当前位置:文档之家› 巴斯德毕赤酵母表达外源蛋白的降解机理及其控制策略

巴斯德毕赤酵母表达外源蛋白的降解机理及其控制策略

巴斯德毕赤酵母表达外源蛋白的降解机理及其控制策略
巴斯德毕赤酵母表达外源蛋白的降解机理及其控制策略

巴斯德毕赤酵母表达外源蛋白的降解机理及其控制策略

1.巴斯德毕赤酵母表达外源蛋白的降解机理

在外源蛋白的表达过程中,宿主菌毕赤酵母的胞内和胞外均有一定量的蛋白酶的表达,因此,不论是胞内表达亦或是分泌表达,大多数外源蛋白均面临着被降解的问题,这也是影响表达量的一个重要因素,同时,还增加了纯化目的蛋白的难度。近年来,蛋白酶的研究是P.pastoris表达系统一个重点和热点。越来越多的蛋白酶的遗传背景和生理生化性质得到深入的研究。P.pastoris能根据细胞生长环境(碳源的改变以及细胞或细胞器的胁迫)来调整自身酶系,以合成与降解不同的蛋白和细胞器,液泡是蛋白质降解最主要的场所,另一降解场所是细胞基质蛋白酶体中。但是,对于外源蛋白来说,其降解常在表达和分离纯化的第一步,主要是由培养基中胞外蛋白酶,细胞外膜结合蛋白酶(cell-bound proteases)和细胞自噬或裂解释放的胞内蛋白酶降解的。胞内蛋白酶主要涉及降解蛋白质前体产生活性蛋白;切除转运出膜后的蛋白质信号肽;使调控蛋白失活;降解变异或不需要的蛋白质;提供营养,前体和能量。胞外蛋白酶分泌较少,主要降解部分蛋白质提供氨基酸和多肽等营养。

根据蛋白酶的分泌和作用地点,P.pastoris的胞内蛋白酶可以分为三种类别,即液泡蛋白酶(vacuolar proteases),细胞基质蛋白酶体(the cytosolic proteosome)以及分泌途径的蛋白酶(proteases located along the secretory pathway)。

表1.2毕赤酵母液泡蛋白酶和分泌途径蛋白酶

Table 1.2 Proteases of Pichia pastoris vacuole and secretory pathway

Enzyme Type Gene Zymogen form

Vacuole PrA Aspartic PEP4 Yes

PrB Serine PRB1 Yes

CpY Serine PRC1 Yes

CpS Metallo-( Zn2+) CPS1 Unknown

ApI Metallo-( Zn2+) LAP4 Yes

ApCo Metallo-(Co2+) DAP2 No

DPAP-B Serine SEC11 Unknown

Secretory pathway signal peptidase Kex2 protease Serine KEX2 Yes Kex1 carboxypeptidase Serine KEX1 No

DPAP-A Serine STE13 Unknown,predict no

Yeast as partyl protease ш Aspartic Y AP3 Unknown,predict yes

酵母液泡位于基质中,一方面是维持胞内pH和盐离子平衡,储藏盐离子的功能;另一方面,由于液泡中含有大量的非特异性的水解酶,较宽底物范围的内生和异源蛋白酶,液泡是降解蛋白甚至细胞器的一个重要场所,大约80%的蛋白在液泡中降解。

在P.pastoris生长和表达外源蛋白过程中,由于碳源从葡萄糖或甘油到甲醇的改变,甲醇代谢酶系(AOX,FAD,DHAS等)和过氧化氢体逐步积累,同时,相应的蛋白酶也产生了。由于细胞器胁迫的影响,过氧化氢体一部分在基质中自噬降解,大部分过氧化氢体转运到液泡中得到降解。

P.pastoris中位于与细胞膜结合的胞内蛋白酶类可分为蛋白质水解酶(内切酶)和多肽外切酶,由蛋白酶,羧肽酶,氨肽酶类组成。所有的蛋白酶都是由其蛋白酶前体经过酶切活化而成,按照其作用活性位点又分为4类,丝氨酸类蛋白酶、金属蛋白酶、半胱氨酸类蛋白酶和天冬氨酸类蛋白酶。丝氨酸类蛋白酶最适pH值比较高,又叫碱性蛋白酶,而天冬氨酸类蛋白酶需要低的pH范围,又叫酸性蛋白酶。主要的液泡内蛋白酶有以下几种:蛋白酶A

(proteinaseA,PrA),蛋白酶B(proteinase B,PrB),羧肽酶Y(carboxypeptidases Y,CpY),羧肽酶S(carboxypeptidases S,CpS),氨肽酶I (aminopeptidases I,ApI),氨肽酶Co (aminopeptidase Co,ApCo),二肽氨肽酶B(Dipeptidyl aminopeptidase B,DPAP-B)。蛋白酶A,分子量约42kDa,是天冬氨酸类蛋白酶,由基因PEP4表达,其前体能自身催化而形成成熟的蛋白酶,并催化羧肽酶Y前体和蛋白酶B前体形成羧肽酶Y和蛋白酶B;蛋白酶B,分子量约32kDa,丝氨酸类蛋白酶,由基因PRB1表达,对基因PRB1克隆和测序发现是一个很大阅读框,编码一个最少69 kDa的前提,其前体有50%的自身催化成蛋白酶B,另一部分由蛋白酶A催化;蛋白酶A和蛋白酶B是液泡中最基本的蛋白酶,是其他蛋白质水解酶的激活剂。羧肽酶Y,是丝氨酸类蛋白酶,由基因PRCl编码, 其生物合成,液泡内分拣和CPY的加工成熟目前研究很清楚。PRCl基因编码的羧肽酶Y前体包含一个N-端信号肽,一个含90个氨基酸的前肽和一个含421个氨基酸的酶活区域。羧肽酶Y前体经过高尔基体后切除糖链得到一个69kDa的中间体,然后在液泡中切除前肽形成61 kDa成熟的羧肽酶Y。羧肽酶Y前体(67kDa)没有生物活性,必须在蛋白酶B作用下或蛋白酶A与蛋白酶B共同作用才能形成成熟的羧肽酶Y。羧肽酶S,是一个由基因CPSI编码,依赖于金属离子的羧肽酶,分子量73~77kDa,其合成与膜和内质网相关。氨肽酶I,由基因LAP4编码,是一个含有12个亚基分子量为640 kDa的金属多肽,氨肽酶Co是一个分子量为100kDa 的Co2+金属多肽,其机理目前不清楚。二肽氨肽酶B,由基因DAP2 编码的膜接合液泡蛋白酶,在传递到液泡前没有蛋白酶活性。

酵母液泡中的各种蛋白酶量会随着发酵过程中营养条件的改变发生变化,如发酵过程中的饥饿胁迫、碳源改变、热和pH变化及有毒有害产物的形成等。分泌到胞外的重组蛋白降解有可能是由于蛋白酶的过表达而部分分泌到胞外所致和高密度培养时细胞自溶造成膜破裂而释放出蛋白酶两种因素引起。在Sinha的研究中发现当P. pastoris从甘油生长阶段转为以甲醇为碳源诱导表达阶段时,培养基中的各种蛋白酶量明显增加,远高于一直以甘油作为碳源的实验对照组。

基质蛋白酶体,又称蛋白体,多蛋白酶复合体,多催化功能蛋白酶,存在于真核细胞内,主要完成蛋白酶水解途径的中间过程,其中20S的蛋白酶体,位于所有真核生物的细胞核和细胞间质中,是一个分子量为700 kDa 圆柱形颗粒,由14个不同的亚基折叠缠绕而成。26S蛋白酶体是一个巨型蛋白酶复合物,分子量高达1700 kDa,主要降解依赖ATP的泛醌类蛋白质,它是由2个19S 蛋白酶体连接到20S 蛋白酶体两端构成,它们主要负责短周期的蛋白质的分拣和快速降解,包括某些对细胞有害的蛋白质。液泡和蛋白酶体降解的互作是调节细胞过程的一个重要方式,特别是对细胞胁迫的响应方面。分泌途径的蛋白酶主要分布在高尔基体和细胞质膜上,其功能是去处去除蛋白酶前体上的多肽,主要的蛋白酶有信号肽(Signal peptidase),Kex2蛋白酶(Kex2 Endoproteas ),Kexl 羧肽酶(Kexl carboxypeptidase)二肽氨肽酶A(Dipeptidyl Aminopeptidase A,DPAP-A),酵母天冬酰胺蛋白酶III (Yeast Aspartyl Protease III,Yap3 Protease)。信号肽是一个最少包含4个亚基的完整的膜蛋白。Kex2蛋白酶,由基因KEX2编码,其功能是切除COOH-端的Lys-Arg or Arg-Arg 键残基。Kexl 羧肽酶,由基因KEXl 编码,是一个特异性的丝氨酸类蛋白酶,二肽氨肽酶A,由基因STE13编码的膜蛋白,酵母天冬酰胺蛋白酶III,其功能是在Kex2蛋白酶的作用下,切除受体COOH-端α因子前体。

在发酵过程中,由于高密度细胞的影响以及部分细胞的裂解,液泡中的蛋白酶常释放到培养基中,导致目的蛋白的降解。在发酵的过程中,随着外源蛋白在培养基中的浓度不断提高,蛋白水解酶浓度也随着升高,对外源蛋白产生降解作用。因此,防止蛋白水解酶的水解作用,提高外源蛋白的稳定性,减少外源蛋白的损失,也就相对地提高了外源蛋白的产量。

2.巴斯德毕赤酵母表达外源蛋白的降解控制策略

蛋白酶降解是酵母表达系统的共有一个缺陷,降解不仅能引起目的蛋白的产率下降,降解形成的片断还能造成分离纯化极大困难,特别是与目的蛋白分子量大小相差很小的降解产物,由于它们的理化性质接近,常规的分离方法很难将它们分离开来,导致产品收率大大下降,产品纯度低,蛋白的比活性降低。几乎所有在酵母中表达的重组蛋白都或多或少地存在表达蛋白降解问题,只是程度不同而已。而表达蛋白发生降解的不同程度往往是由于发酵培养条件和发酵控制方式不同所致。尽管降解程度有所不同,但引起蛋白降解的直接原因是酵母细胞自身存在的各种蛋白酶。

蛋白质的降解常引起目的蛋白产率的减少,生物活性的降低,并在分离纯化过程中降解产物由于类似的物化或亲和性质而造成产物污染。P. pastoris表达外源蛋白时的蛋白降解控制策略日益受到重视。为避免蛋白酶的降解,不同的策略得到应用,如2使用蛋白酶缺陷菌株(protease deficient strains), 对蛋白质结构进行修饰(modification of the protein structure), 添加蛋白酶抑制剂(addition of protease inhibitors),改变培养基pH(changing the pH of the culture medium)以及添加在培养基中补加,如酪蛋白水解物(Casamino acids)、蛋白胨(yeast peptone)等一些富含氨基酸和多肽的组分。归纳起来可以分为三种水平策略:培养水平(cultivation-level strategies),细胞水平( cellular-level strategies )和蛋白质水平策略(protein-level strategies)。

2.1 培养水平策略

提高分泌蛋白的稳定性可通过改变培养基的pH来加以改善。P. pastoris的pH适应范围比较广,可以在pH 2.8~7的范围内生长。不同的蛋白酶有不同的最佳pH作用范围,选择适当的发酵pH可以不影响细胞的生长,但可降低蛋白酶活性,减少目的蛋白的降解。P. pastoris 在pH 3.0条件下发酵重组水蛭素比pH 5.0下的降解少。pH 6.0 最适人表皮生长因子和白蛋白的表达,在pH 3.0 最适人胰岛素样生长因子、CD4蛋白的V1亚基表达,而咖啡豆半乳糖苷酶在pH4~5不降解,pH高或低均降解,pH 3.0最严重。

低温能影响目的蛋白的产量,主要是由于温度较高时,重组蛋白不稳定,以及死细胞释放的蛋白酶的活性增强。Li等实验说明将培养温度从30℃降低到23℃时,毕赤酵母表达鲱鱼抗冻蛋白从5.3mg/L上升到18.0mg/L, 同时也发现活细胞率(cell viability)增加。Hong et al.通过降低发酵温度(从30℃降到20℃)使表达的laccase活性增强。Jahic et al应用温度限制流加发酵技术(a temperature-limited fed-batch technique,TLFB)获得了更高浓度的融合蛋白,同时细胞死亡率和蛋白酶活性都降低。

通过添加特异性蛋白酶抑制剂也可减少目的蛋白的降解。Shi et al利用毕赤酵母表达抗Mamestra configurata serpin单链抗体(scFv)时候,鉴定到存在三种蛋白酶类,即天冬氨酸型蛋白酶、半胱氨酸型蛋白酶及丝氨酸型蛋白酶。通过添加丝氨酸蛋白酶抑制剂,发现发酵液总蛋白酶活性下降53%,添加天冬氨酸蛋白酶抑制剂,总蛋白酶活性下降30%。不过,大规模表达外源蛋白时添加特异性蛋白酶抑制剂使生产成本大幅度上升。另外,尽管特异性蛋白酶抑制剂可提高产物的稳定性,但必须注意的问题是蛋白酶抑制剂与培养基的结合能显著改变部分蛋白组成。例如加入5mM EDTA到毕赤酵母发酵液培养时会引起一个分子量近50 kDa的蛋白分子在发酵液中的积累,该蛋白序列与S.cerevisiae 和Candida albilabs的exo-B-1,3-glucanase序列很接近。在培养基中补加一些富含氨基酸和多肽的组分,如酪蛋白水解物(Casamino acids)、蛋白胨(yeast peptone)、胃蛋白酶水解物等,为蛋白水解酶提供过量的底物,以减少目的蛋白的降解。加入Casamino acid或YP到培养基中,进一步提高产物的稳定性。把培养基中的pH从5.2增加到6.0,则可显著提高分泌的rHSA产量,再加入YP又可提高其表达的产量。通过添加1% Casamino acids,mouse epidermal growth factor (mEGF)表达量显著提高。对于是加入Casamino acid 还是加入YP,通常认为最好加入Casamino acid,因为YP的肽组成会影响产物的分析和提取。直接添加氨基酸也能有效防止

目的蛋白被降解。Won-A Choi等认为0.3M L-Arg和L-Lys能够有效地防止目的蛋白被胞内蛋白酶酶解。

发酵时控制一定的比生长速率,或利用连续培养的发酵方式。细胞比生长速率同样可影响目的蛋白的降解。通过控制诱导相比生长速率为0.02–0.047h?1,即相应的甲醇浓度为3.09 g/L时候, 毕赤酵母表达水蛭素的降解可控制到最小程度。

2.2 细胞水平策略

产物的稳定性也可通过改造毕赤酵母表达宿主的蛋白酶缺陷型菌株来提高。如SMD1168(his4,pep4)、SMD1165(his4,prb1)和SMD1163(his4,pep4,prb1)。这些菌株在编码蛋白酶A(pep4)和/或蛋白酶B(PRB1)的基因中都有断裂,从而不能表达这些蛋白酶,并且影响其他蛋白酶的加工与成熟。这些蛋白酶缺失的菌株在insulin-like growth factor-I、ghilanten 和laccase的表达中被证明是有效的。这主要是因为使用蛋白酶缺陷型菌株后重组蛋白的降解减少所致。不过也有很多构建的蛋白酶缺陷型菌株表达重组蛋白效率不高,所以使用蛋白酶缺陷型的策略要慎重考虑。另外,这些菌株活性差,生长慢且难转化,Cereghino 和Cregg 推荐只有在其他方法不能奏效时才考虑使用。

2.3 蛋白质水平策略

通过将外源蛋白和蛋白水解酶抑制剂共同表达来抑制蛋白酶活性,减少目的蛋白降解,这种策略特别对蛋白酶降解敏感的重组蛋白有效。可将目的蛋白与一种在毕赤酵母中稳定的蛋白伴侣融合表达,通过改变目的蛋白的性质来提高稳定性;也可尝试将目的蛋白连上一个过氧化物酶体靶向信号(peroxisomal targetingsignal, PTS),使其被分拣转运入过氧化物酶体贮存起来,免受蛋白酶降解,还可减少对宿主细胞的毒害作用。

总之,为了最大限度减少蛋白质的降解,通过将以上策略进行优化,使用以上一种或者几种培养策略可以高效的获得目的蛋白。高效控制目的蛋白的降解还需要权衡多方面的优化策略,甚至包括调节溶解氧、氨、添加维生素,脂肪酸等来降低蛋白酶的活性。其目的是不仅要得到目的蛋白最大产率或产量,同时也应获得目的蛋白天然生物活性形式。

毕赤酵母表达系统研究进展

毕赤酵母表达系统研究进展 作者:齐连权, 陈薇, 来大志, 于长明, 王海涛 作者单位:军事医学科学院微生物学流行病学研究所,北京,100071 刊名: 中国生物工程杂志 英文刊名:JOURNAL OF CHINESE BIOTECHNOLOGY 年,卷(期):2002,22(6) 被引用次数:11次 参考文献(21条) 1.Trinh L;Noronha S B;Fannon M Recovery of mouse endostatin producedby Pichia pastoris using expanded bed adsorption[外文期刊] 2000(04) 2.查看详情 3.Barr KA;Hopkins S A;Sreekrishna K Protocol for efficient secretion of HSA developed from Pichia pastoris 1992 4.Cereghino J L;Cregg J M Heterologous protein expression in the methylotrophic yeast Pichia pastoris[外文期刊] 2000(1) 5.Kjeldsen T;Pettersson A F;Hach M Secretory expression and characterization of insulin in Pichia pastoris[外文期刊] 1999(29) 6.Bewley M C;Tam B M;Grewal J X ray crystallography and massspectroscopy reveal that the N lobe of human transferrin expressed in Pichia pastorisis folded correctly but is glycosylated on serine 32 [外文期刊] 1999(08) 7.Kalidas C;Joshi L;Batt C Characterization of glycosylated variantsof beta lactoglobulin expressed in Pichia pastoris[外文期刊] 2001(03) 8.Briand L;Perez V;Huet J C Optimization of the production ofa honeybee odorant binding protein by Pichia pastoris[外文期刊] 1999(03) 9.Rydberg E H;Sidhu G;Vo H C Cloning mutagenesis and structural analysis of human pancreatic alpha amylase expressed in Pichia pastoris[外文期刊] 1999(03) 10.Guo R T;Chou L J;Chen Y C Expression in Pichia pastoris andcharacterization by circular dichroism and NMR of rhodostomin[外文期刊] 2001(04) 11.Zani M;Brillard Bourdet M;Lazure C Purification and characterization of active recombinant rat kallikrein rK9[外文期刊] 2001(02) 12.ChirulovaV;Cregg J M;Meagher M M Recombinant protein production in an alcohol oxidase defective strain of Pichia pastoris in fed batch fermentations[外文期刊] 1997 13.Hasslacher M;Schall M;Hayn M High level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts[外文期刊] 1997(1) 14.Takahashi K;Takai T;Yasuhara T Effects of site directed mutagenesis in the cysteine residues and the N glycosylation motif in recombinant Der f 1on secretion and protease activity[外文期刊] 2001(04) 15.Boado R J;Ji A;Pardridge W M Cloning and expression in Pichia pastoris of a genetically engineered single chain antibody against the rat transferrin receptor[外文期刊] 2000(06)

毕赤酵母实验操作技巧介绍材料

毕赤酵母表达实验手册 大肠杆菌表达系统最突出的优点是工艺简单、产量高、生产成本低。然而,许多蛋白质在翻译后,需经过翻译后的修饰加工,如磷酸化、糖基化、酰胺化及蛋白酶水解等过程才能转化成活性形式。大肠杆菌缺少上述加工机制,不适合用于表达结构复杂的蛋白质。另外,蛋白质的活性还依赖于形成正确的二硫键并折叠成高级结构,在大肠杆菌中表达的蛋白质往往不能进行正确的折叠,是以包含体状态存在。包含体的形成虽然简化了产物的纯化,但不利于产物的活性,为了得到有活性的蛋白,就需要进行变性溶解及复性等操作,这一过程比较繁琐,同时增加了成本。 与大肠杆菌相比,酵母是低等真核生物,具有细胞生长快,易于培养,遗传操作简单等原核生物的特点,又具有真核生物时表达的蛋白质进行正确加工,修饰,合理的空间折叠等功能,非常有利于真核基因的表达,能有效克服大肠杆菌系统缺乏蛋白翻泽后加工、修饰的不足。因此酵母表达系统受到越来越多的重视和利用。 大肠杆菌是用得最多、研究最成熟的基因工程表达系统,当前已商业化的基因工程产品大多是通过大肠杆菌表达的,其主要优点是成本低、产量高、易于操作。但大肠杆菌是原核生物,不具有真核生物的基因表达调控机制和蛋白质的加工修饰能力,其产物往住形成没有活性的包涵体,需要经过变性、复性等处理,才能应用。近年来,以酵母作为工程菌表达外源蛋白日益引起重视,主更是因为酵母是单细胞真核生物,不但具有大肠杆菌易操作、繁殖快、易于工业化生产的特点,还具有真核生物表达系统基因表达调控和蛋白修饰功能,避免了产物活性低,包涵体变性、复性等等间题[1]。 与大肠杆菌相比,酵母是单细胞真核生物,具有比较完备的基因表达调控机制

外源蛋白在巴氏毕赤酵母中高效表达的策略

第22卷 第3期 吉首大学学报(自然科学版)Vol.22 No.3 2001年9月J ournal of J ishou University(Natural Science Edi ti on)Sept.2001 文章编号:1007-2985(2001)03-0040-05 外源蛋白在巴氏毕赤酵母中高效表达的策略 聂东宋,梁宋平,李 敏 (湖南师范大学生命科学院,湖南长沙 410081) 摘 要:高效表达外源蛋白,在理论和实践上特别是在生物制药中具有重要意义,巴氏毕赤酵母(Pichia pastoris)是表达外源蛋白最理想的真核表达系统之一.影响外源蛋白在P.pas toris中表达的因素很多,主要包括外源基因自身的特性、载体、宿主细胞几个方面,了解和灵活运用它们的联系,有助于获得外源基因在P.pastoris中的高效表达. 关键词:巴氏毕赤酵母;外源蛋白;高效表达 中图分类号:Q75 文献标识码:A 巴氏毕赤酵母(P.pastoris)是一种单细胞真核生物,基因工程菌近年来已被广泛用于商业化生产外源蛋白.与其它表达系统比较,该系统具有以下优点:(1)高表达.该表达系统利用醇氧化酶基因启动子很强,细胞生长速度快,所以该表达系统表达的外源蛋白产量很高,如破伤风毒素蛋白的产量高达12g/L[1],其它表达系统一般为毫克级.(2)高稳定.由于该表达系统的表达载体不是以自主复制的质粒形式存在,而是整合到酵母染色体上,所以构建的菌株十分稳定.(3)高分泌.P.pastoris中一些分泌信号和先导序列如a-因子的分子生物特性已研究得十分清楚,加之它身体的生物学特性,其分泌表达可达10g/L,这在已知的分泌表达系统中是十分罕见的.虽然已有许多蛋白在P.pastoris中实现了高效表达,但仍有一些蛋白表达量相对较低,如 -cryptogein表达量级为1~5mg/L[2],AFP在摇瓶中表达时最高水平不超过5mg/L[3],有些甚至不能表达,如HIV表面糖蛋白[4].此外,酵母表达系统的局限性还在于分泌表达产物的不均一性,如信号肽加工不完全,表达产物内部降解等现象[5] 其次,当利用该系统的载体将外源基因通过双交换整合到宿主体中AOX1基因位置时,AOX1基因被破坏,这样使细胞利用甲醇能力大大降低.从而大大延长了细胞培养发酵时间.这种外源蛋白表达的差异,一方面是由于外源基因本身的特性而引起的,另一方面,表达条件也对表达量起了极其重要的作用.笔者综述了影响甲醇酵母中外源基因高效表达的各种因素,并阐述了优化外源蛋白在P.pastoris中高效表达的策略. 1 外源基因本身的特性对表达的影响 1 1外源基因的A+T组成 外源基因本身的4种核苷酸的组成对基因的表达起重要作用.许多高A+T含量的基因通常会由于提前终止而不能有效转录,共有序列ATTATTTTATAAA就是一个转录提前终止信号 Caro1A Scorer[6]在表达人免疫缺损病毒(HI V)包膜糖蛋白gp120时,这个信号造成了gp120的转录提前终止.提前终止被认为是一种具有种族特异性的现象,如在P.pastoris中不能表达的HIVE NV蛋白在酿酒酵母中表达良好.[4]因此,可以通过调整高A+T含量区的核苷酸的组成来避免提前终止的发生,使其A+T含量在30%~50% 收稿日期:2001-08-05 基金项目:国家自然科学基金资助项目(39670392) 作者简介:聂东宋(1967-),男,湖南省衡阳县人,湖南师范大学硕士研究生,主要从事基因结构与功能研究.

毕赤酵母表达系统使用心得

Pichia酵母表达系统使用心得 甲醇酵母表达系统有不少优点,其中以Invitrogen公司的Pichia酵母表达系统最为人熟知,并广泛应用于外源蛋白的表达。虽然说酵母表达操作简单表达量高,但是在实际操作中,并不是每个外源基因都能顺利得到高表达的。不少人在操作中会遇到这样那样的问题,收集了部分用户在使用EasySelect Pichia Expression System这个被誉为最简单的毕赤酵母表达的经典试剂盒过程中的心得体会。其中Xiang Yang是来自美国乔治城大学(Georgetown University)Lombardi癌症中心(Lombardi Cancer Center),部分用户来自国内。 + 表示优胜于;- 表示不如;= 表示差不多 EasySelect Pichia Expression System 产品性能: 优点——使用简单,表达量高,His-tag便于纯化 缺点——酵母表达蛋白有时会出现蛋白切割问题

全面产品报告及心得体会: 巴斯德毕赤酵母(Pichia pastoris )是一种能高效表达重组蛋白的酵母品种,一方面由于其是属于真核生物,因此表达出来的蛋白可以进行糖基化修饰,另一方面毕赤酵母生长速度快,可以将表达的蛋白分泌到培养基中,方便蛋白纯化。 毕赤酵母表达载体pPICZ 在多克隆位点(MCR )3'端带有his-tag 和c-myc epitopes ,这些tag 有利于常规检测和纯化,而且在MCR5'端引入了alpha factor (α-factor )用以增加表达,并且在表达后α-factor 可以自动被切除。在进行克隆的时候,如果你选择的是EcoRI ,那么只需在目标蛋白中增加两个氨基酸序列即可完成。另外pPICZ 系列选用的是Zeocin 抗生素作为筛选标记,而诱导表达的载体需要甲醇——甲醇比一般用于大肠杆菌表达诱导使用的IPTG 便宜。 第一步——构建载体 Xiang Yang :pPICZ 系列有许多克隆位点可供选择,同时也有三种读码框以便不用的用户需要。 红叶山庄:有关是选择pPIC9K 还是pPICZ 系列?pPIC9K 属于穿梭质粒,也可以在原核表达,而pPICZ 系列比较容易操作,大肠和毕赤酵母均用 抗Zeocin 筛选(PIC9K 操作麻烦一点,大肠用amp 抗性,而毕赤酵母先用His 缺陷筛选阳性克隆,在利用G418筛选多拷贝),而且对于大小合适(30—50KD )的蛋白在产量上是pPIC9K 无法比拟的。 leslie :要做毕赤酵母表达实验,首先当然就要了解这个可爱的酵母了(椭圆形,肥嘟嘟的,十分可爱),她和大肠杆菌长得有较大区别(大肠杆菌是杆状的),因此在培养的过程中要区别这两种菌体,除了气味,浓度,颜色以外,也可以取样到显微镜中观测。大家做毕赤表达的时候应该都遇过这种情况吧,表达过程中染菌(我们实验室曾经污染过各种颜色形状的细菌,那真是一段可怕的经历),如果在不知情的情况下继续做下去,那可以就是浪费大把的时间了。 基本熟悉了毕赤酵母,了解了她生长的喜好(多糖偏酸环境),生长的周期等等情况后,当然更多的精力还是应该花在表达的目的蛋白上,我的表达蛋白有些恐怖,有100KD ,本来当然应该放在大肠杆菌中表达,但是为了分泌表达(其实后来发现大肠杆菌pET 系列分泌表达系列也不错)和糖基化修饰(主要是这个方面,因为我的蛋白是人源的,表达出来用于酵母双杂,因此需要有完备的糖基化修饰)。这样我的DNA 片段由于较长,所以在做克隆的时候也要非常小心,需要注意的是: ①酶切位点不能出现在目的DNA 片段中——如果片段长无法避免,可以采用平末端连接; ②虽然α-factor 可以自动切除,但是在设计表达的时候,如果在N 端不能出现任何多余的aa (比如药物蛋白表达),需要特别留意(说明书上有详细说明:P13); ③有三种不同的读码框(对于pPICZα系列来说就是对上α-factor 序列),在设计克隆的时候要反复确定自己的读码框是否正确,这可是致命的问题; ④无论pPICZ 还是pPICZα都有TGA (终止密码子),但是pPICZ 系列没有ATG (起始密码子),有人认为酵母启动

毕赤酵母表达手册

版权声明: 本站几乎所有资源均搜集于网络,仅供学习参考,不得进行任何商业用途,否则产生的一切后 果将由使用者本人承担! 本站仅仅提供一个观摩学习与交流的平台, 将不保证所提供资源的完 整性,也不对任何资源负法律责任。所有资源请在下载后 24 小时内删除。如果您觉得满意, 请购买正版,以便更好支持您所喜欢的软件或书籍! ☆☆☆☆☆生物秀[https://www.doczj.com/doc/6016008184.html,] ☆☆☆☆☆中国生物科学论坛[https://www.doczj.com/doc/6016008184.html,/bbs/] ☆☆☆☆☆生物秀下载频道[https://www.doczj.com/doc/6016008184.html,/Soft/] 生物秀——倾力打造最大最专业的生物资源下载平台! ■■■ 选择生物秀,我秀我精彩!!■■■ 欢迎到生物秀论坛(中国生物科学论坛)的相关资源、软件版块参与讨论,共享您的资源,获 取更多资源或帮助。

毕赤酵母多拷贝表达载体试剂盒 用于在含多拷贝基因的毕赤酵母菌中表达并分离重组蛋白 综述: 基本特征: 作为真核生物,毕赤酵母具有高等真核表达系统的许多优点:如蛋白加工、折叠、翻译后修饰等。不仅如此,操作时与E.coli及酿酒酵母同样简单。它比杆状病毒或哺乳动物组织培养等其它真核表达系统更快捷、简单、廉价,且表达水平更高。同为酵母,毕赤酵母具有与酿酒酵母相似的分子及遗传操作优点,且它的外源蛋白表达水平是后者的十倍以至百倍。这些使得毕赤酵母成为非常有用的蛋白表达系统。 与酿酒酵母相似技术: 许多技术可以通用: 互补转化基因置换基因破坏另外,在酿酒酵母中应用的术语也可用于毕赤酵母。例如:HIS4基因都编码组氨酸脱氢酶;两者中基因产物有交叉互补;酿酒酵母中的一些野生型基因与毕赤酵母中的突变基因相互补,如HIS4、LEU2、ARG4、TR11、URA3等基因在毕赤酵母中都有各自相互补的突变基因。 毕赤酵母是甲醇营养型酵母: 毕赤酵母是甲醇营养型酵母,可利用甲醇作为其唯一碳源。甲醇代谢的第一步是:醇氧化酶利用氧分子将甲醇氧化为甲醛,还有过氧化氢。为避免过氧化氢的毒性,甲醛代谢主要在一个特殊的细胞器-过氧化物酶体-里进行,使得有毒的副产物远离细胞其余组分。由于醇氧化酶与O2的结合率较低,因而毕赤酵母代偿性地产生大量的酶。而调控产生醇过氧化物酶的启动子也正是驱动外源基因在毕赤酵母中表达的启动子。 两种醇氧化酶蛋白: 毕赤酵母中有两个基因编码醇氧化酶-AOX1及AOX2。细胞中大多数的醇氧化酶是AOX1基因产物。甲醇可紧密调节、诱导AOX1基因的高水平表达,较典型的是占可溶性蛋白的30%以上。AOX1基因已被分离,含AOX1启动子的质粒可用来促进编码外源蛋白的目的基因的表达。AOX2基因与AOX1基因有97%的同源性,但在甲醇中带AOX2基因的菌株比带AOX1基因菌株慢得多,通过这种甲醇利用缓慢表型可分离Muts菌株。 表达: AOX1基因的表达在转录水平受调控。在甲醇中生长的细胞大约有5%的polyA+ RNA 来自AOX1基因。AOX1基因调控分两步:抑制/去抑制机制加诱导机制。简单来说,在含葡萄糖的培养基中,即使加入诱导物甲醇转录仍受抑制。为此,用甲醇进行优化诱导时,推荐在甘油培养基中培养。注意即使在甘油中生长(去抑制)时,仍不足以使AOX1基因达到最低水平的表达,诱导物甲醇是AOX1基因可辨表达水平所必需的。 AOX1突变表型: 缺失AOX1基因,会丧失大部分的醇氧化酶活性,产生一种表型为Muts的突变株(methanol utilization slow),过去称为Mut,而Muts可更精确地描述突变子的表型。结果细胞代谢甲醇的能力下降,因而在甲醇培养基中生长缓慢。Mut+(methanol utilization plus)指利用甲醇为唯一碳源的野生型菌株。这两种表型用来检测外源基因在毕赤酵母转化子中的整合方式。 蛋白胞内及分泌表达: 外源蛋白可在毕赤酵母胞内表达或分泌至胞外。分泌表达需要蛋白上的信号肽序列,将外源蛋白靶向分泌通路。几种不同的分泌信号序列已被成功应用,包括几种外源蛋白本身分 制作者:陈苗商汉桥

毕赤酵母手册

毕赤酵母表达实验手册 作者:Jnuxz 来源:丁香园时间:2007-9-5 大肠杆菌表达系统最突出的优点是工艺简单、产量高、周期短、生产成本低。然而,许多蛋白质在翻译后,需经过翻译后的修饰加工,如磷酸化、糖基化、酰胺化及蛋白酶水解等过程才能转化成活性形式。大肠杆菌缺少上述加工机制,不适合用于表达结构复杂的蛋白质。另外,蛋白质的活性还依赖于形成正确的二硫键并折叠成高级结构,在大肠杆菌中表达的蛋白质往往不能进行正确的折叠,是以包含体状态存在。包含体的形成虽然简化了产物的纯化,但不利于产物的活性,为了得到有活性的蛋白,就需要进行变性溶解及复性等操作,这一过程比较繁琐,同时增加了成本。 大肠杆菌是用得最多、研究最成熟的基因工程表达系统,当前已商业化的基因工程产品大多是通过大肠杆菌表达的,其主要优点是成本低、产量高、易于操作。但大肠杆菌是原核生物,不具有真核生物的基因表达调控机制和蛋白质的加工修饰能力,其产物往住形成没有活性的包涵体,需要经过变性、复性等处理,才能应用。近年来,以酵母作为工程菌表达外源蛋白日益引起重视,原因是与大肠杆菌相比,酵母是低等真核生物,除了具有细胞生长快,易于培养,遗传操作简单等原核生物的特点外,又具有真核生物时表达的蛋白质进行正确加工,修饰,合理的空间折叠等功能,非常有利于真核基因的表达,能有效克服大肠杆菌系统缺乏蛋白翻译后加工、修饰的不足。因此酵母表达系统受到越来越多的重视和利用。[1]。 同时与大肠杆菌相比,作为单细胞真核生物的酵母菌具有比较完备的基因表达调控机制和对表达产物的加工修饰能力。酿酒酵母(Saccharomyces.Cerevisiae)在分子遗传学方面被人们的认识最早,也是最先作为外源基因表达的酵母宿主。1981年酿酒酵母表达了第一个外源基因----干扰素基因[2],随后又有一系列外源基因在该系统得到表达[3、4、5、6]。干扰素和胰岛素虽然已经利用酿酒酵母大量生产并被广泛应用,当利用酿酒酵母制备时,实验室的结果很令人鼓舞,但由实验室扩展到工业规模时,其产量迅速下降。原因是培养基中维特质粒高拷贝数的选择压力消失[7、8],质粒变得不稳定,拷贝数下降。拷贝数是高效表达的必备因素,因此拷贝数下降,也直接导致外源基因表达量的下降。同时,实验室用培养基成分复杂且昂贵,当采用工业规模能够接受的培养基时,导致了产量的下降[9]。为克服酿酒酵母的局限,1983年美国Wegner等人最先发展了以甲基营养型酵母(methylotrophic yeast)为代表的第二代酵母表达系统[10]。 甲基营养型酵母包括:Pichia、Candida等.以Pichia.pastoris(毕赤巴斯德酵母)为宿主

毕赤酵母表达外源基因存在的问题与对策

万方数据

万方数据

万方数据

毕赤酵母表达外源基因存在的问题与对策 作者:丁镌, 宋跃芬, 袁野, 刘娣 作者单位:丁镌,宋跃芬(东北农业大学动物科技学院,黑龙江,哈尔滨,150030), 袁野(中国刑警学院警犬技术系,辽宁,沈阳,110034), 刘娣(东北农业大学动物科技学院,黑龙江,哈尔滨 ,150030;黑龙江省农科院,黑龙江,哈尔滨,150086) 刊名: 畜牧与兽医 英文刊名:ANIMAL HUSBANDRY & VETERINARY MEDICINE 年,卷(期):2007,39(2) 被引用次数:1次 参考文献(9条) 1.Li A;Xiong F;Lin Q Low temperature increases the yiede of biologically active herring antifreeze protein in Pichia pastoris[外文期刊] 2001(3) 2.Potter K L;Zhang W;Smith L A Production and purification of the heavy chain fragment C of botulinum neurotoxin,serotype A,expressed in the methylotrophic yeast Pichia pastoris[外文期刊] 2000(3) 3.Inan M;Meagher M M The effect of ethanol and acetate on protein expression[外文期刊] 2001 4.Brierley R A Secretion of recombinant human insulin-like growth factor I (IGF-1) 1998 5.Dring F;Klapper M;Theis S Use of the glyceroldehyde 3phosphate dehydrogenase promoter for production of functional mammalian membrane transport proteins in the yeast Pichia Pastoris[外文期刊] 1998(2) 6.Goodrick J C;Xu M;Finnegan R High-level expression and stabilization of recombinant human chitinase produced in a continuous constitutive Pichia Pastoris expression system[外文期刊] 2001(06) 7.Scorer C A;Buckholz R G;ClareJ J The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastori[外文期刊] 1993 8.Monteino R;Garcia R;Quintero O Variation in N-linked oligosaccharide structures on heterologous proteins secreted by the methylotrophic yeast Pichia pastoris[外文期刊] 1998(02) 9.隋少飞;陈松林巴氏毕赤酵母表达系统的特点及其研究进展[期刊论文]-生物技术通讯 2004(03) 引证文献(1条) 1.王希辉.岳寿松.胡敬东.黄亦钧.陈金龙.王婷婷.范忠玲.赵宏坤鸡白介素18成熟蛋白突变体在毕赤酵母中的高效表达及其生物活性检测[期刊论文]-微生物学报 2010(9) 本文链接:https://www.doczj.com/doc/6016008184.html,/Periodical_xmysy200702022.aspx

重组巴斯德毕赤酵母高密度培养中铵离子浓度的影响

V o l .30N o.62004212 华 东 理 工 大 学 学 报 Journal of East Ch ina U niversity of Science and T echno logy 基金项目:教育部科学技术研究重点项目(99166);上海市重点学科基金 E -ma il :qye @ecust .edu .cn 收稿日期:2003212208 作者简介:谢静莉(19742),女,江苏南京人,博士研究生,研究方向为 发酵工程。 研究简报 文章编号:100623080(2004)0620723204 重组巴斯德毕赤酵母高密度培养中铵离子浓度的影响 谢静莉1, 周庆玮2, 杜 鹏2, 甘人宝2, 叶 勤13 (1.华东理工大学生物反应器工程国家重点实验室,上海200237; 2.中国科学院上海生命科学研究院生物化学与细胞生物学研究所,上海200031) 摘要:采用M u t S 表型的重组毕赤酵母生产血管生长抑制素,表达阶段流加甘油2甲醇混合碳源以提高菌体密度和血管生长抑制素的表达水平,菌体密度可达174g L ,约是表达阶段采用甲醇为单一碳源的发酵过程的3倍。菌体密度的提高导致表达阶段发酵液中铵离子浓度下降很快,当发酵液中的铵离子浓度低至40mm o l L 时,影响了血管生长抑制素的表达。改变pH 调节方式并在发酵后期添加25mm o l L (N H 4)2SO 4使发酵液中铵离子浓度维持在150mm o l L 以上,血管生长抑制素的表达产量达到108m g L 。 关键词:巴斯德毕赤酵母;血管生长抑制素;发酵;铵离子浓度中图分类号:TQ 920.6文献标识码:A Effect of Amm on iu m Concen tration on the Expression of Ang iostati n i n H igh Cell D en sity Culture of Recom bi nan t P ich ia p astoris X IE J ing 2li 1 , ZH OU Q ing 2w ei 2 , DU P eng 2 , GA N R en 2bao 2 , Y E Q in 13 (1.S ta te K ey L abora tory of B ioreactor E ng ineering ECU S T ,S hang ha i 200237,Ch ina ;2.Institu te of B ioche m istry and Cell B iology ,S hang ha i Institu te of B iolog ica l S cience , Ch inese A cad e m y of S cience ,S hang ha i 200031,Ch ina ) Abstract :In fed 2batch cu ltivati on of recom b inan t P ich ia p astoris (M u t S pheno type ),feeding w ith glycero l and m ethano l w as conducted du ring the exp ressi on phase to enhance the cell grow th and angi o 2statin exp ressi on .T he cell den sity reached 174g L at the end of fer m en tati on ,w h ich w as abou t 3fo ld of that ob tained w ith m ethano l as the so le carbon sou rce in the inducti on phase .H igh cell den sity resu lted in a qu ick drop of amm on ium concen trati on in the fer m en tati on b ro th ,and w hen the amm on ium concen trati on w as below 40mm o l L ,the p roducti on of angi o statin also decreased .T he change of pH con tro l strategy and additi on of 25mm o l L (N H 4)2SO 4w ere app lied to release the effect cau sed by low amm on ium concen 2trati on .T he amm on ium concen trati on w as m ain tained above 150mm o l L in the inducti on p hase ,and 108m g L angi o statin w as ach ieved at the end of fer m en tati on . Key words :P ich ia p astoris ;angi o statin ;fer m en tati on ;amm on ium concen trati on 3 27

毕赤酵母表达操作手册(精译版)

毕赤酵母多拷贝表达载体试剂盒 用于在含多拷贝基因的毕赤酵母菌中表达并分离重组蛋白 综述: 基本特征: 作为真核生物,毕赤酵母具有高等真核表达系统的许多优点:如蛋白加工、折叠、翻译后修饰等。不仅如此,操作时与E.coli及酿酒酵母同样简单。它比杆状病毒或哺乳动物组织培养等其它真核表达系统更快捷、简单、廉价,且表达水平更高。同为酵母,毕赤酵母具有与酿酒酵母相似的分子及遗传操作优点,且它的外源蛋白表达水平是后者的十倍以至百倍。这些使得毕赤酵母成为非常有用的蛋白表达系统。 与酿酒酵母相似技术: 许多技术可以通用: 互补转化基因置换基因破坏另外,在酿酒酵母中应用的术语也可用于毕赤酵母。例如:HIS4基因都编码组氨酸脱氢酶;两者中基因产物有交叉互补;酿酒酵母中的一些野生型基因与毕赤酵母中的突变基因相互补,如HIS4、LEU2、ARG4、TR11、URA3等基因在毕赤酵母中都有各自相互补的突变基因。 毕赤酵母是甲醇营养型酵母: 毕赤酵母是甲醇营养型酵母,可利用甲醇作为其唯一碳源。甲醇代谢的第一步是:醇氧化酶利用氧分子将甲醇氧化为甲醛,还有过氧化氢。为避免过氧化氢的毒性,甲醛代谢主要在一个特殊的细胞器-过氧化物酶体-里进行,使得有毒的副产物远离细胞其余组分。由于醇氧化酶与O2的结合率较低,因而毕赤酵母代偿性地产生大量的酶。而调控产生醇过氧化物酶的启动子也正是驱动外源基因在毕赤酵母中表达的启动子。 两种醇氧化酶蛋白: 毕赤酵母中有两个基因编码醇氧化酶-AOX1及AOX2。细胞中大多数的醇氧化酶是AOX1基因产物。甲醇可紧密调节、诱导AOX1基因的高水平表达,较典型的是占可溶性蛋白的30%以上。AOX1基因已被分离,含AOX1启动子的质粒可用来促进编码外源蛋白的目的基因的表达。AOX2基因与AOX1基因有97%的同源性,但在甲醇中带AOX2基因的菌株比带AOX1基因菌株慢得多,通过这种甲醇利用缓慢表型可分离Muts菌株。 表达: AOX1基因的表达在转录水平受调控。在甲醇中生长的细胞大约有5%的polyA+ RNA 来自AOX1基因。AOX1基因调控分两步:抑制/去抑制机制加诱导机制。简单来说,在含葡萄糖的培养基中,即使加入诱导物甲醇转录仍受抑制。为此,用甲醇进行优化诱导时,推荐在甘油培养基中培养。注意即使在甘油中生长(去抑制)时,仍不足以使AOX1基因达到最低水平的表达,诱导物甲醇是AOX1基因可辨表达水平所必需的。 AOX1突变表型: 缺失AOX1基因,会丧失大部分的醇氧化酶活性,产生一种表型为Muts的突变株(methanol utilization slow),过去称为Mut,而Muts可更精确地描述突变子的表型。结果细胞代谢甲醇的能力下降,因而在甲醇培养基中生长缓慢。Mut+(methanol utilization plus)指利用甲醇为唯一碳源的野生型菌株。这两种表型用来检测外源基因在毕赤酵母转化子中的整合方式。 蛋白胞内及分泌表达: 外源蛋白可在毕赤酵母胞内表达或分泌至胞外。分泌表达需要蛋白上的信号肽序列,将外源蛋白靶向分泌通路。几种不同的分泌信号序列已被成功应用,包括几种外源蛋白本身分

巴斯德毕赤酵母表达系统

文章编号:100128751(2002)0620246205 巴斯德毕赤酵母表达系统 唐元家 余柏松  综述(中国医药集团四川抗菌素工业研究所, 成都610051) 摘要: 巴斯德毕赤酵母表达系统在DNA 重组技术中得到越来越广泛的应用。该酵母具有独特的生物学特性,作为真核表达系统,具有严格调控外源蛋白的表达,加工修饰表达产物,表达量高,营养要求低等优点;在该表达系统中,主要有3种表达宿主菌,其载体包括整合型载体和自我复制型游离载体,其转化和表达比大肠埃希氏菌系统复杂;巴斯德毕赤酵母中表达产物可分泌至胞外,从而获得较高表达量和利于表达产物的分离纯化。 关键词: 巴斯德毕赤酵母; 外源蛋白; 表达中图分类号: Q816 文献标识码: A  收稿日期:2001209227 修订日期:2002206215  作者简介:唐元家,男,生于1975年,在读硕士研究生,主要从事基因工程药物的研究。 余柏松,男,生于1957年,硕士,研究员,主要从事生物药物的研究及开发。 基因工程技术的发展为生物体生产外源蛋白展示 了广阔的前景。到目前为止,已发展了多种蛋白质表达系统,比如大肠埃希氏菌表达系统,酵母表达系统,高等真核细胞表达系统等。长期以来,人们用大肠埃希氏菌作为宿主表达了多种蛋白。这是因为大肠埃希氏菌具有若干优点,如遗传背景和生化特性清楚,容易操作,生长迅速,营养要求简单等。但这一系统本身也存在若干缺陷:(1)缺少真核生物的蛋白翻译后的修饰和加工,如剪切、糖基化、形成二硫键等;(2)表达的蛋白多形成不溶性包含体,需要经过复杂的复性才能恢复构象和活性;(3)背景蛋白很多,纯化麻烦;(4)表达量一般不是很高。从1979年开始,为了克服大肠埃希氏菌表达系统的缺点,发展了酵母表达系统。最先使用的是酿酒酵母,它具有繁殖速度快,能高密度发酵,可以进行蛋白质翻译后的修饰和加工等优点。1981 年Hitzeman 等用酿酒酵母表达人干扰素获得成功〔1〕 。 此后用该系统还表达了其它多种原核和真核蛋白,但酿酒酵母系统也具有局限性,如缺乏强有力的启动子, 分泌效率差,表达菌株不够稳定,表达质粒易于丢失等。有鉴于此,人们发展了新一代的酵母表达系统———巴斯德毕赤酵母(Pichia pastoris )表达系统,即甲醇酵母表达系统。 1 巴斯德毕赤酵母表达系统的优点 巴斯德毕赤酵母表达系统是近年来发展迅速、应用广泛的一种真核表达系统,有许多其它蛋白表达系 统所不具备的优点。(1)具有强有力的乙醇氧化酶(AOX1)基因启动子,可严格调控外源蛋白的表达;(2) 作为真核表达系统,可对表达的蛋白进行加工折叠和 翻译后修饰,。比如,用原核表达系统表达人组织型基质金属蛋白酶抑制剂(TI MP ),虽然获得了大量重组蛋白,但是由于重组蛋白形成包含体,难以使TI MP 分子内的6对二硫键正确折叠配对,始终未能得到有活性的全长分子。李克勤等用巴斯德毕赤酵母表达系统获得了分泌型前正 确折叠的TI MP 21,重组蛋白的表达量达40mg/L 〔2〕 ;(3)营养要求低,生长快,培养基廉价,与昆虫、哺乳动物等高等真核细胞相比,巴斯德毕赤酵母易于进行操作和培养。巴斯德毕赤酵母对需氧生长有强的偏好,这一生理学特性使得它既能高密度发酵生长,亦有利于工业放大生产;(4)表达量高。酿酒酵母中表皮生长因子(EG F )的表达量为714mg/L ,而在巴斯德毕赤酵母中的表达量为450mg/L ,表达量提高约60倍。许多蛋白在巴斯德毕赤酵母中的表达量可达到g/L 以上水平,如 破伤风毒素C 片段表达量达12g/L 〔3〕 ,Heva brasiliensis 羟腈裂合酶的表达水平高达22g/L 〔4〕 ;(5)在巴斯德毕 赤酵母中表达的蛋白既可存在于胞内,又可分泌到胞 外。由于巴斯德毕赤酵母自身分泌的蛋白(背景蛋白)非常少和培养基中不含其他的蛋白质,这样分泌的外源蛋白占了培养液中总蛋白的绝大部分,因此十分有利于外源蛋白的分离和纯化,如表达的重组水蛭素 (HIR ),仅经过二步层析纯化,纯度高达97%以上〔5〕 ,表达的人重组白细胞介素经过疏水层析、离子交换和 凝胶过滤三步纯度即可达到99%〔6〕 ;(6)外源基因能通过质粒整合到巴斯德毕赤酵母基因组上,这样得到

2020年毕赤酵母表达系统资料整理

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 毕赤酵母表达系统 Mut+和Muts 毕赤酵母中有两个基因编码醇氧化酶——AOX1及AOX2,细胞中大多数的醇氧化酶是AOX1基因产物,甲醇可紧密调节、诱导AOX1基因的高水平表达,较典型的是占可溶性蛋白的30%以上。AOX1基因调控分两步:抑制/去抑制机制加诱导机制。简单来说,在含葡萄糖的培养基中,即使加入诱导物甲醇转录仍受抑制。为此,用甲醇进行优化诱导时,推荐在甘油培养基中培养。注意即使在甘油中生长(去抑制)时,仍不足以使AOX1基因达到最低水平的表达,诱导物甲醇是AOX1基因可辨表达水平所必需的。AOX1基因已被分离,含AOX1启动子的质粒可用来促进编码外源蛋白的目的基因的表达。AOX2基因与AOX1基因有97%的同源性,但在甲醇中带AOX2基因的菌株比带AOX1基因菌株慢得多,通过这种甲醇利用缓慢表型可分离Muts菌株。在YPD(酵母膏、蛋白胨、葡萄糖)培养基中,不论是Mut+还是Muts其在对数期增殖一倍的时间大约为2h。Mut+和Muts菌株在没有甲醇存在的情况下生长速率是一样的,存在甲醇的情况下,Mut+在对数期增殖一倍的时间大约为4至6个小时,Muts在对数期增殖一倍的时间大约为18个小时。 菌株GS115、X-33、KM71和SMD1168的区别 GS115、KM71和SMD1168等是用于表达外源蛋白的毕赤酵母受体菌,与酿酒酵母相比,毕赤酵母不会使蛋白过糖基化,糖基化后有利于蛋白的溶解或形成正确的折叠结构。GS115、KM71、SMD1168在组氨酸脱氢酶位点(His4)有突变,是组氨酸缺陷型,如果表达载体上携带有组氨酸基因,可补偿宿主菌的组氨酸缺陷,因此可以在不含组氨酸的培养基上筛选转化子。这些受体菌自发突变为组氨酸野生型的概率一般低于10-8。GS115表型为Mut+,重组表达载体转化GS115后,长出的转化子可能是Mut+,也可能是Muts(载体取代AXO1基因),可以在MM和MD培养基上鉴定表型。SMD1168和GS115类似,但SMD1168基因组中的Pep4基因发生突变,是蛋白酶缺陷型,可降低蛋白酶对外源蛋白的降解作用。 其中X-33由于是野生型,因此耐受性比较好,如果担心转化率的话可以考虑这种酵母菌,而X33与GS115一样都是属于MUT+表现型,也就是说可以在含甲醇的培养基中快速生长,但是据说会对外源基因表达有影响, KM71的亲本菌在精氨酸琥珀酸裂解酶基因(arg4)有突变,在不含精氨酸的培养基中不能生长。用野生型ARG4基因(约2kb)插入到克隆的野生型AOX1基因的BamHI(AOX1基因15/16密码子)及SalI(AOX1基因227/228密码子)位点,取代了AOX1基因16-227密码子,此结构转化至KM71亲本菌(arg4his4)中,分离产生KM71 MutsArg+His-菌株,Arg+转化子遗传分析显示野生型AOX1被aox1::ARG4结构所取代,所以KM71所有转化子都是Muts 表型。AOX1位点没有被完全缺失,理论上可用你的目的结构通过基因取代方法替换

毕赤酵母表达经验总结

毕赤酵母表达经验总结 甲醇酵母表达系统有不少优点,其中以Invitrogen公司的Pichia酵母表达系统最为人熟知,并广泛应用于外源蛋白的表达。虽然说酵母表达操作简单表达量高,但是在实际操作中,并不是每个外源基因都能顺利得到高表达的。不少人在操作中会遇到这样那样的问题,生物通编者特地收集了部分用户在使用EasySelect Pichia Expression System这个被誉为最简单的毕赤酵母表达的经典试剂盒过程中的心得体会。其中Xiang Yang是来自美国乔治城大学(Georgetown University)Lombardi癌症中心(Lombardi Cancer Center),部分用户来自国内。 甲基酵母部分优点与其他真核表达系统比较与原核表达系统比较 1.属于真核表达系统,具有一定的蛋白质翻译后加工,有利于真核蛋白的表达优点-+ 2.AOX强效启动子,外源基因产物表达量高,可以达到每升数克表达产物的水平++++ 3.酵母培养、转化、高密度发酵等操作接近原核生物,远较真核系统简单,非常适合大规模工业化生产。+++= 4.可以诱导表达,也可以分泌表达,便于产物纯化。=+ 5.可以甲醇代替IPTG作为诱导物,部分甲醇酵母更可以甲醇等工业产物替代葡萄糖作为碳源,生产成本低++++ + 表示优胜于;- 表示不如;= 表示差不多 EasySelect Pichia Expression System 产品性能: 优点——使用简单,表达量高,His-tag便于纯化 缺点——酵母表达蛋白有时会出现蛋白切割问题 全面产品报告及心得体会: 巴斯德毕赤酵母(Pichia pastoris)是一种能高效表达重组蛋白的酵母品种,一方面由于其是属于真核生物,因此表达出来的蛋白可以进行糖基化修饰,另一方面毕赤酵母生长速度快,可以将表达的蛋白分泌到培养基中,方便蛋白纯化。 毕赤酵母表达载体pPICZ在多克隆位点(MCR)3'端带有his-tag和c-myc epitopes,这些tag有利于常规检测和纯化,而且在MCR5'端引入了alpha factor(α-factor)用以增加表达,并且在表达后α-factor 可以自动被切除。在进行克隆的时候,如果你选择的是EcoRI,那么只需在目标蛋白中增加两个氨基酸序列即可完成。另外pPICZ系列选用的是Zeocin抗生素作为筛选标记,而诱导表达的载体需要甲醇——甲醇比一般用于大肠杆菌表达诱导使用的IPTG便宜。 第一步——构建载体 Xiang Yang:pPICZ系列有许多克隆位点可供选择,同时也有三种读码框以便不用的用户需要。 红叶山庄:有关是选择pPIC9K还是pPICZ系列?pPIC9K属于穿梭质粒,也可以在原核表达,而pPICZ系列比较容易操作,大肠和毕赤酵母均用 抗Zeocin筛选(PIC9K操作麻烦一点,大肠用amp抗性,而毕赤酵母先用His缺陷筛选阳性克隆,在利用G418筛选多拷贝),而且对于大小合适(30—50KD)的蛋白在产量上是pPIC9K无法比拟的。leslie:要做毕赤酵母表达实验,首先当然就要了解这个可爱的酵母了(椭圆形,肥嘟嘟的,十分可爱),她和大肠杆菌长得有较大区别(大肠杆菌是杆状的),因此在培养的过程中要区别这两种菌体,除了气味,浓度,颜色以外,也可以取样到显微镜中观测。大家做毕赤表达的时候应该都遇过这种情况吧,表达过程中染菌(我们实验室曾经污染过各种颜色形状的细菌,那真是一段可怕的经历),如果在不知情的情况下继续做下去,那可以就是浪费大把的时间了。 基本熟悉了毕赤酵母,了解了她生长的喜好(多糖偏酸环境),生长的周期等等情况后,当然更多的精力还是应该花在表达的目的蛋白上,我的表达蛋白有些恐怖,有100KD,本来当然应该放在大肠杆菌中表达,但是为了分泌表达(其实后来发现大肠杆菌pET系列分泌表达系列也不错)和糖基化修饰(主要是这个方面,因为我的蛋白是人源的,表达出来用于酵母双杂,因此需要有完备的糖基化修饰)。这样我的DNA片段由于较长,所以在做克隆的时候也要非常小心,需要注意的是: ①酶切位点不能出现在目的DNA片段中——如果片段长无法避免,可以采用平末端连接; ②虽然α-factor可以自动切除,但是在设计表达的时候,如果在N端不能出现任何多余的aa(比如药物蛋白表达),需要特别留意(说明书上有详细说明:P13); ③有三种不同的读码框(对于pPICZα系列来说就是对上α-factor序列),在设计克隆的时候要反复确

相关主题
文本预览
相关文档 最新文档