当前位置:文档之家› 连续型随机变量的分布与例题讲解

连续型随机变量的分布与例题讲解

连续型随机变量的分布与例题讲解
连续型随机变量的分布与例题讲解

连续型随机变量的分布

(一)连续型随机变量及其概率密度函数

1.定义:对于随机变量X 的分布函数 F(X) ,若存在非负函数f(x), 使对于

任意的实数 x,有F ( x)x

f(x) 称为 X f (t)dt ,则称X为连续性随机变量,

的概率密度函数,简称概率密度。

注: F(x)表示曲线下x 左边的面积,曲线下的整个面积为1。

2 .密度函数f(x) 的性质:注: f( x)不是概率。

1) f( x)≥ 0

+

f ( x) dx = 1

2) ò-x

2

3)P{x

1 < X ? x

2

}òx1

f (x) dx = F (x 2 ) - F (x 1 )

特别地,连续型随机变量在某一点的概率为零,即 P{ X = x} = 0.

(但 { X=x} 并不一定是不可能事件)

因此P(a≤X ≤ b)= P(a< X

4)若 f(x)在点 x 处连续,则 F (x) f (x).

分布函数性质

i) 0≤x)F(≤1;

ii)F(- ∞ )=0,F(+∞ )=1;

ⅲ) 当 x1≤x2时, F(x1) ≤ F(x2);(单调性)

iv)F(x)是连续函数

注: iv) 与离散型随机变量不同,

离散型随机变量的分布函数有有限个或无限可列个间断点。

例1 设随机变量 X 的分布函数为 F(x)=A+B arctanx,

求( 1)系数 A, B(2)P(-1

分析:主要是应用分布函数的性质。

解( 1)由 F(- ∞)=0,F(+ ∞)=1得

A B0A1

2

2解之,得

1

A B1B

2

11

( 2)由 (1)知 F(x)=arctan x,

2

基本内容备注

故得 P ( -1

1

arctan1- (1 + 1

arctan(- 1))

2

p 2 p

=

1 p - 1

(- p

) = 1

p 4 p 4 2

1 (- ?

x < +

)

(3) f(x) = F ( x) =

p(1+ x 2 )

ì - 3x

? , x > 0, 例 2

设随机变量 X 的概率密度为

?ke

试确定常数 f (x) = í

?

x £0,

?0,

k ,并求其分布函数

F(x)和 P{X>0.1}.

+

f (x) dx = 1

解: 由

ò-

+ ? f (x) dx =

f ( x)dx +

f (x)dx =

+

ke - 3x dx = k / 3 = 1,

-?

ò

k = 3.

ì

- 3x

>

?

, x 0,

f (x) =

?3e

í

?

x £ 0.

?0,

当 x £ 0 时, F (x )

x

0dt

x

当 x > 0 时, F (x) =

蝌-

0dt +

3e - 3t dt = 1- e - 3 x

ì

- 3x

>

? -

e

, x 0,

于是,

?

1

F(x) = í

?

x £0.

?0,

P{X > 0.1} = 1- P{X ? 1}

1- F (1)= 1-

(1- e - 0.3 ) = e - 0.3 = 0.7408.

(二)正态分布

( 1)设随机变量 X 的概率密度函数为

1

(x

) 2

f(x)

e

2 2

,

x ,

2

其中 , ( 0) 为常数,则称

X 为服从参数为

, 的正 态分布,记作

X ~N(

,

2

). 其图象为(右图) 。其中: 称为位置参数,

f (x) 的图形

关于 x

对称, 影响 f (x)

的最大值及曲线的形状。分布函数为

基 本 内 容

备 注

x

1 (t

)2

F (x)

e 2 2

dt 。

2

性质:

1.曲线关于 x

对称,这表明对于任意

h 0 有 P{ -h

X } P{X

h}.

2.当 x

时, f ( x)取到最大值: f(

1 .

)

2

( 2)标准正态分布

特别地,当

0, 1 时,称 X 服从标准正态分布,

记为 X ~ N (0,1). 相应的概率密度函数和分布函数分别记为

1 x 2

1 t 2

(x)

2 ,

x

e (x)

e 2

dt.

2

易知

( x) 1 (x) 。

(x) 即标准正态分布函数,其值已制成表格,以备查用。

例 3 设随机变量 X~N(0,1) ,查表计算:

(1) P(X ≤ 2.5); (2) P(X>2.5) ; (3) P(|X|<2.5).

解 (1) P(X ≤ 2.5) = Φ(2.5) =0.993790

(2) P(X>2.5) =1- P(X ≤ 2.5) =1- Φ(2.5) =0.006210 (3)

P(|X|<2.5) =P(-2.5

=2×0.993790-1 =0.987580

引理

若 X~N( , 2),则 Z

X ~ N (0,1).

X -

Z 的分布函数为

X

1

(t ) 2

P{ Z x}

P{ x}

P{ X

x}

x 2

2

e 2

dt ,

t

1 x

u 2

X

u ,得

e 2

du

( x),可知 Z

~ N (0,1).

2

基 本 内 容

备 注

于是,若 X ~ N(

, 2 ),则它的分布函数 F (x) 可写成:

F (x) P{ X x}

P{

X

x

}

(

x

).

对于任意区间

(x 1 ,x 2 ],,有

P{x 1 X x 2}

P{

x

1

X x 2

}

(

x

2

)(

x

1

).

注: 可以通过标准正态分布表计算任何正态分布的分布函数值或有关概

率。

例如,设 X~N(1,4) ,则

P{0 X 1.6}

P{

1 X 1 1.6 1}

2 2 2

1.6 1

0 1

(0.3)

(

0.5) 0.6179 [1(0.5)]

2

2

0.6179 1 0.6915 0.3094.

例 4 设某商店出售的白糖每包的标准全是

500 克 ,设每包重量

X( 以克

计 )是随机变量 ,X~N(500,25), 求 :

(1) 随机抽查一包 , 其重量大于 510 克的概率 ; (2) 随机抽查一包 , 其重量与标准重量之差的绝对值在

8 克之内的

概率 ;

(3) 求常数 C,使每包的重量小于 C 的概率为 0.05。

解 : (1)P{ X

510} 1 P{ X

510} 1

(510

500)

5

1

(2) 1 0.9772 0.0228 (2) P{| X

500 | 8}

P{492 X

508}

508

500 492 500

(

)

(

5

)

5

(1.6) ( 1.6) 2 (1.6) 1 2 0.9452-1 0.8904

(3) 求常数 C ,使之满足 P{X

C-500

(

) 0.05

5

由于 ( 1.645)

0.05, 即

C-500

1.645, 得 C

491.775.

5

例 5 某重点大学招收研究生 800 人,按考试成绩从高分至低分依次录取。设报考该大学的考生共 3000 人,且考试成绩服从正态分布, 已知这些考生中成绩在 600 分以上的有 200 人,重点线( 500 分)以下的 2075 人 , 问该大学的实录线(即录取最低分)是多少?

分析

设学生考试成绩 X~N(

,

2

) ,首先应求出

2

之值,然后根

据录取人数占总人数的比例,再应用正态分布概率公式算出实录最低分。

设学生成绩 X~N(

,

2

),由题设知应有

P( X

600) 200 0.0667

3000

P( X

500)

2075 0.6917

3000

从而得 1 ( 600

) 0.0667,

( 500 ) 0.6917

即 (600

) 0.9333 以及

( 500

)

0.6917

600

1.5

450

查表得

解之得

500

100

0.5

故知, X~N( 450,1002 )

又设该大学实录线为

a ,由题设知:

P( X

a)

800 0.2667 即 1( a 450

) 0.2667

3000

100

于是可得

(

a

450 ) 0.7333

100

查表得

a 450 0.623, 解之得 a

512.3.

100

即是说该大学的实录线约为

512 分。

(三) 对数正态分布

定义: 若随机变量 X 的概率密度函数为

1 (ln x )2

f ( x)

2 x e

2

2

其中,,0 为常数,则称X 服从参数为和的对数正态分布,记作X ~LN( ,2).

对数正态分布的分布函数为

x F ( x)

1(ln t)2

e 22dt x 0 2t

若X ~LN( , 2),则

P{ x1 X x2}(ln x2ln x1

)

)(

(四) Weibull 分布

定义:若随机变量X 的概率密度函数为

m (x ( x)m

f ( x))

m 1 e x

0x

其中, m,,0 为常数,则称X 服从参数为m, ,的 Weibull 分布,记作X ~ W (m, ,).

Weibull 分布的分布函数为

x m(t )m( x )m

F (x))m 1

e dt 1 e( x)

(t

m ——形状参数

——位置参数

——尺度参数

Weibull 分布概括了许多典型的分布。

本次课小结:

介绍了连续型随机变量的概念 , 连续型随机变量概率密度函数的概念及其性质 . 介绍了几种常见的连续型随机变量的分布,其中最主要的是正态分布。

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

高中数学第二章概率5第2课时离散型随机变量的方差学案北师大版选修

第2离散型随机变量的方差 学习目标1.理解取有限个值的离散型随机变量的方差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题. 知识点离散型随机变量的方差 甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为X和Y,X和Y的分布列为 X 01 2 P 6 10 1 10 3 10 Y 01 2 P 5 10 3 10 2 10 思考1试求EX,EY. 思考2能否由EX与EY的值比较两名工人技术水平的高低? 思考3试想用什么指标衡量甲、乙两工人技术水平的高低? 梳理(1)离散型随机变量的方差的含义 设X是一个离散型随机变量,用E(X-EX)2来衡量X与EX的________________,E(X-EX)2是(X-EX)2的________,称E(X-EX)2为随机变量X的方差,记为________. (2)方差的大小与离散型随机变量的集中与分散程度间的关系 方差越____,随机变量的取值越分散;方差越____,随机变量的取值就越集中在其均值周

围. (3)参数为n,p的二项分布的方差 当随机变量服从参数为n,p的二项分布时,其方差DX=np(1-p). 类型一求离散型随机变量的方差 命题角度1已知分布列求方差 例1已知X的分布列如下: X -10 1 P 1 2 1 4 a (1)求X2 (2)计算X的方差; (3)若Y=4X+3,求Y的均值和方差. 反思与感悟方差的计算需要一定的运算能力,公式的记忆不能出错!在随机变量X2的均值比较好计算的情况下,运用关系式DX=EX2-(EX)2不失为一种比较实用的方法.另外注意方差性质的应用,如D(aX+b)=a2DX. 跟踪训练1已知η的分布列为 η010205060 P 1 3 2 5 1 15 2 15 1 15 (1)求方差; (2)设Y=2η-Eη,求DY.

2019-2020学年高中数学 2.3.1离散型随机变量的期望学案 新人教A版选修2-3.doc

2019-2020学年高中数学 2.3.1离散型随机变量的期望学案 新人教 A 版选修2-3 【教学目标】 1了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出期望. ⒉理解公式“E (a ξ+b )=aE ξ+b ”,以及“若ξ~Β(n ,p),则E ξ=np ”.能熟练地应用它们求相应的离散型随机变量的期望 【教学重难点】 教学重点:离散型随机变量的期望的概念 教学难点:根据离散型随机变量的分布列求出期望 【教学过程】 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量并且不改变其属性(离 散型、连续型) 5. 分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…, ξ取每一个值xi (i=1,2,…)的概率为 ()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 6. 分布列的两个性质: ⑴Pi ≥0,i =1,2,…; ⑵P1+P2+…=1. 7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ, (k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 0 1 … k … n P n n q p C 00 1 11-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B(n ,p),其中n ,p 为参数,并记k n k k n q p C -=

52.3.2离散型随机变量的方差导学案(选修2-3)

§2.3.2离散型随机变量的方差导学案 高二数学组 一、教学目标 1、通过实例,理解离散型随机变量的方差; 2、能计算简单离散型随机变量的方差。 重点:离散型随机变量的方差的概念 难点:根据离散型随机变量的分布列求出方差 二、自学引入: 问题1:某射手在10次射击中所得环数为:10,9,8,10,8,10,10,10,8,9. 求这名射手所得环数的方差。 问题2:某射手在一次射击中所得环数 能否根据分布列求出这名射手所得环数的方差? 引入概念: (1)方差的概念:设一个离散型随机变量X所有可能取得值是x1,x2,…,x n;这些值对应的概率为p1,p2,…,p n,则 D(X)= , 叫做这个离散型随机变量X的方差。 离散型随机变量的方差反映了离散型随机变量的取值。 (2)D(X)的叫做随机变量X的标准差。 三、问题探究: (1)若随机变量X服从参数为p的二点分布,则D(X)= ()。 (2)若随机变量X服从参数为n,p的二项分布,则D(X)= ()。 四、典例解析: 例1 甲、乙两射手在同样条件下进行射击,成绩的分布列如下: 射手甲: 射手乙: 谁的射击水平比较稳定。 变式训练设X是一个离散型随机变量,其分布列如下表,试求D(X)

例2 已知某离散型随机变量X 服从下面的二项分布: k k k C k X P -==449.01.0)( (k=0,1,2,3,4). 求E (X )和D (X )。 变式训练 一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为 0.02。设发病的牛的头数为X ,求E (X )和D (X )。 五、小结: 六、作业:课后练习A 、B 。 §2.3. 2离散型随机变量的方差当堂检测 高二数学组 1、已知()~,,8, 1.6B n p E D ξξξ==,则,n p 的值分别是( ) A .1000.08和; B .200.4和; C .100.2和; D .100.8和 2、设投掷1颗骰子的点数为ξ,则( ) A.E ξ=3.5,D ξ=3.52 B.E ξ=3.5,D ξ=12 35 C.E ξ=3.5,D ξ=3.5 D.E ξ=3.5,D ξ= 16 35 3、有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为X ,求E (X ),D (X ) 4、A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示: A 机床 B 机床 问哪一台机床加工质量较好

《离散型随机变量的概念》教学设计

离散型随机变量的概念》教学设计 一、教材分析 《离散型随机变量的概念》是人教 A 版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第一课时。本章是在必修三中学习了基本的概率统计知识的基础上,进一步学习随机变量及其分布的知识。本节内容一方面承接了必修三的知识;另一方面,掌握好这一节课将有助于后续的学习,因此它在知识体系上起着承上启下的作用。随机变量是连接随机现象和实数空间的一座桥梁,从而使得更多的数学工具有了用武之地。离散型随机变量是最简单的随机变量。本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法。 二、学情分析 学生在必修 3 概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1 中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、 解决问题的能力

四、目标分析 1知识与技能目标:理解随机变量和离散型随机变量的概念,能够运用随机变量表示随机事件,学会恰当的定义随机变量; 2、过程与方法目标:在教学过程中,以不同的实际问题为导向,弓I导学生分析问题的特点,归纳问题的共性,提高理解分析能力和抽象概括能力; 3、情感与态度目标:通过列举生活中的实例,提高学生学习数学的积极性, 使学生进一步感受到数学与生活的零距离,增强数学应用意识。 五、教学重点与难点 教学重点:随机变量、离散型随机变量概念的理解及随机变量的实际应用;教学难点:对随机变量概念的透彻理解及对引入随机变量目的的认识。 六、教学过程设计:

连续型随机变量

§3 连续型随机变量 除了离散型随机变量之外,还有非离散型的随机变量,这些随机变量的取值已不再是有限个或可列个。在这类非离散型随机变量中,有一类常见而重要的类型,即所谓连续型随机变量。粗略地说,连续型随机变量可以在某特定区间内任何一点取值。例如某种树的高度;测量的误差;计算机的使用寿命等等都是连续型随机变量。对于连续型随机变量,不能一一列出它可能取值,因此不能像对离散型随机变量那样用它取各个可能值的概率来描述它的概率分布,而是要考虑该随机变量在某个区间上取值的概率,我们是用概率密度函数来研究连续型随机变量的。 一. 概率密度和连续型随机变量定义: 对于随机变量X ,如果存在非负可积函数 ()()f x x -∞<<+∞,使得对于任意实数, ,()a b a b <都有 {}()b a P a X b f x dx <<= ? , 则称X 为连续型随机变量;称()f x 为X 的概率密度函数,简称概率密度或密度. 由定义可知,分布密度()f x 具有如下基本性质: (1).()0()f x x ≥-∞<<+∞; (2). ()()1f x dx P X +∞ -∞ =-∞<<+∞=? . 这两条性质的几何意义是:概率分布密度曲线不在x 轴下方,且该曲线与x 轴所围的图形面积为1。性质(1)、(2)可以作为判定一个函数是否可以作为一个连续型随机变量的分布密度的条件。 对于连续型随机变量X 可以证明,它在某一点a 处取值的概率为零,即 对于任意实数a ,有()0P X a ==. 即研究X 在某一点处取值的概率是没有什么实际意义的。从而可知,研究X 在某区间上取值的概率时,该区间含不含端点,不影响概率值。即 (3).对于任意实数, ,()a b a b <都有 {}{}{}{}()b a P a X b P a X b P a X b P a X b f x dx <<=≤<=<≤=≤≤=? 【例1】 设X 是连续型随机变量,已知X 的概率密度为 其中λ为正常数. 试 确定常数A .

几种常用连续型随机变量

几种常用的连续型随机变量 给出一个新概念:广义概率密度函数。 设连续型随机变量ξ的概率密度函数为φ(x ), 那么任何与之成正比的函数f (x )∝φ(x ), 都叫做ξ的广义概率密度函数, 或者说, 一个函数f (x )是ξ的广义概率密度函数, 说明存在着一实数a , 使得 φ(x )=af (x ) (1) 而知道了广义概率密度函数, ξ的概率密度函数就可以根据性质1)(=?+∞ ∞ -dx x ?, 求出 将(1)式代入得: 1)()(??+∞ ∞ -+∞ ∞ -==dx x af dx x ? 则?∞+∞ -= dx x f a )(1 因此, 知道了广义概率密度函数就等于知道了一般的概率密度函数, 我们只需关心函数的形状就可以了解概率密度的性质了. 因此也不必关于那个常数是什么. 4.4 指数分布 指数分布的概率密度函数为 ?? ?>=-其它 )(x e x x λλ? 它的图形如下图所示: 它的期望和方差如下计算: () λ λ λ?ξλλλλλ1 1 )(0 =- =+-=-= = = ∞ +-∞+-∞ +-+∞ -+∞ -+∞ ∞ -????x x x x x e dx e xe e xd dx e x dx x x E

() 2 20 202 2 2 2 2 2)(|λξλ λ?ξλλλλ= = +-=-= = = ????∞+-∞+-+∞ -+∞ -+∞∞ -E dx xe e x e d x dx e x dx x x E x x x x 2 2 2 221 1 2 )(λ λ λ ξξξ= - = -=E E D 指数分布常用来作为各种"寿命"分布的近似. 4.5 Γ-分布 如果一个随机变量ξ只取正值, 且在正半轴的广义概率密度函数的形式是x 的某次方x k 乘上指数函数e -λx , 即 ?? ?>->>=-其它 ) 0,1(0)(λλk x e x x f x k 那么就称ξ服从Γ-分布了. 上式中之所以要求k >-1, λ>0, 是因为广义积分 ?? +∞ -+∞ ∞ -= )(dx e x dx x f x k λ 只有在这种条件下才收敛. 此外, 传统上为了方便起见, 用另一个常数r =k +1, 因此广义概率密度函数写为 ?? ?>>>=--其它 ) 0,0(0)(1λλr x e x x f x r 而真实的概率密度函数φ(x )=af (x ), 可以给出常数a 由下式计算: ?∞ +--= 11 dx e x a x r λ 这样, 计算的关键就是要计算广义积分 ?+∞ --0 1dx e x x r λ, 作代换t =λx , 则x =t /λ, dx =dt /λ, 则???+∞ --+∞ --+∞ --= ? ?? ? ?=0 101 011 1 dt e t dt e t dx e x t r r t r x r λ λ λλ, 问题就转成怎样计算广义积分? +∞ --0 1dt e t t r , 这个积分有一个参数r >0, 在r 为一些特定 的参数时, 如当r =1时, 上面的广义积分还是可以计算的, 但是当r 为任意的正实数时, 此广 义积分就没有一般的公式, 一般的原函数表达式. 在这种情况下数学家常用的办法就是定义一个新的函数. 比如说, 在中学学的三角函数就无法用一个加减乘除的公式表示, 因此就发明了sin , cos 这样的记号来代表三角函数. 同样, 上面的广义积分的取值只依赖于参数r , 每给定一个r 值就有一个积分值与之对应, 因此也可以定义一个函数, 叫Γ-函数, 定义为

高中数学选修2-3离散型随机变量导学案

2.1.1离散型随机变量 【学习要求】 1.理解随机变量及离散型随机变量的含义. 2.了解随机变量与函数的区别与联系. 【学法指导】 引进随机变量的概念,就可以用数字描述随机现象,建立连接数和随机现象的桥梁,通过随机变量和函数类比,可以更好地理解随机变量的定义,随机变量是函数概念的推广. 【知识要点】 1.随机试验:一般地,一个试验如果满足下列条件: (1)试验可以在相同的情形下重复进行; (2)试验所有可能的结果是明确的,并且不只一个; (3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验. 2.随机变量:在随机试验中,随着变化而变化的变量称为随机变量. 3.离散型随机变量:所有取值可以的随机变量,称为离散型随机变量. 【问题探究】 探究点一随机变量的概念 问题1掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢? 问题2随机变量和函数有类似的地方吗? 例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)上海国际机场候机室中2013年10月1日的旅客数量; (2)2013年某天济南至北京的D36次列车到北京站的时间; (3)2013年某天收看齐鲁电视台《拉呱》节目的人数; (4)体积为1 000 cm3的球的半径长. 小结随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能的值,而不知道究竟是哪一个值. 跟踪训练1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. (1)某人射击一次命中的环数; (2)任意掷一枚均匀硬币5次,出现正面向上的次数; (3)投一颗质地均匀的骰子两次出现的点数(最上面的数字)中的最小值; (4)某个人的属相. 探究点二离散型随机变量的判定 问题1什么是离散型随机变量? 问题2非离散型随机变量和离散型随机变量有什么区别? 例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ; ③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是() A.①②③④B.①②④C.①③④D.②③④ 小结该题主要考查离散型随机变量的定义,判断时要紧扣定义,看是否能一一列出. 跟踪训练2指出下列随机变量是否是离散型随机变量,并说明理由. (1)白炽灯的寿命ξ; (2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ; (3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ; (4)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数. 探究点三离散型随机变量的应用 例3(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ.写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果. (2)抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么? 小结解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果. 跟踪训练3下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果. (1)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η. (2)从4张已编有1~4的卡片中任意取出2张,被取出的卡片号数之和ξ. (3)离开天安门的距离η. (4)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ. 【当堂检测】 1.下列变量中,不是随机变量的是() A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度 C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数 2.10件产品中有3件次品,从中任取2件,可作为随机变量的是() A.取到产品的件数B.取到正品的概率 C.取到次品的件数D.取到次品的概率 3.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是() A.2枚都是4点B.1枚是1点,另1枚是3点 C.2枚都是2点D.1枚是1点,另1枚是3点,或者2枚都是2点 4.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出2个球,以ξ表示取出的球的最大号码,则“ξ=6”表示的试验结果是___________________. 【课堂小结】 1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.

2020届二轮复习 离散型随机变量 学案(全国通用)

离散型随机变量 学习目标 1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系. 知识点一随机变量 思考1抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果,这种试验结果能用数字表示吗? 答案可以,可用数字1和0分别表示正面向上和反面向上. 思考2在一块地里种10棵树苗,棵数为x,则x可取哪些数字? 答案x=0,1,2,3, (10) (1)定义 在随机试验中,可以确定一个对应关系,使得每一个试验结果都用一个确定的数字表示,数字随试验结果的变化而变化,像这种随着试验结果变化而变化的变量称为随机变量. (2)表示:随机变量常用字母X,Y,ξ,η…表示. 知识点二随机变量与函数的关系 思考随机变量和函数有类似的地方吗? 答案随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.试验结果相当于函数的自变量,随机变量相当于函数的函数值,随机变量可以看作函数概念的推广. 知识点三离散型随机变量 1.定义:所有取值可以一一列出的随机变量称为离散型随机变量. 2.特征: (1)可用数值表示. (2)试验之前可以判断其出现的所有值. (3)在试验之前不能确定取何值.

(4)试验结果能一一列出. 类型一随机变量的概念 例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)某机场一年中每天运送乘客的数量. (2)某单位办公室一天中接到电话的次数. (3)明年5月1日到10月1日期间所查酒驾的人数. (4)明年某天济南一青岛的某次列车到达青岛站的时间. 解(1)某机场一年中每天运送乘客的数量可能为0,1,2,3,…,是随机变化的,因此是随机变量. (2)某单位办公室一天中接到电话的次数可能为0,1,2,3,…,是随机变化的,因此是随机变量. (3)明年5月1日到10月1日期间,所查酒驾的人数可能为0,1,2,3,…,是随机变化的,因此是随机变量. (4)济南一青岛的某次列车到达青岛站的时间每次都是随机的,可能提前,可能准时,亦可能晚点,故是随机变量. 反思与感悟随机变量的辨析方法 1.随机试验的结果是否具有可变性,即每次试验对应的结果不尽相同. 2.随机试验的结果的确定性.即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量. 跟踪训练1下列变量中,不是随机变量的是() A.一射击手射击一次命中的环数 B.标准状态下,水沸腾时的温度 C.抛掷两枚骰子,所得点数之和 D.某电话总机在时间区间(0,T)内收到的呼叫次数 答案 B 解析B中求沸腾时的温度是一个确定的值. 类型二离散型随机变量的判定

人教A版选修2-3 第二章2.1.1离散型随机变量 学案

2.1.1 离散型随机变量 知识点随机变量 (1)定义:在随机试验中,确定了一个对应关系,使得每一个试验结果都用一个□01确定的数字表示.在这个对应关系下,□02数字随着□03试验结果的变化而变化.像这种随着□04试验结果变化而变化的变量称为随机变量. (2)表示:随机变量常用字母□05X,Y,ξ,η表示. 知识点随机变量与函数的关系 相同点随机变量和函数都是一种映射 随机变量是随机试验的结果到□01实数的映射,函数是□02实数到□03实区别 数的映射 随机试验结果的范围相当于函数的□04定义域,随机变量的取值范围相联系 当于函数的□05值域 知识点离散型随机变量 所有取值可以□01一一列出的随机变量,称为离散型随机变量. 随机试验的特点 (1)试验的所有结果可以用一个数来表示; (2)每次试验总是恰好出现这些结果中的一个,但在一次试验之前,却不能肯定这次试验会出现哪一个结果.判断一个变量是否为离散型随机变量,首先看它是不是随机变量,其次看可能取值是否能一一列出,也就是说变量的取值若是有限的,或者是可以列举出来的,就可以视为离散型随机变量,否则就不是离散型随机变量.

1.判一判(正确的打“√”,错误的打“×”) (1)离散型随机变量的取值是任意的实数.( ) (2)随机变量的取值可以是有限个,也可以是无限个.( ) (3)离散型随机变量是指某一区间内的任意值.( ) 答案(1)×(2)√(3)× 2.做一做 (1)甲进行3次射击,甲击中目标的概率为1 2 ,记甲击中目标的次数为ξ,则 ξ的可能取值为________. (2)同时抛掷5枚硬币,得到硬币反面向上的个数为ξ,则ξ的所有可能取值的集合为________. (3)在8件产品中,有3件次品,5件正品,从中任取一件取到次品就停止,抽取次数为X,则X=3表示的试验是________. 答案(1)0,1,2,3 (2){0,1,2,3,4,5} (3)共抽取3次,前两次均是正品,第3次是次品 解析(1)甲可能3次全击中,也可能一次未中,中1次,2次,所以ξ的取值为0,1,2,3. (2)当硬币全部为正面向上时,ξ=0,硬币反面向上的个数还可能有1个,2个,3个,4个,也可能都反面向上,即5个. (3)由随机试验可知X=3表示抽取3次,前两次均是正品,第3次是次品. 探究1 随机变量的概念 例1 下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)某机场一年中每天运送乘客的数量. (2)某单位办公室一天中接到电话的次数. (3)明年5月1日到10月1日期间所查酒驾的人数. (4)明年某天济南—青岛的某次列车到达青岛站的时间. [解] (1)某机场一年中每天运送乘客的数量可能为0,1,2,3,…,是随机变化的,因此是随机变量. (2)某单位办公室一天中接到电话的次数可能为0,1,2,3,…,是随机变化的,因此是随机变量. (3)明年5月1日到10月1日期间,所查酒驾的人数可能为0,1,2,3,…,是随机变化的,因此是随机变量.

最新《2.1.1离散型随机变量》导学案

高一数学必修2-3 2.1--01 《2.1.1离散型随机变量》导学案 编撰崔先湖姓名班级组名. 【学习目标】1.理解随机变量的意义; 2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量 的例子; 3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量. 【学习重点】随机变量、离散型随机变量、连续型随机变量的意义 【学习难点】随机变量、离散型随机变量、连续型随机变量的意义 【学法指导】自主与讨论相结合 【导学过程】 一教材导读 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:称为随机变量.随机变量常用字母…表示.思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的映为,函数把映为.在这两种映射之间,试验结果的范围相当于函数的,随机变量的取值范围相当于函数的.我们把随机变量的取值范围叫做随机变量的. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”, {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出3 件以上次品”又如何用X 表示呢? 定义2:,称为离散型随机变量. 离散型随机变量的例子很多.例如某人射击一次可能命中的环数X 是一个离散型随机变量,它的所有可能取值为;某网页在24小时内被浏览的次数Y也是一个离散型随机变量,它的所有可能取值为。 思考3:电灯的寿命X是离散型随机变量吗? 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变 4.离散型随机变量与连续型随机变量的区别与联系: 注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上 (2)若ξ是随机变量,b a b a, , + =ξ η是常数,则η也是随机变量 二、题型导航 题型一、随机变量概念的辨析 【例1】将一颗均匀骰子掷两次,不能作为随机变量的是:() (A)两次出现的点数之和;(B)两次掷出的最大点数; (C)第一次减去第二次的点数差;(D)抛掷的次数。 变式1 (1)洪湖车站每天候车室候车的人数X,(2)张三每天走路的步数Y,(3)下落的篮球离地面的距离Z,(4)每天停靠洪湖港的船的数量S.不是离散型随机变量的是 解题总结 题型二、随机变量的值域 【例2】写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果 (1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ; (2)某单位的某部电话在单位时间内收到的呼叫次数η 变式2写出下列各随机变量可能取得值: (1)抛掷一枚骰子得到的点数。 (2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。 (3)抛掷两枚骰子得到的点数之和。 (4)某项试验的成功率为0.001,在n次试验中成功的次数。 (5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值 解题总结

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

人教版选修2-3 2.1.1 离散型随机变量导学案

2.1.1《离散型随机变量》导学案 制作王敬审核高二数学组2016-05-27 【学习目标】 1.通过实例了解随机变量的概念,理解离散型随机变量的概念. 2.能写出离散型随机变量的可能取值,并能解释其意义. 【重点难点】 重点:离散型随机变量的概念. 难点:离散型随机变量的意义. 【预习导航】 1.一个试验如果满足下列条件: (1)试验可以在相同的情形下__________进行; (2)试验的所有可能结果是__________的,并且不只一个; (3)每次试验总是恰好出现这些可能结果中的__________,但在一次试验之前却不能肯定 这次试验会出现哪一个结果. 这种试验就是一个随机试验,为了方便起见,也简称试验. 2.随着__________变化而变化的变量称为随机变量,随机变量常用字母X、Y、ξ、η等表示. 3.______________________的随机变量,称为离散型随机变量. 【问题整合】 【问题1】一个正四面体玩具,四个面分别涂有红、黄、绿、黑,投掷一次观察落地一面的颜色,有多少种可能的结果?这些结果可以用数字表示吗? 【问题2】在一块地里种了6棵树苗,设成活的树苗棵数为X,则X可取哪些数字? 【探究活动一】随机变量及其取值的意义 例1写出下列各随机变量可能的取值,并说明随机变量的值所表示的随机试验的结果. (1)正方体的骰子,各面分别刻着1、2、3、4、5、6,随意掷两次,所得的点数之和为ξ; (2)一个人要开房门,他共有10把钥匙,其中仅有一把是能开门的,他随机取钥匙去开门并且用后不放回,其中打开门所试的钥匙个数为ξ; (3)电台在每个整点都报时,某人随机打开收音机对表,他所等待的时间ξ(min). 方法规律总结 跟踪训练1 100件产品中,含有5件次品,任意抽取4件产品,其中含有的次品数为ξ,抽取产品的件数为η,ξ、η是随机变量吗?

讲连续型随机变量分布与随机变量的函数的分布

第七讲 连续型随机变量(续)及 随机变量的函数的分布 3. 三种重要的连续型随机变量 (1)均匀分布 设连续型随机变量X 具有概率密度 )5.4(,, 0,,1 )(??? ??<<-=其它b x a a b x f 则称X 在区间(a,b)上服从均匀分布, 记为X~U(a,b). X 的分布函数为 )6.4(. , 1,, ,,0)(???? ???≥<≤--<=b x b x a a b a x a x x F (2)指数分布 设连续型随机变量X 的概率密度为 )7.4(, , 0,0,e 1)(/?????>=-其它x x f x θ θ 其中θ>0为常数, 则称X 服从参数为θ的指数分布. 容易得到X 的分布函数为 )8.4(. , 0,0,1)(/?? ?>-=-其它x e x F x θ 如X 服从指数分布, 则任给s,t>0, 有 第二章 随机变量及其分布 §4 连续型随机变量 及其概率密度 1 =2

P{X>s+t | X > s}=P{X > t} (4.9) 事实上 }. {e e e )(1)(1}{}{} {)} (){(}|{//)(t X P s F t s F s X P t s X P s X P s X t s X P s X t s X P t s t s >===-+-=>+>= >>?+>=>+>--+-θ θθ 性质(4.9)称为无记忆性. 指数分布在可靠性理论和排队论中有广泛的运用. (3)正态分布 设连续型随机变量X 的概率密度为 ) 10.4(,,e 21)(2 22)(∞<<-∞= -- x x f x σμσ π其中μ,σ(σ>0)为常数, 则称X 服从参数为 μ,σ的正态分布或高斯(Gauss)分布, 记为 X~N(μ,2σ). 显然f(x)≥0, 下面来证明 1d )(=? +∞ ∞ -x x f 令t x =-σμ/)(, 得到 dx e dx e t x 2 2)(22 22121- ∞ +∞ --- ∞ +∞ -? ? = π σ πσμ . 1d 21d 21 ) 11.4(π 2d d e ,, d d ,d e 2 2)(20 2 22 /)(2 2 /2 2 22 222== ====? ??? ? ? ?∞ ∞ -- ∞ ∞ ---∞ - +∞∞-+∞ ∞ -+-∞∞ --x e x e r r I u t e I t I t x r u t t π σ πθσ μπ 于是 得转换为极坐标则有记f(x)具有的性质: f (x )的图形: 1.5 0.5

连续型随机变量的分布与例题讲解

连续型随机变量的分布 (一)连续型随机变量及其概率密度函数 1.定义:对于随机变量X 的分布函数 F(X) ,若存在非负函数f(x), 使对于 任意的实数 x,有F ( x)x f(x) 称为 X f (t)dt ,则称X为连续性随机变量, 的概率密度函数,简称概率密度。 注: F(x)表示曲线下x 左边的面积,曲线下的整个面积为1。 2 .密度函数f(x) 的性质:注: f( x)不是概率。 1) f( x)≥ 0 + f ( x) dx = 1 2) ò-x 2 3)P{x 1 < X ? x 2 }òx1 f (x) dx = F (x 2 ) - F (x 1 ) 特别地,连续型随机变量在某一点的概率为零,即 P{ X = x} = 0. (但 { X=x} 并不一定是不可能事件) 因此P(a≤X ≤ b)= P(a< X

连续型随机变量

江苏科技大学 毕业论文(设计) 题目:连续型随机变量在实际生活中的应用 姓名:顾苗 学号:1140503102 教学院:数理学院 专业班级:11级统计一班 指导教师:王康康 完成时间:2015年06月10日 二零一伍年六月

连续型随机变量在实际生活中的应用Continuous random variables applied in real life

江苏科技大学毕业设计(论文) 江苏科技大学 毕业设计(论文)任务书 学院名称:数理学院专业:统计学 学生姓名:顾苗学号:1140503102 指导教师:王康康职称:讲师

江苏科技大学毕业设计(论文) 毕业设计(论文)题目: 连续型随机变量在实际生活中的应用 一、毕业设计(论文)内容及要求(包括原始数据、技术要求、达到的指标和应做的实验等) 连续型随机变量在现实生活中有广泛的应用,许多物理过程和社会现象均可以由各种常见的随机过程来刻画。如泊松过程、正态过程、马氏过程等等,其应用非常广泛。在实际运用时,我们考虑它们在各种经济模型中的应用和计算,它们种类繁多,形式各异。具有很强的现实意义。 1、给出连续型随机变量的基本概念。 2、给出几种常见的连续型随机变量的理论意义。 3、给出几种常见的连续型随机变量在各种经济模型中的应用。 二、完成后应交的作业(包括各种说明书、图纸等) 1、至少6000字以上的论文 2、教师指定阅读的外文文献原文 3、指定外文文献的译文6000字以上

三、完成日期及进度 2015.2.25~2015.3.16 文献检索与资料收集; 2015.3.16~2015.4.12 文献阅读及撰写开题报告; 2015.4.12~2015.5.8 论文构思与内容; 2015.5.8~2015.5.24 撰写论文; 2015.5.24~2015.6.9 论文评阅及答辩。

人教版数学高二学案离散型随机变量

2.1.1离散型随机变量 [学习目标] 1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系.3.会用离散型随机变量描述随机现象. 知识点一随机变量 1.随机试验 一般地,一个试验如果满足下列条件: (1)试验可以在相同的情形下重复进行; (2)试验所有可能的结果是明确的,并且不只一个; (3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验. 2.随机变量 在随机试验中,随着试验结果变化而变化的变量称为随机变量. 3.随机变量与函数的联系与区别 (1)联系:随机变量与函数都是映射,随机变量是随机试验结果到实数的映射,函数是实数到实数的映射;随机试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域. (2)区别:函数f(x)的自变量是x,而在随机变量的概念中,随机变量的自变量是试验结果(即样本点). 思考随机变量是自变量吗? 答案不是.它是随试验结果变化而变化的,不是主动变化的. 知识点二离散型随机变量 所有取值可以一一列出的随机变量,称为离散型随机变量. 思考离散型随机变量的取值必须是有限个吗? 答案不一定.离散型随机变量的取值可以一一列举出来,所取值可以是有限个,也可以无限个. 题型一随机变量的概念 例1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.

(1)任意掷一枚均匀硬币5次,出现正面向上的次数; (2)投一颗质地均匀的骰子出现的点数(最上面的数字); (3)某个人的属相随年龄的变化; (4)在标准状况下,水在0℃时结冰. 解(1)任意掷一枚硬币1次,可能出现正面向上也可能出现反面向上,因此投掷5次硬币,出现正面向上的次数可能是0,1,2,3,4,5,而且出现哪种结果是随机的,是随机变量. (2)投一颗骰子出现的结果是1点,2点,3点,4点,5点,6点中的一个且出现哪个结果是随机的,因此是随机变量. (3)属相是出生时便定的,不随年龄的变化而变化,不是随机变量. (4)标准状况下,在0℃时水结冰是必然事件,不是随机变量. 反思与感悟解答此类题目的关键在于分析变量是否满足随机试验的结果,随机变量从本质上讲就是以随机试验的每一个可能结果为一个映射,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能取的值,而不知道在一次试验中哪一个结果发生,随机变量取哪一个值. 跟踪训练1某学生上学的路上有6处红绿灯. (1)在每个红绿灯路口因红灯停留的时间之和是随机变量吗? (2)在上学路上遇到的红灯的个数是随机变量吗? 解(1)是随机变量.在上学的路上因红灯停留的时间之和都与一个非负实数对应,因此在每个红绿灯路口因红灯停留的时间之和是一个随机变量. (2)是随机变量.在上学路上遇到的红灯的个数都与0,1,2,3,4,5,6这7个数字之一相对应,因此在上学路上遇到的红灯的个数是一个随机变量. 题型二离散型随机变量的判定 例2某校为学生订做校服,规定:凡身高(精确到1cm)不超过160cm的学生交校服费80元;凡身高超过160cm的学生,身高每超出1cm多交5元钱.若学生应交校服费为η(单位:元),学生身高为ξ(单位:cm),则η和ξ是否为离散型随机变量? 解由于该校的每一个学生对应着唯一的身高,并且ξ取整数值,因此ξ是一个离散型随机变量,

相关主题
文本预览
相关文档 最新文档