正确显示,与之配套的地面信号设备需要进行改造。 在自动闭塞区段,区间设备通常采用ZPW-2000A无绝缘轨道电路。而站内轨道电路采用交流连续式轨道电路、25Hz 相敏轨道电路。机车在区间和站内运行,需要接收相应的地面信息,保证列车运行安全。为了使机车信号不间断地接收站内与区间的信息,站内正线上的各个轨道电路区段和侧线股道,均应实现电码化。 1 相关术语 电码化:由轨道电路转发或叠加机车信号信息技术的总称。 车站股道电码化:车站内到发线的股道及正线实施的电码化。 车站接发车进路电码化:车站内按列车进路实施的电码化。 预叠加电码化:列车进入本区段时,不仅本区段且其运行前方相邻区段也实施的电码化。 2 实施车站闭环电码化的范围 列车占用的股道区段; 经道岔直向的接车进路,为该进路中的所有区段; 半自动闭塞区段,包括进站信号机的接近区段; 自动闭塞区段,经道岔直向的发车进路,为该进路中的所有区段。 3 电码化主要设备 (1)ZPW-2000A电码化发送设备:载频为1700Hz、2000Hz、2300Hz、2600Hz。(2)ZPW-2000系列闭环电码化调制频率为10.3 Hz、11.4 Hz、12.5 Hz、13.6 Hz、14.7 Hz、15.8Hz、16.9Hz、18Hz、19.1Hz、20.2Hz、21.3Hz、22.4Hz、23.5Hz、24.6Hz、25.7Hz、26.8Hz、27.9Hz、29Hz。 (3)机车信号信息的定义 L3 准许列车按规定速度运行,表示运行前方5个及以上闭塞分区空闲。 L2 准许列车按规定速度运行,表示运行前方4个及以上闭塞分区空闲。 L 准许列车按规定速度运行。 LU 准许列车按规定速度注意运行。 LU2 要求列车减速到规定的速度等级越过接近的地面信号机,并预告次一架地面信号机显示一个黄色灯光。

叠加方式站内轨道电路电码化

叠加方式站内轨道电路电码化

目录 第一章综述 (3) 第一节实施电码化技术的必要性 (4) 一、轨道电路必须实行电码化 (4) 二、常用的站内轨道电路必须实行电码化 (4) 三、电码化是防“冒进”的需要 (5) 第二节电码化技术的发展 (6) 一、叠加移频电码化 (6) 二、车站接、发车进路电码化 (7) 三、预叠加移频电码化 (9) 四、闭环电码化 (10) 第二章电码化叠加预发码技术 (11) 第一节实施叠加预发码技术的原因 (11) 一、采用预发码的原因 (11) 二、预叠加电码化的作用及主要特点 (12) 三、系统设计原则及技术要求 (13) 第二节预叠加电码化控制电路 (14) 一、预叠加电码化原理 (14) 二、正线区段控制电路 (14) 三、正线股道和到发线股道区段 (16) 四、电码化电路设计举例 (16) 第三节关于空间连续 (21) 一、绝缘节空间连续的处理 (21) 二、道岔跳线和弯股跳线设置 (23) 第四节工程设计 (23) 一、站内发送频率的选择 (23) 二、电码化电缆及配线的选择 (24) 三、电码化设备的使用环境 (24) 四、隔离设备的使用 (25) 五、电码化配套设备的使用 (25) 六、非电气化牵引区段移频电码化 (25) 七、电气化牵引区段移频电码化 (27) 第五节电码化码序编制原则 (30) 一、制定码序标准的必要性 (30) 二、编制原则 (30) 三、电码化码序的编制 (33) 第三章ZPW-2000(UM)系列 (41) 预叠加电码化系统 (41) 第一节系统类型和设计原则 (41) 一、简介 (41) 二、系统设计原则 (42) 第二节电码化补偿电容设置原则 (43) 一、补偿电容结构特征和技术指标 (43) 二、设置方法 (43) 三、举例计算 (44) 四、补偿电容设置参考表(表4-2) (45)

站内叠加电码化

站内25HZ相敏轨道电路预叠加ZPW-2000A电码化 预叠加电码化的范围 自动闭塞区段 1、正线 正线正方向:电码化范围包括正线接车进路和正线发车进路 正线反方向:电码化范围仅为反方向正线接车进路。 2、侧线 侧线电码化范围仅为股道占用发码。 半自动闭塞区段 站内电码化范围:正线接车进路。侧线接车时电码化范围仅为股道。 二、发送器发送范围 复线自动闭塞站内电码化正线发送器发码范围为XJM下行正线接车进路、XFM下行正线发车进路、SJM上行正线接车进路、SFM上行正线发车进路、XFJM下行反向正线接车进路、SFJM上行反向正线接车进路。侧线股道发送器上下行方向各设一个发送器每一股道设置使用两个发送器。 下行I道接车时,XJM发送器移频信息经过FTU1-U匹配单元后分两路、分别向IAG、1DG、7DG、IG发送移频信息。 下行I道发车时,XFM发送器经过FTU1-U匹配单元后分两路别向4DG、2-8DG、IBG 发送移频信息。 电码化发码简图 (三)电码化电路原理 1、下行接车电码化电路 当下行I道接车时,下行接车进路X进站信号开放XLXJ↑ XZXJ↑开通正线XJMJ↑列车进入三接近时X3JGJ↓---1AG的GCJ↑后1AG预先发码,当列车进入1AG时1DG的GCJ↑后1DG预先发码,当列车进入1DG时7DG的GCJ↑后7DG预先发码的同时断开1AG的GCJ电路并停止向1AG发码…………当列车占用本区段的接近区段时本区段预先发码当列车进入本区段时下一区段预先发码,并停止接近区段发码复原接近区段发码电路。当列车完全到达股道后,XJMJ以及进路上所有的GCJ恢复原状。 X行接车正线发车正线示意图 2、下行发车电码化电路 当下行一道发车X1开放出站信号时X1LXJ↑.列车占用1道1GJ↓..XFMJ↑--4DG的GCJ↑后4DG预先发码,当列车出发进入4DG时2-8DG的GCJ↑后2-8DG预先发码, 当列车进入2-8DG时1BG的GCJ↑后1BG预先发码的同时断开4DG的GCJ电路并停止向4DG发码。当列车出清最后一个区段1BG时XFMJ以及进路上所有的GCJ恢复原状。 3、上行反方向接车电码化电路 当上行反方向一道正线接车时,开放SF进站信号SFLXJ↑ SFZXJ↑开通正线SFJMJ↑-同时使SFGPJ↑--SFJM发送器的载频频率改变为1700-1列车进入X1LQ时1LQJ↓---1BG的GCJ↑后1BG预先发码,当列车进入1BG时2-8DG的GCJ↑后2-8DG预先发码,当列车进入2-8DG时4DG的GCJ↑后4DG预先发码的同时断开1BG的GCJ电路并停止向1BG发码。…………当列车完全到达股道后,XJMJ以及进路上所有的GCJ恢复原

站内电码化

站内电码化 第一节综述 ?一、实施电码化技术的必要性 ?二、电码化技术条件 ?三、电码化技术的发展 一、实施电码化技术的必要性 二、电码化技术条件 电码化适用范围 三、电码化技术的发展 ⒈交流连续式轨道电路(简称480轨道电路) 到1988年前,电码化技术仅仅实施于车站内的正线列车进路,而车站站线列车进路未实施该技术。而且,在有双进、双出口的车站和有弯进直出或直进弯出的车站,其正线接车进路也未实施电码化技术。 ⒈固定切换电码化 1988年以前采用的占用固定切换发码方式,即原交流连续式轨道电路移频电码化(过去谓之的“站内正线移频化”) ⑴将原本为自动化的轨道电路因实施电码化的缘故而降低到半自动化,从而也降低了车站电气集中的技术水平,并且在控制台上需增设故障表示灯和复原按钮。甚至有时因忙乱或判断不清,车站值班员没有及时按压复原按钮而影响接发列车。 ⑴脉动切换电码化的提出 ⑴脉动切换电码化的优点 ⑵脉动切换电码化3种类型 ⑷叠加式电码化类型

⑵实施情况 ⑵预叠加移频电码化类型 ⑵闭环电码化类型 第二节电码化叠加预发码技术 一、实施叠加预发码技术的原因 二、预叠加电码化控制电路 三、关于空间连续 四、工程设计 一、实施叠加预发码技术的原因 切换发码技术存在的问题 采用预发码的原因 系统设计原则及技术要求 二、预叠加电码化控制电路 预叠加电码化原理 二、预叠加电码化控制电路 正线区段控制电路 正线股道和到发线股道区段 电码化电路设计举例 ⑴控制电路 ⑵转换开关电路 ⑵发码电路 绝缘节空间连续的处理

道岔跳线和弯股跳线设置 四、工程设计 站内发送频率的选择 电码化电缆及配线的选择 电码化设备的使用 第三节8、18、多信息移频叠加预发码 一、非电气化区段480预叠加移频电码化 二、电气化区段25 Hz预叠加移频电码化 三、轨道电路集中供电预叠加电码化 四、电码化设备开通与维护 一、非电气化区段480预叠加移频电码化 二、电气化区段25 Hz预叠加移频电码化 三、轨道电路集中供电预叠加电码化 四、电码化设备开通与维护 站内电码化设备在投入运用前要进行一次全面、系统的开通试验,以保证设备稳定、可靠地工作。 第四节ZPW-2000(UM)系列预叠加电码化 一、系统类型和设计原则 二、电码化补偿电容设置原则 三、主要设备 四、开通与维护 一、系统类型和设计原则 ZPW-2000(UM系列)系列站内电码化预发码技术及配套器材的内容,其中包括:非电气化牵引区段交流连续式轨道电路(480轨道电路)及25 Hz相敏轨道电路叠加ZPW-2000(或UM)系列移频预发码技术;电气化牵引区段25 Hz相敏轨道电路叠加ZPW-2000(UM)系列移频预发码技术。ZPW-2000(UM)系列预叠加电码化主要包括以下六种类型: 一、系统类型和设计原则 二线制电气化区段25 Hz相敏轨道电路预叠加ZPW-2000(UM)系列。 二线制非电气化区段25 Hz相敏轨道电路预叠加ZPW-2000(UM)系列。 二线制非电气化区段480轨道电路预叠加ZPW-2000(UM)系列。 四线制电气化区段25 Hz相敏轨道电路预叠加ZPW-2000(UM)系列。 四线制非电气化区段25 Hz相敏轨道电路预叠加ZPW-2000(UM)系列。 四线制非电气化区段480轨道电路预叠加ZPW-2000(UM)系列。 二、电码化补偿电容设置原则

【铁道信号】25HZ轨道电路叠加电码化的设计

25HZ轨道电路叠加电码化的设计 第一章系统简介 根据铁路运输需要,为满足机车在站内能通过轨道接收到移频机车信号信息的要求,站内轨道电路必须实施电码化。 非电气化牵引区段国内的站内一般采用50Hz交流连续式轨道电路(因其轨道继电器为JZXC-480型,习惯简称为480轨道电路)。电气化牵引区段国铁的站内一般采用97型25HZ相敏轨道电路,而且要求正线电码化在列车行驶过程中,要确保连续性,即不得有瞬间中断。侧线电码化为占用发码方式的叠加电码化。 自1988年,在全路推行车站股道电码化工作中,电码化专题组曾按部科技司下达的科研任务的要求,研制了多种轨道电路的多种机车信号电码化,并在全路已推广数千车站。但因当时没有提出适应超速防护装置的需要,即对发码连续性的要求,故该制式是只在满足列车运行速度100km/h 以下时,保证机车信号稳定工作的前提下,同时解决轨道电路的自动恢复问题,故而采用了脉动切换和叠加的发码方式,但不符合铁路提速后电码化的要求。 由于列车运行速度的提高,其制动更加困难,冒进信号的可能性比现在更大。而现有的向机车信号或超防设备提供信息的电码化技术和设备己不能满足提速列车的要求,因此,实施适应在提速区段使用的预叠加电码化技术和设备势在必行。 正线区段电码化在时间上不允许有中断时间,原来车站股道电码化的叠加发码方式必须改为“预先发码”的方式,即列车占用前一个区段时,

本区段就应预先发码。列车占用正线区段内任一区段时,其前方(指列车前进方向)区段应预先发码,彻底消除了中断时间。 采用逐段预先发码的叠加方式,不难看出:任一瞬间均有两个区段在发码,即发送盒的输出端子接向轨道,而叠加发码时轨道电路的送、受电端与电码化发送线是并联的,这就造成相邻两个区段送、受电端也相连,即我们俗称的“相混”,这当然是不允许的,必须予以克服。 发码方式为叠加发码,发码和轨道电路送、受电端是并接的,由此引起轨道电路附加支路的衰耗。由于改变了轨道电路的调整和分路性能,其极限长度能否达到1200m,是必须加以确认的技术问题。电码化轨道电路在机车信号入口电流和轨道电路的调整和分路两方面均应满足各自的技术要求。 由于必须采用预叠加发码方式,这就要求接口设备中的隔离元件具有“故障------安全”性能,当隔离元件出现故障时,串入到并接轨道继电器的电流或电压均不得使之误动。 1.1 电码化技术的发展 在1994年“京九”工程站内正线采用预叠加18信息移频电码化、到发线股道采用叠加18信息移频电码化。1995年通过铁道部技术鉴定,系统器材设计合理,具有“故障-----安全”保证。几年来运用效果良好,特别是上层逻辑控制电路为今后各类预叠加电码化的控制电路广泛采用,成为一种标准电路。 1.1.1 切换与叠加 以往对轨道电路实施电码化一般分为叠加方式电码化和非叠加方式电码化两类。在非电气化牵引区段的站内,通常采用交流连续式轨道电路(俗称480轨道电路)。发送电码化信息的方式一般采用非叠加方式(如采用切换方式)所谓“切换”即电码化发码接点条件在轨道电路电码化过程中,

ZPW—2000R移频自动闭塞及站内电码化调试方法

ZPW—2000R移频自动闭塞及站内电码化调试方法 摘要:随着我国社会的进步和经济的发展,我国的交通运输业也得到了长足的 发展。我国的交通运输主要是依靠铁路、飞机、汽车三种不同的交通形势来进行的。其中铁路在我国的交通运输方式当中应用的最早,并且目前的覆盖率也最高,可以说铁路已经成为我国长途运输中最为常用的一种交通运输方式。铁路的经济 性能良好,在三种不同交通运输工具当中铁路的运输成本是最低的,并且在效率 和稳定性方面都有着不错的表现。我国铁路技术的发展很快,并且对于一些先进 设备的引入也是不遗余力的,对于设备的应用也是比较迅速的,不过在ZPW—2000R一拼自动闭塞及站内电码化调试方面始终还有着一定的问题。 关键词:移频自动闭塞站内电码调试方法 我国的铁路普,线路总长度是世界第一的。而我国的火车之多也是世所罕见的,作为我 国最重要的交通工具之一,火车在我国各个城市和乡村的站点数量已经达到了一个惊人的数量,这样一个数量对其进行调度工作室极为困难和复杂的,尽管调度工作是分为各个不同区 域的并非同一调度,因此更加灵活但是其调度难度也相当之高。而ZPW-2000R无绝缘移频自 动闭塞是辅助调度来进行地面线路行车许可信息、实现列车占用检查的设备,其是否可以平 稳安全的运行直接影响到调度的效率及火车的安全性,因此它是非常重要的。但是目前我国 对于ZPW—2000R移频自动闭塞及站内电码化调试方法研究的还不够透彻,造成了许多不必 要的麻烦,今天笔者就通过本文和大家来谈一谈关于ZPW—2000R移频自动闭塞及站内电码 化的调试方法。 1、ZPW—2000R移频自动闭塞及站内电码化系统的作用 ZPW—2000R移频自动闭塞及站内电码化系统其本身是由我国从法国引进而来的,该系统 是为了我国的高铁建设而引进的,它可以在最大程度上对我国铁路运输的高效、高速、高安 全性进行保障。ZPW—2000R移频自动闭塞及站内电码化系统是一套在国际上也处在优势地 位的先进的列车运行指挥系统,其不仅具有着其他列车运行指挥系统所具备的优点,还可以 实现对整个列车行驶过程中的电气折断进行检查,以防止各类因为电气原因引起的安全事故,并且其对于分路死区的检查精确到了5M。这样的精确度使得由于分路死区所引发的事故率 大大降低。可以说我国高铁能够得以快速的建设和安全平稳的运行都与ZPW—2000R移频自 动闭塞及站内电码化系统有着密不可分的关系,因此对于我国高铁运营部门而言对ZPW—2000R移频自动闭塞及站内电码化系统进行调试使其功能更加稳定和精确是目前我国铁路部 门的当务之急。 2、调试实施方案 对ZPW—2000R移频自动闭塞及站内电码化系统的调试工作,我们主要从设备调试程序、设备调试内容、站内电码化调试、信号机单点实验、室内室外设备单点实验及整体排空实验。下面我们来具体介绍一些这些调试的内容。 2.1 设备调试程序 对于ZPW—2000R移频自动闭塞站内电码化系统的调试工作而言,其是具有一定程序的,并不是调试人员自己想当然地制定调试程序而是应当按照一定规律从始至终地进行调试的。 首先我们要做的是对站内电码化进行调试工作,这个调试包括了对轨道区段的模拟盘制作、 测试发送数据和连锁实验。在完成了这些工作之后我们就要对室内室外的设备进行单点实验,这种实验主要包括了对室内设备的模拟实验及对室外设备的检查校对和审核、室外信号机单 送电实验、室外设备与室内设备之间连接的实验并且最终要将相关的数据进行测试。调试程 序的最后一步就是整体排空试验,这个实验的最主要目的是为了对新连接在设备组中的设备 进行整体调试并且要对新设备进行数据测验。 2.2 设备调试内容 首先设备调试的内容其要比设备调试的程序更加具体。室外设施调试主要是对设施的可 靠性进行测验之后进行必要的调试,其主要的内容有通道的导通,及各类室外设备的校对和 核查保证设备正处在正常运行状态,接下来则是各类设备的单送电实验,这时为了保证每一

站内轨道电码化

=、第六章 站内轨道电路电码化 为了保证行车安全和提高运输效率,使机车信号和列控车载设备在站0内能连续不断地接收到地面信号而不间断显示,需在站内原轨道电路的基础上进行电码化。站内轨道电路电码化是机车信号系统和列控系统不可缺的地面发送设备。 第一节站内轨道电路电码化概述 一、站内轨道电路电码化 所谓站内轨道电路电码化,指的是非电码化的轨道电路在采取一定的技术措施后能根据运行前方信号机的显示发送各种电码。对于移频制式,电码化就是移频化。 我国铁路站内轨道电路通常采用25Hz相敏轨道电路或交流连续式轨道电路(480轨道电路),它们只有占用检查的功能,既只能检查本区段是否有车占用或空闲,不能向机车信号车载设备传递任何信息。如果站内轨道电路不进行电码化,列车在站内运行时机车信号将中断工作,无法保证行车安全。 二、站内轨道电路电码化范围 站内轨道电路电码化范围是列车进路,但由于技术方面的原因,还不能覆盖全部列车进路。 1.自动闭塞区段 (1)正线 正线正方向,轨道电路电码化范围包括接车进路和发车进路。 正线反方向,一般均采用自动站间闭塞,轨道电路电码化范围只包括接车进路。 (2)侧线 侧线轨道电路电码化范围仅仅是股道。这是因为正线轨道电路电码化要求咽喉区道岔绝缘设在弯股,侧线轨道电路电码化通路被切断,无法实现。 2.半自动闭塞区段 站内轨道电路电码化范围只包括正线接车进路和侧线股道,以及进站信号机外方的接近区段,在提速半自动闭塞则为进站信号机外方的第一接近区段和第二接近区段。 三、站内轨道电路电码化发送的信息 对于接车进路和侧线股道,站内轨道电路电码化发送的是和车站信号机显示相联系的信息。对于发车进路,站内轨道电路电码化发送的是和防护二离去区段的通过信号机显示相联系的信息。对于半自动闭塞区段进站信号机外方的接近区段,轨道电路电码化发送的是和进站信号机显示相联系的信息。 四、站内轨道电路电码化方式 电码化有切换方式和叠加方式两种。切换方式因由较多缺陷,尤其不能满足列车提速的要求,已不再使用。目前多采用叠加方式,既电码化电路叠加在原轨道电路上。在主要干线正线则推广闭环方式。 第二节电码化器材 各种移频自动闭塞,都有其相应的电码化设备,现以ZPW-2000A型站内电码化设备为例进行介绍。 一、电码化机柜 图6-1

MPB-2000G型站内电码化系统

MPB-2000G型站内电码化系统 用户手册 固安信通铁路信号器材 有限责任公司

目录 第一章系统概述 (1) 第一节系统简介 (1) 一、特点及功能 (1) 第二节工程设计 (2) 一、设计原则 (2) 二、站内MPB-2000G股道叠加电码化电 容计算 (4) 三、电码化电缆及配线的选择 (6) 第二章二线制电化区段25Hz相敏轨道电路预叠加MPB-2000G电码化 (8) 第一节设计说明 (8) 一、设备安装说明 (8) 二、其他说明 (10) 三、二线制电化区段25Hz轨道电路叠加MPB-2000G电码化电路图 (11)

第二节设备构成及安装 (11) 一、ZP.F-G发送器 (13) 二、NGL-T型室内隔离盒 (22) 三、WGL-T型室外隔离盒 (25) 四、BMT-25型室内调整变压器 (28) 五、ZPW.TFG型股道发送调整器 (30) 六、RT-F型送电调整电阻盒 (32) 七、RT-R型受电调整电阻盒 (34) 八、WGFH型室外隔离防护盒 (36) 九、MGFL-T型室内轨道电路防雷组合 (38) 十、HF3-25型防护盒 (40) 十一、主要设备清单 (42) 第三节现场开通 (44) 一、电码化轨道电路联调 (44) 二、测试内容 (47) 三、开通测试记录 (48)

第一章系统概述 第一节系统简介 “MPB-2000G型半自动闭塞区段车站电码化系统”是针对半自动闭塞区段应用特点,按照ZPW-2000(UM)等系列轨道电路技术规范开发的适用于半自动闭塞区段的车站电码化系统。 一、特点及功能 “MPB-2000G型半自动闭塞区段车站电码化系统”由站内电码化和接近区段轨道电路两部分组成,其中站内电码化采用ZP.F-G型移频发送器和成熟的站内电码化器材,接近区段采用ZPW-2000系列轨道电路,发送设备采用ZP.F-G发送器。 站内电码化和半自动闭塞接近区段轨道电路的发送采用N+1冗余,接收采用双机热备的工作方式,提高了系统的可靠性。 ZP.F-G发送器具有8种载频,运用大规模集成电路技术平台,采用直接数字频率合成(DDS)、发码源闭环检查结构设计,完成信号合成、电压幅度、载频及调制频率的反馈检查,具有自我诊断功能。

Hz相敏轨道电路预叠加ZPWA站内电码化

H z相敏轨道电路预叠加Z P W A站内电码化集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

25Hz相敏轨道电路预叠加ZPW-2000A站内电码化 摘要:随着铁路的大发展,站内电码化技术作为保证行车安全的基础设备已被广泛采用。本文介绍电码化的基本原理,分析接发车进路预叠加电码化电路,对电化区段 25HZ相敏轨道电路预叠加ZPW-2000A 电码化系统进行阐述。 关键词:电码化、轨道电路、预叠加 在信号系统设备中,车站电码化是一个重要的组成部分,它对于加强站内行车安全以及机车信号的发展起着重要的作用。 随着铁路跨越式发展的不断深入,列车运行速度越来越快,提速区段越来越多,提速区段对机车信号有了更高的要求。为确保机车信号的正确显示,与之配套的地面信号设备需要进行改造。 在自动闭塞区段,区间设备通常采用ZPW-2000A无绝缘轨道电路。而站内轨道电路采用交流连续式轨道电路、25Hz 相敏轨道电路。机车在区间和站内运行,需要接收相应的地面信息,保证列车运行安全。为了使机车信号不间断地接收站内与区间的信息,站内正线上的各个轨道电路区段和侧线股道,均应实现电码化。 1 相关术语 电码化:由轨道电路转发或叠加机车信号信息技术的总称。 车站股道电码化:车站内到发线的股道及正线实施的电码化。 车站接发车进路电码化:车站内按列车进路实施的电码化。 预叠加电码化:列车进入本区段时,不仅本区段且其运行前方相邻区段也实施的电码化。 2 实施车站闭环电码化的范围 列车占用的股道区段; 经道岔直向的接车进路,为该进路中的所有区段; 半自动闭塞区段,包括进站信号机的接近区段; 自动闭塞区段,经道岔直向的发车进路,为该进路中的所有区段。 3 电码化主要设备 (1)ZPW-2000A电码化发送设备:载频为1700Hz、2000Hz、2300Hz、2600Hz。 (2)ZPW-2000系列闭环电码化调制频率为 Hz、 Hz、 Hz、 Hz、 Hz、、、 18Hz、、、、、、、、、、29Hz。 (3)机车信号信息的定义 L3 准许列车按规定速度运行,表示运行前方5个及以上闭塞分区空闲。 L2 准许列车按规定速度运行,表示运行前方4个及以上闭塞分区空闲。 L 准许列车按规定速度运行。 LU 准许列车按规定速度注意运行。 LU2 要求列车减速到规定的速度等级越过接近的地面信号机,并预告次一架地面信号机显示一个黄色灯光。 U 要求列车减速到规定的速度等级越过接近的地面信号机。 U2S 要求列车减速到规定的速度等级越过接近的地面信号机,并预告次一架地面信号机显示一个黄色闪光和一个黄色灯光。 U2 要求列车减速到规定的速度等级越过接近的地面信号机,并预告次一架地面信号机显示两个黄色灯光。

站内轨道电路预叠加ZPW一2000A电码化

站内轨道电路预叠加ZPW一2000A电码化 一、叠加 在交流电气化牵引区段,通常采用与25Hz相敏轨道电路“叠加”移频机车信号信息的电码化方式。所谓“叠加”即在轨道电路传输通道内,轨道电路信息和机车信号信息同时存在。传输继电器的作用是在发码时机到来之际,将发码设备与轨道电路设备并联,两者同时向轨道传输通道发送信息。 二、预叠加 随着铁路运输的发展,提速区段对机车信号和超速防护有了更高的需求(即在发码区段内,保证机车信号在时间和空间上二均连续)。目前的“切换和叠加”电码化技术已不满足提速要求,必须在原有电码化“叠加发码”方式的基础上进行改进,采用“叠加预发码”方式,才能保证列车接收地面信息在“时间和空间”上的连续。“预”就是在列车占用某一区段时,其列车运行前方,与本区段相邻的下一个区段也开始发码。 三、预叠加原理 电码化系统的设计原则为:正线区段(包括无岔和道岔区段)为“逐段预先发码(简称‘预叠加’)”,保证列车在正线区段行驶的全过程,地面电码化能不间断地发送机车信号。侧线区段为占用发码叠加发码。

图LC9-3 预叠加原理 我们以下行正线接发车为例(站场示意见图LC9-3),略述正线区段逐段预先发码的应用原理。接车进路、发车进路ZPW--2000A电码化发送设备采用“N+l”冗余方式设计。图l中粗线表示的是站内电码化范围。与下行电码化方向相对应,迎着列车行驶方向进行发码,进路内每一轨道区段均设置一台传输继电器CJ。发送的I 、Ⅱ路输出分别与相邻轨道区段的CJ相连,即

I路输出若连A、C、E.G区段的C J,Ⅱ路输出则连B、D、F、H区段的CJ. ⑴列车进入YG区段时,接车进路已排通,即正线继电器ZXJ↑,进站信号开放,LXJ↑,则接车电码化继电器JMJ↑。直到列车进入D股道,DGJF↓,切断JMJ的KZ电源,JMJ才落下,表明接车电码化已结束。 列车进入YG区段,YGJF↓,传输继电器电路中ACJ↑,发送设备I路的移频信息叠加进A区段的轨道电路信息中,站内电码化开始工作,预发(叠加)第一个码。 (2)列车进入站内电码化第一个区段A,ADGJF↓,ACJ通过自闭电路保持吸起,发送设备I路输出继续向A区段轨道传递机车信号信息,同时BCJ↑,发送设备Ⅱ路的移频信息叠加进B 区段的轨道电路信息中,使列车运行在A区段时,B区段已预先发码。同样,列车进入B区段,BDGJF↓。BC J通过自闭电路保持吸起,发送的Ⅱ路输出继续向B区段轨道传递机车信号信息。BDGJF l切断了ACJ的KZ电源,ACJ↓,A区段不再接收到I路的移频信息;与此同时CCJ↑,I路的移频信息由CCJ 叠加进C区段的轨道电路信息中,使列车运行在B区段时,C 区段已预先发码。 (3)列车在压入股道前一个区段C时,DCJ↑,将电码化信息预叠加到D股道,当列车压入D股道时,DGJF ↓,JMJ ↓,表明接车进路电码化到此结束。

站内轨道电码化

=、第六章 站轨道电路电码化 为了保证行车安全和提高运输效率,使机车信号和列控车载设备在站0能连续不断地接收到地面信号而不间断显示,需在站原轨道电路的基础上进行电码化。站轨道电路电码化是机车信号系统和列控系统不可缺的地面发送设备。 第一节站轨道电路电码化概述 一、站轨道电路电码化 所谓站轨道电路电码化,指的是非电码化的轨道电路在采取一定的技术措施后能根据运行前方信号机的显示发送各种电码。对于移频制式,电码化就是移频化。 我国铁路站轨道电路通常采用25Hz相敏轨道电路或交流连续式轨道电路(480轨道电路),它们只有占用检查的功能,既只能检查本区段是否有车占用或空闲,不能向机车信号车载设备传递任何信息。如果站轨道电路不进行电码化,列车在站运行时机车信号将中断工作,无法保证行车安全。 二、站轨道电路电码化围 站轨道电路电码化围是列车进路,但由于技术方面的原因,还不能覆盖全部列车进路。1.自动闭塞区段 (1)正线 正线正方向,轨道电路电码化围包括接车进路和发车进路。 正线反方向,一般均采用自动站间闭塞,轨道电路电码化围只包括接车进路。 (2)侧线 侧线轨道电路电码化围仅仅是股道。这是因为正线轨道电路电码化要求咽喉区道岔绝缘设在弯股,侧线轨道电路电码化通路被切断,无法实现。 2.半自动闭塞区段 站轨道电路电码化围只包括正线接车进路和侧线股道,以及进站信号机外方的接近区段,在提速半自动闭塞则为进站信号机外方的第一接近区段和第二接近区段。 三、站轨道电路电码化发送的信息 对于接车进路和侧线股道,站轨道电路电码化发送的是和车站信号机显示相联系的信息。对于发车进路,站轨道电路电码化发送的是和防护二离去区段的通过信号机显示相联系的信息。对于半自动闭塞区段进站信号机外方的接近区段,轨道电路电码化发送的是和进站信号机显示相联系的信息。 四、站轨道电路电码化方式 电码化有切换方式和叠加方式两种。切换方式因由较多缺陷,尤其不能满足列车提速的要求,已不再使用。目前多采用叠加方式,既电码化电路叠加在原轨道电路上。在主要干线正线则推广闭环方式。 第二节电码化器材 各种移频自动闭塞,都有其相应的电码化设备,现以ZPW-2000A型站电码化设备为例进行介绍。 一、电码化机柜 图6-1

站内轨道电路

站内轨道电路 ——移频电码化技术 ?站内轨道电路移频电码化技术概述 ?脉动切换方式站内轨道电路移频电码化 ?叠加方式站内轨道电路电码化 ?电码化定义 ?研制电码化技术的必要性 ?电码化的任务 ?电码化的工作原理 ?站内轨道电路电码化的范围 ?站内轨道电路的电码化分类 ?各种制式的优缺点 为了保证列车从有机车信号信息的自动闭塞区间或接近区段有机车信号信息的半自动闭塞区间进入站内,机车信号设备能够正常工作,在适当的时机,相应的站内轨道电路转发或叠加机车信号信息,这就是电码化。 研制电码化技术的必要性: ?电码化技术的发展历程: 70年代:“移频电码化”技术; 80年代:“25H z交流计数电码化”技术; 88年以前,“电码化”技术仅仅实施于车站内的正线列车进路,车站站线列车进路未实施该技术。 研制电码化技术的必要性: 随着经济建设的飞速发展,铁路运量陡增,行车密度和速度不断提高,安全与效率的矛盾日益尖锐。 在1987年底和1988年初,铁路连续发生了数次重大事故: 研制电码化技术的必要性: ?①上海局管内,由于车站侧线没有实施电码化技术,发生了列车闯出出站信号机导致与旅客列车的重大冲突事故; 研制电码化技术的必要性: ?②兰州局管内,同样由于车站侧线没有实施电码化技术,导致旅客列车闯出显示红灯的出站信号机进入区间,险些发生与其他列车发生正面冲突的重大事故;研制电码化技术的必要性: ?③石家庄北站,因正线未实施电码化,股道了望条件不好,司机将邻线开放的出站信号误认为是本股道的出站信号,列车闯出后与正在高速通过的旅客列车发生侧面冲突。 “车站股道电码化”技术就是在这样的情况下应运而生的。 利用原轨道电路设备增加信息的发送设备及相

相关主题
文本预览
相关文档 最新文档