当前位置:文档之家› 逆境下植物叶性状变化的研究进展

逆境下植物叶性状变化的研究进展

逆境下植物叶性状变化的研究进展
逆境下植物叶性状变化的研究进展

逆境下植物叶性状变化的研究进展

摘要: 介绍了逆境下植物叶性状变化的研究进展。在逆境下,植物的叶片形态、解剖构造和内含物质等方面产生变化或特化,以保证植物正常的生命活动。解剖构造与树木的抗旱性系密切,渗透调节是一个重要的抗旱性和抗盐性机制。植物为了减少害的发生,采用防卫和避相结合的策略保护自己。叶片中午受到强光胁迫时存在明显的“避光运动”,栅栏组织的叶绿体通过不同的运动排列方式来调整对光辐射的吸收,减少光胁迫。植物在阴蔽的环境中通过大的叶面积等方式保证在弱光条件下充分利用光能。在干旱和盐胁迫下,叶片变小或消失,叶片表皮角质化,在叶片或细胞外形成一些机械组织,叶肉质化,白天叶片气孔关闭等方式增加耐盐性。多年生落叶树木和不落叶的植物通过不同的方式增加抗寒力。基因对叶性状的影响尚有争议。叶性状的差异可能是对不同环境的反映,或者是它们的年龄和基因引起的。最后,对叶性状的研究前景作了展望。

关键词: 叶性状;抗逆性;

植物对环境变迁和不良环境有足够的适应性和抵抗能力,这种抗逆性既受其系统发育的遗传基因所控制,又受其个体发育中的生理生态状态制

约。叶片是高等植物进行光合作用的主要器官,在陆地植物生态系统功能中起至关重要的作用[1],其性状特征直接影响到植物的基本行为和功能。叶性状包括叶的形态、面积、构造、养分和渗透调节物质等。早期的叶性状主要集中在植物生理研究,如叶片的光合、呼吸和叶中物质含量。随着与叶性状相关的特性和应用研究的加深,叶性状的研究逐渐成为近几年来生理生态学领域研究的新热点,内容包括叶的基本性状和它们大范围的格局关系,从叶

水平到生态系统水平预测生态过程和生态功能对环境变化的反应[2-3],例如LUO等[4]根据大量的西藏野外观测数据,从生态系统水平上定量描述了叶性状与群落物征和气候因子之间的数量关系。WRIGHT等[1]对全球范围内175个样点的2548种植物叶性状的分析,是人们首次在全球范围阐明这些叶性状间的相关规律,这种随着温度大小的变化以及各性状间的相互关系在各种植物种群和群落中所具有的相似格局,已成为从叶片水平上区分全球生物地理群落的关键指标[1]。国内王希华等[5]从群落学的角度进行了一些相关研究,张林和罗天祥[6]对植物叶寿命以及王希群等[7]对叶面积指数的应用都曾作了总结。文章就逆境条件下植物叶性状的生理生态变化和抗逆性的关系进行介绍,这对了解植物在逆境中的生存机制,寻找林木抗逆的适宜调控措施,改善森林的生态效益都有一定的意义。

1 叶性状与抗旱性

一般认为抗旱表现为避免脱水和忍受脱水。植物通过各种方法减少干旱时水分的散失。植物一般采用较高的叶组织密度,较大的叶厚度和很小的叶面积来适应干旱[8-9]。干旱的时候,植物减小叶面积和单位面积内的叶生物量,减少新叶的产生,增加老叶的脱落和减少叶的大小[10]。DEREK[11]研究落叶植物和常绿植物季节性缺水时发现,落叶植物和常绿植物采用不同的应对策略,落叶植物在短时间内消耗大量叶中氮,叶子的寿命很短,但却能固定大量的碳。植物脱叶是对缺水的一种标志性反映[12]。常绿植物采用皮质硬叶来面对干旱,这是保护功能的一种特点;这一特点表现为叶的寿命很长[11],不大量消耗叶中的氮,同化作用率比较低,能常年地固碳。虽然植物在干旱季节或干旱地区可通过脱叶或产生细小叶子来减少植株表面水分的蒸腾,但一些缓解干旱的途径也可发生在叶结构的变化上,例如植

物产生较粗的叶脉、较小的表皮细胞、较多的叶毛以及较厚的角质层等。旱生植物的机械组织通常较为发达,表皮往往有多层细胞,有发达的角质或者密集的表皮毛以及气孔下陷以减少水分散失[13]。特别是可以通过气孔的关闭以保存水分,最大限度地利用水分,这样植可以度过长时间的干旱[14-15]。叶片的解剖构造与树木的抗旱性关系密切,GISALLE等[16]的工作表明,干旱条件下植物叶脉和叶柄中硬化组织大量增加,中脉系统带有吸湿壁的

凝胶纤维也增加,表皮增厚,气孔密度增加,叶肉中丹宁数量增大,叶柄及海绵组织增加和

海绵组织变得坚实,因而叶片的抗旱能力提高。渗透调节也是一个重要的抗旱性机制,特别是在极度干旱的时候,脯胺酸可能扮演更复杂的角色[10],它能作为渗透调节物质,保持胞质溶胶与环境的渗透平衡,保持膜的完整性。干旱条件下,叶中产生的活性氧造成氧化胁迫,叶黄素循环、光呼吸与代谢活动的变化,大量的酶与抗氧化物质可以有效地清除活性氧。植物叶片内的类胡萝卜素、维生素E与抗坏血酸等,共同维持着光合膜的稳定性。干旱胁迫诱导植物叶片的基因表达一些重要的功能蛋白和调节蛋白以保护细胞不受水分胁迫的伤害[17]。另外,植物还可通过体内源激素含量的变化,如升高ABA浓度来调节某些生理过程以适应干旱环境[18]。

2 叶性状与抗虫性

植物为了保护自己,常采用不同的策略以减少虫害的发生。一种极端的策略是防卫,一般是植物含有效的化学保护物质,减慢叶的扩展,保持正常绿色和很低的损坏率(<20%)。另外一种极端的策略是逃避。植物没有有效的化学保护物质,叶通过快速扩展弥补其高损伤率(>60%);幼叶时期叶绿体的发育延缓,用来满足食叶动物需求的叶子包含的能量很少[19]。但这两种策略各有利弊,防卫策略可使植物生长缓慢,幼叶被植食动物日常消耗的物质比成熟叶多20倍[20-21]。这是因为幼叶很光滑,有很高的氮含量,易为植食动物取食。逃避策略虽有很高的叶扩展率,但植食动物的种群扩大而造成其幼叶取食量的增加有可能快于新叶量的增加,进而对植物造成损伤。所以对植物最好的策略是叶的很快扩展,这样可减少食叶生物的攻击;叶很低的含氮量,可减少对食叶动物的吸引力和生成很有效的次生代谢物。但是,叶的很快扩展要求有很高的氮和其他资源,这是难以实现的。叶片粗糙而含的养分很少,是目前有效对付咀嚼昆虫的一种保护性状[22]。高比例的次要叶脉可能有助于叶抑制植食性昆虫的破坏,水分从叶脉末端到叶肉细胞的扩散途径短也是如此[23]。叶子也可以产生一些化学物质保护自己。叶含有很高的苯酚,通常超过了叶干物质的10%,还有叶丹宁酸,被认为是很好的保护物质。叶被损伤后,叶的苯酚含量大幅增加,有效地保护了植物[24-25]。植物叶片受损伤后叶内的一些营养成分往往下降[26-27],从而影响到植食性昆虫的生长和发育。MCCLURE[28] 报道,加拿大铁杉(Tsugacanadensis)的当年叶片中含氮量高低与铁杉单蜕盾蚁(Fiorinia externa)的密度呈显著负相关。

3 叶性状与光胁迫

太阳光是光合作用的能量来源,是植物生存的基础,但过量的光对植物是有害的[29]。原因是高光辐射使叶片温度过高,从而影响叶正常的生理活动,产生光抑制;高叶温导致CO2固定的减少,因而增加了光氧化的胁迫[30],在光合作用中造成约10%的碳损失[31]。植物主要通过调节方向和叶对光的角度来获得最佳太阳辐射,在中午受到强光胁迫时存在明显的“避光运动”。在高等植物中,叶子随着入射光强度的改变而相应发生运动的现象早已为人们所熟知[32]。避光性运动是随着入射光的移动,叶子尽量保持叶平面与入射光线平行以最大程度减少叶平面接受太阳辐射[33],例如遭受水分胁迫的阳性植物大豆(Glycine max)[34]和在遮阴生境适应的野碗豆(Oxalis oregand)[35]突然暴露于强光条件下,会产生避光性运动,从而消除或缓解光抑制的发生。也可以通过叶片上的蜡质、盐化硬皮和叶毛来增加对光的反射。植物受光胁迫时,栅栏组织的叶绿体通过不同的运动排列方式来调整对光辐射的吸收。强光胁迫下叶绿体沿细胞壁排列,以减少吸收过量的太阳辐射。弱光条件下,叶绿体则充满整个细胞,以扩大吸收太阳辐射的表面积[36]。避光性运动的主要作用是避免叶温的过度升高,而不是避免光抑制[37]。在夏天高辐射下,更小的短叶柄植物更有效的通过传导的方式来降低本身温度[38]。阳生植物一般单位叶干重的叶绿素含量较低而叶黄素含量很高[39],这可能也是对光胁迫的一种适应。

4 叶性状与耐阴性

植物在阴蔽的环境中,叶片形态、解剖构造、叶绿体结构与运动及光合色素含量等产

生变化,以保证弱光条件下充分利用光能[40]。研究表明,与喜光植物相比,耐阴植物一般有很大的叶面积,叶片较薄,单位面积的叶绿素含量和比叶面积(单位叶面积所占叶干重的比率,cm2·g-1)高以及比叶重(单位叶干重所占叶面积的比率,g·cm-2)较低[41-42]。耐阴植物分配大部分的光合产物给叶、茎和根,通过叶面积的增加以加强对光的利用。在光限定条件下通过生物量分配和再分配,实现最大可能的生存和生长能力,成为植物耐阴的很好标志[43]。耐阴植物的叶片栅栏组织细胞极少或根本没有典型的栅栏薄壁细胞,而海绵组织发达,且分布不规则以减少光量子投射损失,因此在弱光条件下能充分利用光能[44-45]。另外,耐阴植物叶片多无蜡质和革质,表面光滑无毛,从而可减少对光的反射,增加对光能的利用。叶片还可以通过调整运动和平展叶片来维持较高的有效辐射截获,出现“向光性运动”。在弱光条件下,叶绿体则充满整个细胞,以扩大太阳辐射的表面积[36]。随光量子密度的降低,叶绿素含量增加,但叶绿素a/b值却减小,低的叶绿素a/b值能提高植物对远红光的吸收[46-47],具有较高的光合活性。GIVNISH[48]发现阴蔽环境下的植物叶片具有叶绿体的体积增大,基粒中单位体积的垛叠片层密度提高,捕光量和叶绿素含量提高等特征。高等植物除含有叶绿素外,还含有类胡萝卜素等辅助色素[49],也可在低光量子密度条件下提高对总光量子的吸收[50]。

5 叶性状与抗盐性

植物生长的环境是多种多样的,为了适应不同的环境,植物在长期进化过程中逐渐形成了与其生长环境相适应的结构。在盐胁迫下,叶片变小或消失,叶表皮角质化,在叶片或细胞外形成一些机械组织,植物的叶表皮厚度、叶肉的厚度、海绵组织的细胞的直径增加,栅栏组织的细胞增大[51];密被各种形状的柔毛及刚毛等附属物,上表皮气孔较少,扇形的泡状细胞下陷,下表皮气孔多等,可以减少植物体内水分的散失[52];叶肉质化,可以保存大量的水分。在植物从外界吸收大量盐分时,利用贮存的水分将吸进的盐分稀释到不会产生毒害的水平[53]。白天叶片气孔关闭,蒸腾很弱,盐分随着蒸腾流进入地上部的机会小,或在叶细胞中形成一层隔离细胞,拒绝盐分的进入,植株从而表现出较强的抗盐能力[54]。有些植物的叶上有盐腺,可以在盐胁迫的情况下泌盐,或通过表皮蜡质的形成泌盐,表现对高盐胁迫的适应[55-56]。盐胁迫环境下植物细胞结构(如:叶绿体、线粒体、过氧化物酶体)中产生大量活性氧,这会造成叶绿素、膜质、蛋白质和核酸的氧化伤害从而破坏正常的生理代谢[57]。为避免活性氧的积累,具较强抗盐性的植物体内的抗氧化酶系统在盐胁迫下活

性增强,可清除过量活性氧。植物体还可以通过叶的渗透调节,降低细胞的水势,提高其吸水能力,增加耐盐性。一些单子叶盐生植物在渗透调节中,以高水平K+和有机物质(如可溶性糖)为主要的渗透剂[58],而一些双子叶盐生植物以高浓度无机离子如Na+、Cl-、K+为主[59]。一些特殊有机化合物可能在叶的渗透调节占有很重要的地位[10]。根据赵可夫等[60]的不同生态型芦苇对盐浓度适应的研究来看,随着生境盐度的逐渐增大,有机渗透剂调节贡献逐渐降低,而无机渗透剂的贡献则逐渐增大。植物叶片还可以通过改变各种激素的含量,维持在盐胁迫下的正常生长发育。研究发现ABA可通过调节植物抗盐基因的表达来减轻盐胁迫对植物正常生理活动的破坏[61]。

6 叶性状与抗寒性

低温对植物的危害,根据低温和受害情况,可分为冻害(零度以下)和冷害(零度以上)两种。零上低温首先引起膜从液晶变为凝胶态,细胞和组织出现裂缝,接着引起代谢紊乱,导致植物死亡。当植物面对低温胁迫的时候,会产生一系列的变化使植物更加适应低温环境;多年生落叶树木在冬天来临的时候,叶子脱落。脱落前将叶片有机物运入植物枝条中,进入休眠阶段,可以提高抗寒力。不落叶的植物叶一般通过革质的叶表皮和叶肉海绵组织分

层等特点来增加抗寒力;细胞器和膜结构的稳定性以及细胞质有机化合物浓度增加是提高抗寒力的关键[62]。植物一般可能通过膜脂化合物的改变[63-64]和积累可溶物(如蔗糖、脯胺

酸和甜菜碱等)来保护细胞膜结构[65]。脂是膜的主要组成成分,是膜合成的重要原料。HA TANO等[66]发现植物经低温处理后,细胞中有大量的脂质体出现,并沿细胞质膜分布,同时伴随着脂肪酸合成增加。抗冷品种的叶片膜脂的不饱和脂肪酸在含量上比不抗冷品种多,而且不饱和程度(双键数目)比不抗冷品种的高[67]。植物就是通过调节膜脂不饱和度来维持膜的流动性,以适应低温条件。单糖、脯氨酸和可溶性蛋白均在植物抗寒中起作用[68-69]。GRIFFITH等[70]认为抗冻植物通过抗冻蛋白和冰核聚物质的协同作用可控制胞外冰晶的形成。植物低温驯化可以提高植物的抗寒性,但低温驯化过程却是一个复杂的生理、生化和能量变化过程。低温驯化可引起叶中与渗透调节[71]和膜保护有关的碳水化合物的合成[72],以及抗氧化物酶系统加强[73],从而提高植物的耐受力。抗寒锻炼能使小偃麦(Trititrigia)质膜上的Ca2+-A TPase保持较高的活性[74]。适当控制植物生长,外施一些植物生长延缓剂,延缓生长,提高脱落酸的水平,可以提高其抗寒性。

7 逆境的综合作用

在自然界,光照不足、低温、干旱和盐渍化等逆境有时伴随发生。在干旱半干旱地区,土壤盐渍化和干旱在重度胁迫下都会导致土壤溶液的水势下降而使植物吸水困难,细胞失水,叶绿素衰减、气孔导度降低,光合作用减缓。干旱胁迫条件下加入适量的盐分增强了冬小麦植株渗透调节能力,同时可溶性蛋白质含量增加,细胞膜脂过氧化程度降低,但是过量的NaCl 会导致Na+/K+升高,促进气孔关闭,进而影响光合作用的正常进行[75]。盐旱交叉胁迫下,叶片变小,叶厚增加,密被茸毛,栅栏组织的细胞增大。温度和光照是植物生长和发育的必要条件,也是限制植物生长和地理分布的主要环境因子,二者在我国北方的冬天往往伴随发生。在低温弱光的环境下,辣椒的叶面积明显减少[76],叶片数目减少。随着温度的降低和光照的减弱,辣椒叶片呈下降趋势,这主要是因为在低温弱光条件下辣椒的同化量下降从而使叶的发育速度减缓的结果[77]。在番茄上的研究表明,低温弱光胁迫7天后,番茄叶面积扩张减缓,其影响程度取决于品种和低温弱光逆境的强度[78]。一定的低温弱光有利于叶片生长,如张志刚等[79]报道低温弱光、弱光盐胁迫、低温弱光及盐胁迫有利于辣椒幼苗叶面积的增大,原因可能是植株为弥补光照不足,采用向上生长的策略以获取足够的光能,导致植株的光合产物及养分主要用于地上部生长。随着世界范围的干旱变得严重和频繁[80],光限制越来越多地伴随干旱出现。苗木通过调整叶片形态适应弱光干旱环境越来越重要[81]。强度遮阴和干旱处理可以显著减少叶片尺寸和最大净光合速率、脯氨酸含量和抗氧化酶活性[82],而遮阴产生的弱光可以降低叶片和空气温度,从而减弱干旱的影响[80]。

8 叶片大小和年龄与逆境

光照对植物叶片的大小和寿命影响非常明显,叶大小和比叶面积都随日照的增强而减小[83],亚马逊雨林中长期荫蔽植物的叶寿命较向阳植物长[84]。在盐胁迫和干旱胁迫下,叶片通常变小,衰老脱落或枯死或消失[85],而适度的干旱可以延长多年生荒漠草本植物的叶寿命[86]。温度也影响着叶片的大小和寿命。在青藏高原,随海拔增加和温度下降,平均叶寿命、叶面积指数都相应增加[87]。

9 结束语

叶性状与气候有广泛的相关性。不同地点的年均温度、潜在的蒸腾作用、光辐射和年均降水量等气象因子的差异都会对叶性状产生影响。例如生长在干旱半干旱地区的植物普遍趋于有革质,高质量/叶面积(LMA)的叶。但是环境因子影响叶性状的研究存在很大的不确定性,有待于更深入的探讨。目前对叶性状的研究集中在个体水平的测定,而群落林冠层中叶片的垂直分布和排列角度各异。如何通过叶片水平的测定数据建立模型,在群落林冠层的水平对叶性状进行模拟,从大尺度上了解气候对叶性状乃至森林的影响是今后的一个研究重点[88-89]。目前对叶性状的研究局限于少数树种,而且野外观测数据

量小。对主要树种开展大规模的研究,用大量野外观测数据来定量描述叶性状与群落特征、

气候因子的数量关系也是叶性状今后的一个研究方向。随着全球气候、土壤和水分环境的逐渐恶化,干旱、高低温胁迫、盐胁迫等问题也日趋严重。环境胁迫下的植物叶片形态变化易于了解,但是生理反应更能揭示植物适应逆境的机制。研究中将二者相结合,更有助于弄清植物形态、生长和生理代谢之间的关系,培育筛选植物抗旱、抗寒、抗盐等优良品种。目前,对植物在逆境下的生理变化的分子机制的研究尚不透彻。基因对叶性状的影响尚有争议。叶性状的差异可能是对不同环境的反映,或者是由它们的年龄和基因引起的[90]。通过分子遗传方面技术加强调控机制基因和叶性状之间关系的研究,从分子、细胞和个体的不同水平上深入研究植物对干旱、盐等逆境信息的传递和信号转导的机制,利用基因工程方法培育抗逆高效品种和改进抗逆高效的栽培措施是今后的研究方向之一。对叶性状持续定位研究少,缺乏对逆境下叶性状季节和年际间变化和机理的研究,森林演替过程中种间关系及物种生态位对叶性状影响的研究不足,叶性状的研究与植被恢复、造林树种选择几乎没有科学地结合。这些内容有待于在将来的叶性状研究中取得进展。

参考文献:

[5] 王希华, 张婕, 张正祥. 浙江天童国家森林公园主要常绿阔叶树种

叶子寿命的研究[J]. 植物生态学报, 2000, 24(5): 625-629.

[6] 张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J].

植物生态学报, 2004, 28(6): 844-852.

[7] 王希群, 马履一, 贾忠奎, 等. 叶面积指数的研究和应用进展[J].

生态学杂志, 2005, 24(5): 537-541.

[13] 李春阳, TUOMELA K. 桉树的抗旱性研究进展[J]. 世界林业研究,

1998, 11(3): 22-27.

[17] 李燕, 薛立, 吴敏. 树木抗旱机理研究进展[J]. 生态学杂志, 2007,

26(11): 1857-1866.

26(11): 1857-1866.

[18] 季孔庶, 孙志勇, 方彦. 林木抗旱性研究进展[J]. 南京林业大学学

报: 自然科学版, 2006, 30(6): 123-128.

[51] 邓彦斌, 姜彦成, 刘健. 新疆10 种藜科植物叶片和同化枝的旱生和

盐生结构的研究[J]. 植物生态学报, 1998, 22(2): 164-170.

[52] 陆静梅, 张常钟, 张洪芹, 等. 单子叶植物耐盐碱的形态解剖特征

与生理适应的相关性研究[J]. 东北师大学报: 自然科学版, 1994,

26(2): 79-82.

[53] 赵可夫. 植物对盐渍逆境的适应[J]. 生物学通讯, 2002, 37(6): 7-10.

[54] 郑青松, 刘兆普, 刘友良, 等. 等渗的盐分和水分胁迫对芦荟幼苗

生长和离子分布的效应[J]. 植物生态学报, 2004, 28(6): 823-827.

[55] 陆静梅, 李东建, 胡阿林, 等. 二色补血草叶片泌盐结构的扫描电

镜观察[J]. 应用生态学报, 1995, 6(10): 355-358.

[56] 韦存虚, 王建波, 陈义芳, 等. 盐生植物星星草叶表皮具有泌盐功

能的蜡质层[J]. 生态学报, 2004, 24(11): 2451-2456.

[60] 赵可夫, 冯立田, 张圣强. 黄河三角洲不同生态型芦苇对盐度适应

生理的研究Ⅰ: 渗透调节物质及其贡献[J]. 生态学报, 1998, 18(5):

463-469.

[61] 吴敏, 薛立, 李燕. 植物盐胁迫适应机制研究进展[J]. 林业科学,

2007, 43(8): 111-117.

[62] 董丽, 贾桂霞, 苏雪痕. 常绿阔叶植物越冬期间叶片组织结构的适

应性变化[J]. 园艺学报, 2003, 30(1): 59-64.

[78] 黄伟, 任华中, 张福墁. 低温弱光对番茄苗期生长和光合作用的影响[J]. 中国蔬菜, 2002, 4: 15-17.

[79] 张志刚, 尚庆茂. 辣椒幼苗叶片光合特性对低温、弱光及盐胁迫3 重逆境的响应[J]. 中国生态农业学报, 2010, 18(1): 77-82.

[75] 陈成升, 谢志霞, 刘小京. 旱盐互作对冬小麦幼苗生长及其抗逆生理特性的影响[J]. 应用生态学报, 2009, 20(4): 811-816.

[77] 吴晓雷, 尚春明, 张学东, 等. 番茄品种耐弱光性的综合评价[J]. 华北农学报, 1997, 12(2): 97-101.

实验五逆境对植物组织的伤害

实验五逆境对植物组织的伤害 —电导率法检测植物细胞质膜透性和愈创木酚法测定过氧化物酶活性 一、实验目的:1.了解研究植物抗逆生理的实验方法,学会使用DDS-11A型电导率仪,掌握绝对电导率和相对电导率的概念;2.熟悉植物组织过氧化物酶活性的测定方法,学会分光光度计的“动力学”测量程序 二、实验原理:(P78和P97) 三、实验材料:绿豆幼苗 四、实验步骤: 1.材料处理:10株幼苗为一组分别置于45℃(纯水最好预热至该温度)和室温中(在上课之前请先处理好材料,以课堂小组为单位)。 2.电导率的测定:2h后小心取出幼苗,冷却至室温后测定浸出液和纯水的电导率。(不必测材料煮沸后的电导率) 3.过氧化物酶(POD)活性测定P97 3.1POD的提取:材料1g,加入KH2PO4冰浴研磨成匀浆,低温4000rpm离心15min,收集上清液,定容至25mL,低温保存 3.2POD的测定:先在分光光度计的“动力学”或“时间扫描”程序上设置好参数取比色杯2个,1个将对照液放入参比杯按照程序调零,另一个比色杯拉出加入20μL酶液,再加入1mL KH2PO4 ,最后加入3mL反应混合液,立即测量。 ?723G型分光光度计“动力学”测定 ?【3 按“ 按“

按“ENT”后,出现: 测量出图谱后,按“ESC”返回到界面: 按“3”进入活性测量功能,出现如下界面: 按“SET”进行具体设置,按“ENT”可得出相应值。 按“4”进入图谱处理功能,出现如下界面: 其中按“1”可见原始图谱,按“2”可进行峰谷检测,按“3”通过横纵坐标的缩 放可达到图谱缩放功能,方便观察图谱。按“4”具有具体的实验查询功能。 思考题 1.电导率的测定主要有哪些影响因素? 2.相对电导率和绝对电导率的概念? 3.请说出电导率和电导度的概念区别。 4.温度和CO2会影响电导度的测定结果吗?在操作中应注意什么? 5.影响酶提取、纯化和活性测定的因素有哪些? 6.测定时酶活性的测定应当定在什么时间范围内?测定植物组织过氧化物酶活性的意义与用途。 7.请分析比较两种处理下绿豆幼苗的膜透性及过氧化物酶活性。

植物茎的结构及其功能的观察图

植物茎的结构及其功能的观察(图) 一、实验目的 1. 了解芽的构造。 2. 了解双子叶植物茎的初生构造,次生构造及单子叶植物茎的构造。 3.认识植物茎的输导功能。 二、实验原理 芽是处于幼态而未伸展的枝、花或花序,也就是枝、花或花序尚未发育前的雏体。以后发展成枝的芽称为枝芽;发展成花或花序的芽称为花芽。枝芽的结构决定着主干和侧枝的关系与数量,也就是决定植株的长势和外貌。花芽决定着花或花序的结构和数量,并决定开花的迟早和结果的多少。茎的顶端分生组织中的初生分生组织所衍生的细胞,经过分裂、生长、分化而形成的组织,称为初生组织,由这种组织组成了茎的初生结构。双子叶植物茎和裸子植物茎的初生结构,包括表皮、皮层和维管柱三个部分,但裸子植物茎没有双子叶植物茎的那种一生只停留在初生结构中的草质茎类型。单子叶植物的茎和双子叶植物的茎在结构上有许多不同。大多数单子叶植物的茎,只有初生结构,所以结构比较简单。少数的虽有次生结构,但也和双子叶植物的茎不同。以禾本科植物的茎作为代表,说明单子叶植物茎初生结构的最显著特点。绝大多数单子叶植物的维管束由木质部和韧皮部组成,不具形成层(束中形成层)。维管束彼此很清楚地分开,一般有2 种排列方式:一种是维管束全部没有规则地分散在整个基本组织,愈向外愈多,愈向中心愈少,皮层和髓很难分辨,如玉米、高粱、甘蔗等的维管束,它们不像双子叶植物茎的初生结构,维管束形成一环,显著地把皮层和髓部分开。另一种是维管束排列较规则,一般成两圈,中央为髓。有些植物的茎,长大时,髓部破裂形成髓腔,如水稻、小麦等。维管束虽然有不同的排列方式,但维管束的结构却是相似的,都是外韧维管束,同时也是有限维管束。 双子叶植物和裸子植物茎发育到一定阶段,茎中的侧生分生组织便开始分裂、生长和分化,使茎加粗,这一过程称为次生生长,次生生长产生的次生组织组成茎的次生结构。侧生分生组织通常包括维管形成层和木栓形成层。形成层细胞的分裂包括切向分裂和径向分裂。切向分裂向形成次生木质部,加在原有木质部的外方;向外形成次生韧皮部,加在原有韧皮部的方。在形成次生结构同时,形成层细胞为扩大自身圆周还必须进行径向分裂或横分裂以适应方木质部的增粗,同时形成层的位置渐次向外推移。双子叶植物茎中次生木质部的组成包括轴向系统的导管、管胞、木纤维、木薄壁组织和径向系统的木射线。次生韧皮部同样包括轴向系统和径向系统,轴向系统由管胞、伴胞、韧皮薄壁细胞和韧皮纤维组成,有时也有石细胞;径向系统则由韧皮射线组成。韧皮射线通过形成层的原始细胞与木射线相连,合称维管射线。芽是植物地上部分的轴,主要的生理功能是支持和输导的作用。水分与矿质元素的长途运输依赖于导管和管胞;同化物的长途运输主要依赖于筛管和筛胞。 三、实验用品 (一)材料大叶黄茎尖纵切片、向日葵和玉米茎横切片、椴树茎横切片、蚕豆茎、盆栽木槿

八种旱生灌木植物功能性状及生长分析研究

八种旱生灌木植物功能性状及生长分析研究在干旱环境中,植物通过调节与水分散失及同化物积累有关的植物功能性状来响应生长环境的变化。黄土高原由于地表沟壑众多和土壤蓄水能力弱特征,植物生长受到水资源严重限制,鉴于旱生灌木具有较强的抗旱及抗逆能力,黄土高原地区生态建设与绿化工程中尝试将比邻区的荒漠植物引种到该区种植。因此,为了解荒漠植物在黄土高原地区的适应性,从而筛选出优良的生态建设与绿化物种,本研究在陇中黄土高原区引种了蒙古扁桃(Prunus mongolica)、柠条(Caragana Korshinskii)、白刺(Nitraria tangutorum)、花棒(Hedysarum scoparium)、沙冬青(Ammopiptanthus mongolicus)、羊柴(Hedysarum Mongolicum)、白沙蒿(Artemisia sphaerocephala)、霸王(Zygophyllum xanthoxylon)八种旱生灌木作为研究对象,以植物适应干旱环境的功能性状表现为核心,分析了植物根、茎、叶的生长发育规律,探讨了各器官功能性状之间及其与植物生长速率的关联特征,主要研究结果如下:1.八种旱生灌木根茎叶器官的生物量分配比例受植物生长年限影响较大,物种间差异较小,且同一物种由于其个体发育大小差异,生物量分配比例发生改变。 沙冬青和柠条的根冠比(R/S)随植物生物量的积累呈幂函数上升趋势 (P<0.05),而蒙古扁桃、白刺、白沙蒿和花棒呈幂函数下降趋势(P<0.05)。 2.八种旱生灌木相对生长速率(RGR)大小排序为:花棒>白沙蒿>霸王>柠条>羊柴>沙冬青>白刺>蒙古扁桃。 3.八种旱生灌木的形态发育特征间、形态特征与地上生物量分配间均不具有共同的异速生长指数,而地上生物量与地下生物量分配间具有共同的异速生长指数(α=0.886)。 4.旱生灌木物种间RGR随生长年份变化的差异受净同化速率(NAR)和叶面积

植物功能性状、功能多样性与生态系统功能_ 进展与展望

生物多样性 2016, 24 (8): 922–931 doi: 10.17520/biods.2015295 Biodiversity Science http: //https://www.doczj.com/doc/6015155707.html, ?综述? 植物功能性状、功能多样性与 生态系统功能: 进展与展望 雷羚洁1孔德良2李晓明1周振兴1李国勇1* 1 (河南大学生命科学学院, 河南开封 475004) 2 (沈阳农业大学生物科学与技术学院, 辽宁沈阳 110866) 摘要: 植物功能性状与生态系统功能是生态学研究的一个重要领域和热点问题。开展植物功能性状与生态系统功能的研究不仅有助于人类更好地应对全球变化情景下生物多样性丧失的生态学后果,而且能为生态恢复实践提供理论基础。近二十年来,该领域的研究迅速发展,并取得了一系列的重要研究成果,增强了人们对植物功能性状-生态系统功能关系的认识和理解。本文首先明确了植物功能性状的概念, 评述了近年来植物功能性状–生态系统功能关系领域的重要研究结果, 尤其是植物功能性状多样性–生态系统功能关系研究现状; 提出了未来植物功能性状与生态系统功能关系研究中应加强植物地上和地下性状之间关系及其与生态系统功能、植物功能性状与生态系统多功能性、不同时空尺度上植物功能性状与生态系统功能, 以及全球变化和消费者的影响等方面。 关键词: 生态系统过程; 功能多样性; 生态系统多功能性; 消费者; 全球变化 Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives Lingjie Lei1, Deliang Kong2, Xiaoming Li1, Zhenxing Zhou1, Guoyong Li1* 1 College of Life Sciences, Henan University, Kaifeng, Henan 475004 2 Colleges of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Abstract: Increasing attention has recently been focused on the linkages between plant functional traits and ecosystem functioning. A comprehensive understanding of these linkages can facilitate to address the eco-logical consequences of plant species loss induced by human activities and climate change, and provide the-oretical support for ecological restoration and ecosystem management. In recent twenty years, the evidence of strong correlations between plant functional traits and changes in ecosystem processes is growing. More importantly, ecosystem functioning can be predicted more precisely, using plant functional trait diversity (i.e., functional diversity) than species diversity. In this paper, we first defined plant functional traits and their im-portant roles in determining ecosystem processes. Then, we review recent advances in the relationships be-tween ecosystem functions and plant functional traits and their diversity. Finally, we propose several impor-tant future research directions, including (1) exploration of the relationships between aboveground and belowground plant traits and their roles in determining ecosystem functioning, (2) incorporation of the im-pacts of consumer and global environmental change into the correlation between plant functional traits and ecosystem functioning, (3) effects of functional diversity on ecosystem multifunctionality, and (4) examina-tion of the functional diversity-ecosystem functioning relationship at different temporal and spatial scales. Key words: ecosystem processes; functional diversity; ecosystem multifunctionality; consumers; global change 近年来, 关于植物功能性状的研究涉及到从个体到生态系统等多个层次, 并延伸到生态学的—————————————————— 收稿日期: 2015-10-26; 接受日期: 2016-06-01 基金项目: 国家自然科学基金(31270564和31200344) *通讯作者Author for correspondence. E-mail: ligy535@https://www.doczj.com/doc/6015155707.html,

逆境对植物细胞膜透性的影响

逆境对植物细胞膜透性的影响 实验六 逆境对植物细胞膜透性的影响 (电导法) 一、实验原理: 植物细胞膜对维持细胞的微环境和正常的代谢起着重要的作用。 在正常情况下,细胞膜对物质具有选择透性能力。 用电导仪测定可以比较植物组织中的外渗电解质的含量,从而间接了解细胞透性的大小。电导仪的原理: 电导率是物质传送电流的能力,是电阻率的倒数。在液体中常以电阻的倒数――电导来衡量其导电能力的大小。电导率--电阻率的倒数即称之为电导率L。电导L的计算式如下式所示: L=l/R=S/l 电导的单位用姆欧又称西门子。用S表示, 由于S单位太大。常采用毫西门子,微西门子单位1S=103mS=106μS。一般用当量电导来表示电导率。电导率L的单位是(μS/cm) 二、实验材料与设备: 植物叶片:女贞叶片 实验器具:电导仪;温箱;恒温水浴锅;小烧杯,量筒 三、实验步骤: 1.选取低温(高温)处理的女贞叶片5片,先用纱布拭净,再用打孔器打取20片小圆叶,放入小烧杯中,加入20ml 蒸馏水作为处理组。再用相同的方法打取20片未经处理的小叶放入小烧杯中,加入20ml 蒸馏水作为对照组。 2.将小烧杯放入35℃水浴锅中静置20min,期间用玻棒轻轻搅动叶片,到时间后用,电导仪测定溶液电导率。 3. 测过电导率之后,再放入100℃沸水浴中10min,以杀死植物组织,取出放入自来水冷却,测其煮沸电导率。 [ 注意事项 ] 1. 整个过程中,叶片接触的用具必须绝对洁净(全部器皿要洗净),也不要用手直接接触叶片,以免污染。 2. 测定后电极要清洗干净。

四、实验结果 按下式计算相对电导度: 相对电导度(L)=(S1-空白电导率)/(S2-空白电导率) S1:煮前的电导率 S2:煮后的电导率 空白电导率:蒸馏水的电导率 相对电导度的大小表示细胞膜受伤害的程度 由于室温对照也有少量电解质外渗,故可按下式计算由于低温或高温胁迫而产生的外渗,称为伤害度(或伤害性外渗)。伤害度(%)= 式中 Lt—处理叶片的相对电导度; Lck—对照叶片的相对电导度 Lt LCK 100 1LCK 四.实验结果 五、实验反思 1.比较不同处理的叶片细胞透性的变化情况,并加解释。 答:经过低温处理的叶片细胞膜的透性增大,未经处理的叶片细胞膜透性不变。在正常情况下,细胞膜对物质具有选择透性能力。而经过低温处理后,细胞膜遭到了破环,选择性能力变差,导致透性增大。 2.植物在逆境情况下细胞膜的透性会怎样变化?答:在逆境下细胞膜的透性会增大 3.植物抗逆性与细胞膜透性有何关系 ? 答:植物的抗逆性越强,细胞膜透性越差

逆境对植物细胞膜透性的影响

逆境对植物细胞膜透性的影响(电导法) 实验目的:能比较不同处理的叶片细胞透性的变化情况,并加解释。 了解植物在逆境情况下细胞膜的透性变化 掌握植物抗逆性与细胞膜透性的关系 实验原理: 植物细胞膜对维持细胞的微环境和正常的代谢起着重要的作用。在正常情况下,细胞膜对物质具有选择透性能力。如高温或低温,干旱、盐渍、病原菌侵染后,细胞膜遭到破坏,膜透性增大,从而使细胞内的电解质外渗,以致植物细胞浸提液的电导率增大。膜透性增大的程度与逆境胁迫强度有关,也与植物抗逆性的强弱有关。比较不同植物或同一植物不同品种在相同胁迫温度下膜透性的增大程度,即可比较植物间或品种间的抗逆性强弱。用电导仪测定可以比较植物组织中的外渗电解质的含量,从而间接了解细胞透性的大小。 实验材料:女贞叶片(20片左右); 实验器具:电导仪,打孔器,恒温水浴锅,2个小烧杯,量筒,玻璃棒,蒸馏水 实验步骤: 1.选取低温(高温)处理的女贞叶片8片,先用纱布拭净,再用打孔器打取20 片小圆叶(避开叶脉),放入小烧杯中,加入20ml 蒸馏水作为处理组。再用相同的方法打取20片未经处理的小叶放入小烧杯中,加入20ml 蒸馏水作为对照组。 2.将小烧杯放入35℃水浴锅中静置25min,期间用玻棒轻轻搅动叶片,到时间 后用,电导仪测定溶液电导率。 3.测过电导率之后,再放入100℃沸水浴中10min,以杀死植物组织,取出放入 自来水冷却,测其煮沸电导率。 4.计算: 按下式计算相对电导度: 相对电导度(L)=(S1-空白电导率)/(S2-空白电导率) S1:煮前的电导率 S2:煮后的电导率 空白电导率:蒸馏水的电导率 相对电导度的大小表示细胞膜受伤害的程度 由于室温对照也有少量电解质外渗,故可按下式计算由于低温或高温胁迫而产生的外渗,称为伤害度(或伤害性外渗)。 伤害度(%)= 100 1 ? - - CK CK t L L L 式中 L t —处理叶片的相对电导度; L ck —对照叶片的相对电导度。 注意事项 1. 整个过程中,叶片接触的用具必须绝对洁净(全部器皿要洗净),也不要 用手直接接触叶片,以免污染。

植物功能性状与外来植物入侵

生物多样性 2010, 18 (6): 569–576 Biodiversity Science http: //https://www.doczj.com/doc/6015155707.html, 植物功能性状与外来植物入侵 刘建1, 2李钧敏1, 3余华4何维明1于飞海5桑卫国1刘国方1董鸣1* 1 (中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093) 2 (山东大学环境研究院, 济南 250100) 3 (台州学院生态研究所, 浙江临海 317000) 4 (中国医学科学院药用植物研究所, 北京 100193) 5 (北京林业大学自然保护区学院, 北京 100083) 摘要:揭示影响外来植物入侵性的功能性状及其生态机制是入侵植物生态学的核心任务之一。本文综述了植物功能性状与外来植物入侵性的研究进展, 通过分析植物功能性状对外来植物入侵的贡献以及外来植物的不同入侵阶段对其功能性状的需求, 探讨植物功能性状与外来植物入侵的相关性及其入侵机理。迄今研究较多的影响外来植物入侵性的功能性状主要包括形态性状、生长性状、生理性状、繁殖性状、种子性状、克隆性状、表型可塑性和遗传变异等。这些功能性状对外来植物入侵的贡献随着入侵阶段的不同而变化。在传播到达阶段, 种子性状对入侵具有重要影响; 在定居建群阶段, 与植物抗逆性和适应性相关的生理性状和繁殖性状发挥主要作用; 在扩散入侵阶段, 克隆性状和影响植物竞争能力的生理性状对植物成功入侵具有重要贡献。由于植物入侵性是其功能性状和环境因素互作的结果, 且功能性状的作用随环境因素和入侵阶段不同而异, 因此, 结合外来植物入侵阶段, 并考虑功能性状与环境因子的互作, 是入侵生物学中植物功能性状研究的发展趋势。 关键词:外来植物, 生物入侵, 入侵性, 植物功能性状 The relationship between functional traits and invasiveness of alien plants Jian Liu1, 2, Junmin Li1, 3, Hua Yu4, Weiming He1, Feihai Yu5, Weiguo Sang1, Guofang Liu1, Ming Dong1* 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Bei- jing 100093 2 Institute of Environment Research, Shandong University, Jinan 250100 3 Institute of Ecology, Taizhou University, Linhai, Zhejiang 317000 4 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193 5 College of Nature Conservation, Beijing Forestry University, Beijing 100083 Abstract: Understanding the functional traits and ecological mechanisms associated with successful inva-sions of alien plants is a key role of the field of invasion ecology. Through literature review and analysis of plant functional traits contributing to successful plant invasions and the demands for functional traits at dif-ferent invasion stages, we discuss the relationships between the functional traits and invasiveness of alien plants as well as related ecological mechanisms. Functional traits that have been studied in relation to their invasions mainly include seed characters, and morphological, developmental, physiological, clonal and propagation characteristics, as well as genetic variation and plasticity of phenotype. The impacts of these functional traits on invasion success vary from one stage to another. At the introduction stage, plant invasions are mainly affected by seed characters. At the establishment stage, stress-tolerance related physiology and propagation traits exert important influences. At the explosion stage, clonal characters and physiological traits related to competitive ability largely contribute to invasion success. Because plant invasions result from interactions between plant functional traits and environmental features, further studies on plant invasions —————————————————— 收稿日期: 2010-04-30; 接受日期: 2010-08-19 基金项目: 中科院重要方向性项目(KZCX2-YW-431)、山东省优秀中青年科学家科研奖励基金(2006BS08008)和国家自然科学基金委创新研究群体(30521005) * 通讯作者Author for correspondence. E-mail: dongming@https://www.doczj.com/doc/6015155707.html,

第十一章 植物的逆境生理 复习参考 植物生理学复习题(推荐文档)

第十一章植物的逆境生理 一、名词解释 1.CaM 2.渗透调节与逆境蛋白 3.耐逆性与御逆性 4.植物对逆境的耐性与御性 5.逆境蛋白 6.活性氧清除系统 7.膜脂相变 8.热激反应与热激蛋白 9.活性氧 10.交叉适应 二、填空 1.用来解释干旱伤害机理的假说主要是__________和_________。 2.根据所含金属元素的不同,SOD可以分三种类型:______、______和____。 3.干旱条件下,植物为了维持体内水分平衡,一方面要________,另一方面要_______。 4.干旱条件下,植物体内大量积累的氨基酸是________,大量产生的激素是______;低温锻炼后,植物体内________脂肪酸和_______水的含量增

多。 5.植物体活性氧清除系统包括________和________两种系统。 6.植物受到干旱等逆境胁迫时,渗透调节能力增强,细胞主动合成的有机溶剂是_________、________和__________。 7.在逆境下,植物体内主要有_______、_______、_______、_____等渗透调节物质。 8.经过抗寒锻炼的植物会发生的变化有: A 双硫键增加 B 自由水增加 C 膜脂双键增加 三、选择题 1.冬季植物体内可溶性糖的含量()。 A.增多 B. 减少 C.变化不大 D. 不确定 2.干旱条件下,植物体内哪一种氨基酸显著增加?() A. 丙氨酸 B.脯氨酸 C. 天冬氨酸 D. 甘氨酸 3.植物细胞中属于相容性物质的是: A、Ca B、ABA C、Pro 4. 植物抗盐的SOS途径中,与Na+外排和区域化实现不直接相关的是: A. Ca+-CaM B. Na+/H+ symporter C. Na+/H+ antiporter 三、问答 1.水稻幼苗经过0.1mol/L NaCI预处理24h后,再转移到8~10℃环境中,能表现出良好的抗冷性。试分析其原因。

逆境胁迫对植物生理生化代谢的影响

逆境胁迫对植物生理生化代谢的影响 20093391 魏晓明农学0901 摘要:对植物产生伤害的环境称为逆境,又称胁迫。常见的逆境有寒冷、干旱、高温、盐渍等。逆境会伤害植物,严重时会导致植物死亡。逆境对植物的伤害主要表现在细胞脱水、膜系统受破坏,酶活性受影响,从而导致细胞代谢紊乱。有些植物在长期的适应过程中形成了各种各样抵抗或适应逆境的本领,在生理上,以形成胁迫蛋白、增加渗透调节物质(如脯氨酸含量)、提高保护酶活性等方式提高细胞对各种逆境的抵抗能力。 关键词:逆境胁迫,抗逆性,相对电导率,脯氨酸,丙二醛,样品,细胞膜透性,过氧化物酶活性,叶绿素,可溶性糖。 前言:植物细胞膜起调节控制细胞内外物质交换的作用,它的选择透性是其最重要的功能之一。当植物遭受逆境伤害时,细胞膜受到不同程度的破坏,膜的透性增加,选择透性丧失,细胞内部分电解质外渗。膜结构破坏的程度与逆境的强度、持续的时间、作物品种的抗性等因素有关。因此,质膜透性的测定常可作为逆境伤害的一个生理指标,广泛应用在植物抗性生理研究中。 当质膜的选择透性被破坏时细胞内电解质外渗,其中包括盐类、有机酸等,这些物质进入环境介质中,如果环境介质是蒸馏水,那么这些物质的外渗会使蒸馏水的导电性增加,表现在电导

率的增加上。植物受伤害愈严重,外渗的物质越多,介质导电性也就越强,测得的电导率就越高(不同抗性品种就会显示出抗性上的差异)。 在植物胁迫处理过程中,叶绿素含量会下降,可以把叶绿素含量下降看作是胁迫发展中由功能性影响到器质性伤害的一个中间过程。 过氧化物酶是植物体内普遍存在的、活性较高的一种酶,他与呼吸作用、光合作用及生长素的氧化等都有密切关系,在植物生长发育过程中,他的活性不断变化,因此测量这种酶,可以反映某一时期植物体内代谢的变化。 植物体内的碳素营养状况以及农产品的品质性状,常以糖含量作为重要指标。植物为了适应逆境条件,如干旱、低温,也会主动积累一些可溶性糖,降低渗透势和冰点,以适应外界环境条件的变化。 植物器官衰老时,或在逆境条件下,往往发生膜脂过氧化作用,丙二醛(MDA)是其产物之一,通常利用它作为脂质过氧化指标,表示细胞膜脂过氧化程度和植物对逆境条件反应的强弱。 植物细胞膜对维持细胞的微环境和正常的代谢起着重要作用。在正常情况下,细胞膜对物质具有选择透性能力。当植物受到逆境影响时,如高温、干旱、盐渍、病原菌侵染后,细胞膜遭到破坏,膜透性增大,从而使细胞内的电解质外渗,以至于植物细胞侵提液的电导率增大。膜透性增大的程度与逆境胁迫强度有

实验六 双子叶植物茎的初生结构和单子叶植物茎的结构

实验六植物茎的初生结构和次生结构 茎的初生结构是由茎顶端分生组织细胞分裂、生长和分化所产生的。双子叶植物茎的初生结构可分为三个部分,即表皮、皮层和维管柱。单子叶植物茎一般不具有形成层,仅有初生结构。 茎的次生结构是由侧生分生组织的细胞分裂、生长和分化所形成的,产生次生结构的过程叫次生生长。裸子植物茎的次生结构类似于双子叶植物木本茎的次生结构。 一、实验目的与要求 1. 掌握双子叶植物茎的初生结构。 2. 掌握单子叶植物茎的结构。 3. 掌握双子叶植物木本茎的次生结构。 4. 了解裸子植物茎的结构。 二、仪器、药品与材料 (一)实验材料 向日葵(Helianthus annuus L.)、蚕豆(Vicia faba L.)、青菜(Brassica chinensis L.)、南瓜(Cucurbita moschata D.)、玉米(Zea mays L.)、水稻(Oryza sativa L.)的茎椴树属 (Tilia )茎横切片,黑松(Pinus thunbergiana Franco)茎横切面,黑松木材三切面。 (二)仪器与用品 显微镜、载玻片、盖玻片、刀片、镊子、培养皿、滴管。 (三)试剂 40%盐酸、5%间苯三酚。 三、实验步骤与方法 (一)双子叶植物茎的初生结构 由顶端分生组织所产生。取向 日葵幼茎横切片,观察如下结构 (图10-1): 1.表皮 2.皮层 3.维管柱 3.1维管束 3.2髓 3.3髓射线观察蚕豆幼茎、南 瓜等葫芦科植物茎的横切面,注意 维管束的区别。 (二)单子叶植物茎的结构 单子叶植物茎的维管束为有 限维管束,维管束中没有形成层,因此只具有初 生结构。由于禾本科植物是单子叶植物中重要的 一大类,本实验以禾本科玉米茎的结构为观察对 象,了解单子叶植物的结构特点。

单子叶植物茎的结构与双子叶区别

单子叶植物茎的结构 ⑴表皮由长细胞和短细胞(硅细胞和栓细胞)组成,外壁角化并硅化. ⑵机械组织是位于表皮内的厚壁组织. ⑶基本组织占茎的大部分体积的薄壁组织,其中常有气腔或气道. ⑷维管束分散在基本组织中,在实心茎中星散分布,在中空茎中排成疏松的两环. 双子叶植物有初生结构与次生结构之分 A.初生结构 ⑴表皮是茎外表的初生保护组织,其最显著特征是细胞外壁角质化,并形成角质层. ⑵皮层由厚角组织和皮层薄壁组织构成.厚角组织及近外侧的薄壁细胞常含有叶绿体.皮层具有光合作用和贮藏作用,并可产生木栓形成层. ⑶中柱(维管柱)由维管束、髓和髓射线三部分构成. ①维管束多数双叶植物的维管束为无限外韧维管束,木质部与韧皮部之间有束中形成层.初生韧皮部由筛管、伴胞、韧皮薄壁细胞和韧皮纤维组成;初生木质部由导管、管胞、木薄壁细胞和木纤维组成.茎中初生木质部发育成熟方式为内始式.维管束起输导和支持作用. ②髓是茎中央的薄壁组织,起贮藏作用. ③髓射线是位于两个维管束之间,连接皮层和髓的薄壁细胞,起贮藏和横向输导的作用,正对束中形成层的髓射线细胞可恢复分裂转变为束间形成层. B.从外至内双子叶植物茎的次生结构分为以下几个部分: 1) 周皮:由木栓层、木栓形成层和栓内层构成.同皮上通常有皮孔,是老茎进行气体交换的通道. 2) 被挤压的皮层:有或无,是初生结构的皮层在次生生长过程中,被挤压破坏留下来的一些残余. 3) 次生韧皮部:由韧皮薄壁细胞、筛管、伴胞、韧皮纤维、韧皮射线组成.主要起输送有机养分和机械支持作用.在木本植物的老茎中,次生韧皮部还是木栓形成层发生的场所,一旦在此处形成周皮,其外方的部分韧皮部即死亡成为干树皮的一部分 4) 维管形成层:由纺锤状原始细胞和射线原始细胞组成. 5) 次生木质部:由导管、管胞、木薄壁细胞、木纤维、木射线组成.起输送水分、矿质营养和机械支持作用. 6) 初生木质部:是由初生结构中初生木质部保留下来,在次生木质部的内方.木射线通过形成层的射线原始细胞和韧皮射线相连,共同构成维管射线(vascular ray).多年生木本植物的次生木质部又称木材 7) 髓:在茎的中央,由薄壁细胞构成,常含淀粉粒等贮藏物质.髓边缘常有环状的环髓带.

最新实验六 双子叶植物茎的初生结构和单子叶植物茎的结构

实验六植物茎的初生结构和次生结构 1 2 茎的初生结构是由茎顶端分生组织细胞分裂、生长和分化所产生的。双子叶3 植物茎的初生结构可分为三个部分,即表皮、皮层和维管柱。单子叶植物茎一4 般不具有形成层,仅有初生结构。 5 茎的次生结构是由侧生分生组织的细胞分裂、生长和分化所形成的,产生次6 生结构的过程叫次生生长。裸子植物茎的次生结构类似于双子叶植物木本茎的7 次生结构。 8 一、实验目的与要求 9 1. 掌握双子叶植物茎的初生结构。 10 2. 掌握单子叶植物茎的结构。 11 3. 掌握双子叶植物木本茎的次生结构。 12 4. 了解裸子植物茎的结构。 13 二、仪器、药品与材料 14 (一)实验材料 15 向日葵(Helianthus annuus L.)、蚕豆(Vicia faba L.)、青菜16 (Brassica chinensis L.)、南瓜(Cucurbita moschata D.)、玉米(Zea mays 17 L.)、水稻(Oryza sativa L.)的茎 18 椴树属 (Tilia)茎横切片,黑松(Pinus thunbergiana Franco)茎横切面,19 黑松木材三切面。 20 (二)仪器与用品

21 显微镜、载玻片、盖玻片、刀片、镊子、培养皿、滴管。 22 (三)试剂 23 40%盐酸、5%间苯三酚。 24 三、实验步骤与方法 25 (一)双子叶植物茎的初生结构 26 由顶端分生组织所产生。取 27 向日葵幼茎横切片,观察如下 28 结构(图10-1): 29 1.表皮 30 2.皮层 31 3.维管柱 32 3.1维管束 33 3.2髓 34 3.3髓射线观察蚕豆幼茎、南瓜等葫芦科植物茎的横切面,注意维管束35 的区别。 36 (二)单子叶植物茎的结构 37 单子叶植物茎的维管束为有限维管束,维管束中没有形成层,因此只具有初38 生结构。由于禾本科植物是单子叶植物中 39 重要的一大类,本实验以禾本科玉米茎的 40 结构为观察对象,了解单子叶植物的结构

植物的逆境生理复习题参考答案

植物的逆境生理复习题参考答案 一、名词解释 1、逆境(environmental stress):又称胁迫(stress)。系指对植物生存和生长不利的各种环境因素的总称。如低温、高温、干旱、涝害、病虫害、有毒气体等。 2、抗逆性(stress resistance):植物对逆境的抵抗和忍耐能力,简称为抗性。抗性是植物对环境的一种适应性反应,是在长期进化过程中形成的。 3、抗性锻炼(hardiness hardening):在生活周期中,植物的抗逆遗传特性需要特定环境因子的诱导才能表现出来,这种诱导过程称为抗性锻炼,例如抗寒锻炼、抗旱锻炼。 4、抗寒锻炼(cold resistance hardening):植物在冬季来临之前,随着气温的降低,体内发生了一系列适应低温的生理生化变化,抗寒能力逐渐增强,这种抗寒能力逐渐提高的过程称为抗寒锻炼。 5、抗旱锻炼(drought resistance hardening ):在种子萌发期或幼苗期进行适度的干旱处理,使植物的生理代谢上发生相应的变化,从而增强对干旱的抵抗能力,这个过程称为抗旱锻炼。 6、交叉适应(cross adaptation):植物经历了某种逆境后,能提高对另一些逆境的抵抗能力,这种对不同逆境间的相互适应作用,称为交叉适应。 7、避逆性(stress avoidance):植物通过设置物理屏障或某些特殊的代谢反应和生长发育变化,从而避免或减小逆境对植物组织施加的影响,使其仍保持较正常的生理活动,这种抵抗称为避逆性。 8、耐逆性(stress tolerance):又称逆境忍耐。植物组织虽然经受逆境的影响,但可通过代谢反应阻止、降低或者修复由逆境造成的损伤,从而保持其生存能力,这种抵抗称为耐逆性。 9、逆境逃避(stress escape):指植物通过生育期的调整避开逆境,例如沙漠中的一些植物在雨季里快速生长,完成生活史,自身并不经历逆境。 10、渗透调节(osmotic adjustment.) :植物细胞通过主动增加溶质降低渗透势,增强吸水和保水能力,以维持正常细胞膨压的作用。 11、寒害(cold injury):低温导致的植物受伤或死亡。 12、冻害(feezing injury):温度下降到零度以下,植物体内发生冰冻,因而

植物的逆境生理

第十章植物的抗逆生理 (单元自测题) 一、填空 1.常见的有机渗透调节物质有:、和等。(脯氨酸,甜菜碱,可溶性糖) 2.在逆境下脯氨酸累积的原因主要有三:一是脯氨酸加强。二是脯氨 酸作用受抑,三是合成减弱。(合成,氧化,蛋白质) 3.冻害主要是的伤害。植物组织结冰可分为两种方式:结冰与结冰。(冰晶,胞外,胞内) 4.胞间结冰引起植物受害的主要原因是:(1) 过度脱水,(2) 对细胞的机械损伤。(3)解冻过快对的损伤。胞内结冰对细胞的危害更为直接,形成以及融化时对质膜与细胞器以及整个细胞质产生破坏作用。胞内结冰常给植物带来致命的损伤。(原生质,冰晶体,细胞,冰晶) 二、选择题 1.在植物受旱情况下,细胞中的含量显著提高。C. A.天冬氨酸 B.精氨酸 C.脯氨酸 D.谷氨酸 2.以下哪种蛋白质不是逆境蛋白?D. A.热击蛋白 B.冷响应蛋白 C.盐逆境蛋白 D.叶绿蛋白 3.植物对冰点以上低温的适应能力叫。B. A.抗寒性 B.抗冷性 C.抗冻性 D.耐寒性 4.膜脂中不饱和脂肪酸的比例高,相变温度。B. A.高 B.低 C.不受影响 5.植物受到干旱胁迫时,光合速率会。B. A.上升 B.下降 C.变化不大 6.经过低温锻炼后,植物组织内降低。B. A.可溶性糖含量 B.自由水/束缚水的比值 C.脯氨酸含量 D.不饱和脂肪酸的含量 7.作物越冬时体内可溶性糖的含量。A. A.增多 B.减少 C.变化不大 8.干旱伤害植物的根本原因是。A. A.原生质脱水 B.机械损伤 C.代谢紊乱 D.膜透性改变 9.涝害的根源是细胞。B. A.乙烯含量增加高 B.缺氧 C.无氧呼吸 D.营养失调 10植物组织受伤害时,受伤处往往迅速呈褐色,其主要原因是 A.A.醌类化合物的聚合作用 B.产生褐色素 C.细胞死亡 D.光的照射三、缩写符号 Pro:脯氨酸 MDA:丙二醛 UFAI:不饱和脂肪酸指数

双子叶植物茎和单子叶植物茎的结构有什么相同之处和不同之处

双子叶植物茎和单子叶植物茎的结构有什么相同之处和不同之处 单子叶植物茎的结构 ⑴表皮由长细胞和短细胞(硅细胞和栓细胞)组成,外壁角化并硅化。 ⑵机械组织是位于表皮内的厚壁组织。 ⑶基本组织占茎的大部分体积的薄壁组织,其中常有气腔或气道。 ⑷维管束分散在基本组织中,在实心茎中星散分布,在中空茎中排成疏松的两环。 双子叶植物有初生结构与次生结构之分 A.初生结构 ⑴表皮是茎外表的初生保护组织,其最显著特征是细胞外壁角质化,并形成角质层。 ⑵皮层由厚角组织和皮层薄壁组织构成。厚角组织及近外侧的薄壁细胞常含有叶绿体。皮层具有光合作用和贮藏作用,并可产生木栓形成层。 ⑶中柱(维管柱)由维管束、髓和髓射线三部分构成。 ①维管束多数双叶植物的维管束为无限外韧维管束,木质部与韧皮部之间有束中形成层。初生韧皮部由筛管、伴胞、韧皮薄壁细胞和韧皮纤维组成;初生木质部由导管、管胞、木薄壁细胞和木纤维组成。茎中初生木质部发育成熟方式为内始式。维管束起输导和支持作用。 ②髓是茎中央的薄壁组织,起贮藏作用。 ③髓射线是位于两个维管束之间,连接皮层和髓的薄壁细胞,起贮藏和横向输导的作用,正对束中形成层的髓射线细胞可恢复分裂转变为束间形成层。

B.从外至内双子叶植物茎的次生结构分为以下几个部分: 1) 周皮:由木栓层、木栓形成层和栓内层构成。同皮上通常有皮孔,是老茎进行气体交换的通道。 2) 被挤压的皮层:有或无,是初生结构的皮层在次生生长过程中,被挤压破坏留下来的一些残余。 3) 次生韧皮部:由韧皮薄壁细胞、筛管、伴胞、韧皮纤维、韧皮射线组成。主要起输送有机养分和机械支持作用。在木本植物的老茎中,次生韧皮部还是木栓形成层发生的场所,一旦在此处形成周皮,其外方的部分韧皮部即死亡成为干树皮的一部分 4) 维管形成层:由纺锤状原始细胞和射线原始细胞组成。 5) 次生木质部:由导管、管胞、木薄壁细胞、木纤维、木射线组成。起输送水分、矿质营养和机械支持作用。 6) 初生木质部:是由初生结构中初生木质部保留下来,在次生木质部的内方。木射线通过形成层的射线原始细胞和韧皮射线相连,共同构成维管射线(vascular ray)。多年生木本植物的次生木质部又称木材 7) 髓:在茎的中央,由薄壁细胞构成,常含淀粉粒等贮藏物质。髓边缘常有环状的环髓带。

逆境胁迫对植物生理生化代谢的影响

逆境胁迫对植物生理生化代谢的影响 摘要:干旱、盐碱和低温是强烈限制作物产量的三大非生物因素,其中干旱造成的损失最大, 其损失超过其他逆境造成损失的总和。对植物产生伤害的环境称为逆境,又称胁迫。常见的逆境有寒冷、干旱、高温、盐渍等。逆境会伤害植物,严重时会导致植物死亡。逆境对植物的伤害主要表现在细胞脱水、膜系统受破坏,酶活性受影响,从而导致细胞代谢紊乱。有些植物在长期的适应过程中形成了各种各样抵抗或适应逆境的本领,在生理上,以形成胁迫蛋白、增加渗透调节物质(如脯氨酸含量)、提高保护酶活性等方式提高细胞对各种逆境的抵抗能力。以小麦幼苗为材料,设置对照组,探究了干旱胁迫下脯氨酸(pro)、谷胱甘肽(GSG)、丙二醛(MDA)、H2O2的含量变化以及抗氧化酶(POD、PPO)活性的变化。结果表明:在干旱胁迫下,脯氨酸(pro)、谷胱甘肽(GSG)、丙二醛(MDA)、H2O2的含量相对于对照组均有较明显的上升趋势,POD和PPO活性也表现出较大水平的提高。 关键词:干旱胁迫,抗逆性,脯氨酸,丙二醛,样品,细胞膜透性,过氧化物酶活性,叶绿素,可溶性糖。谷胱甘肽;抗氧化酶;H2O2 引言:干旱是我国农业可持续发展面临的主要问题之一,【1】干旱胁迫对植物的 影响是一个复杂的生理生化过程,涉及到许多生物大分子和小分子植物细胞膜起调节控制细胞内外物质交换的作用,它的选择透性是其最重要的功能之一。【2】研究表明,游离的脯氨酸在植物细胞抵抗非生物胁迫过程中扮演着越来越重要的角色,许多新的生理功能也逐渐被发现,近几年来有关脯氨酸的研究倍受科学工作者的关注【9-13】。干旱是一种最常见的胁迫,遇此逆境作物除进行气孔调节外,渗透词节也不夹为一种有效方法。原理是通过加强合成代谢,增加细胞内渗透物质浓度,降低渗透势,维持膨压和细胞正常生理功能。脯氨酸作为水溶性最大的氮基酸(162.3g· (100g)。H 2 O,25 o C)具有较强水合能力,是理想的渗透介质。作物遇旱时它的大量积累有助于细胞或组织持水,防止脱水,故可视为作物对干早环境的一种保护性适应。已经证明了在逆境条件下脯氨酸的积累来抵抗植物对非生物胁迫的伤害,植物体内的抗氧化酶系统也能将伤害细胞的活性氧控制在可忍耐水平内,通过各种过氧化酶的协同作用,可以把细胞内产生的具有很强氧化 活性的活性氧如O2-、H 2O 2 、OH-等直接或间接地清除,防止了活性氧放大级联作 用,保证了细胞内生命活动的正常进行。丙二醛(MDA)是由于植物官衰老或在逆境条件下受伤害,其组织或器官膜脂质发生过氧化反应而产生的,对干旱也具有抵抗作用。GSH作为生物体内主要的还原态硫之一,在生物体抵抗各种胁迫(冷害、干旱、重金属、真菌等)的过程中起着重要的作用,其含量水平的高低与植物对各种环境胁迫的忍耐程度密切相关。近些年来,它在高等植物代谢过程中的生理作用,尤其是在植物抵御活性氧伤害过程中的作用及其与植物抗逆性关系的研究进展很快。前人研究进展植物在正常生长情况下, 活性氧的产生和清除处于

相关主题
文本预览
相关文档 最新文档